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Abstract. This article proposes a method for calculating steady-state probabilities of the G/M/n/m

queueing systems. The approach based on the use of fictitious phases and hyper-exponential approxima-
tions with parameters of the paradoxical and complex type by method of moments. The obtained results
are verified using simulation models.
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1 Introduction

For the study of non-Markovian process in queueing systems, phase-type distributions are
used with exponential distributions of delays in the phases [2, 5, 8]. In the case of fixing the
number of the phase, the states of the system has a Markov property that makes it possible
to represent the transitions between them in the form of a discrete Markov process with
continuous time. The order of approximation is the number of retained initial moments of
the original distribution.

Recently, interest in the hyperexponential distribution has increased since its use showed
its high performance in solving problems of summation of recurrent flows [4], in computing
characteristics of queuing systems with impatient customers [3] and Jackson’s networks of
queueing [6], and also in analyzing stock management systems [1].

Article [8] shows that the use of hyperexponential approximation (Hl) makes it possible
to determine with high accuracy the steady-state probabilities of non-Markovian single-
channel queuing systems. These probabilities are determined using solutions of a system
of linear algebraic equations obtained by the method of fictitious phases. To find parame-
ters of the Hl-approximation of a certain distribution it is sufficient to solve the system of
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equations of the moments method. For the values V < 1 of the variation coefficient, roots
of this system are complex-valued or paradoxical (i.e., negative or with probabilities that
exceed the boundaries of the interval [0, 1] ) but in most cases as a result of summation of
probabilities of microstates, their complex-valued and paradoxical parts are annihilated.

The purpose of the paper is to use of the hyperexponential approximation method for
calculating steady-state probabilities of the G/M/n/m queueing systems. The obtained
results are verified using simulation models. We also indicate ways to evaluate the accuracy
of approach the obtained steady-state distribution to the true distribution without the need
to use simulation models.

2 Equations for steady-state probabilities of the Hl/M/n/m system

The hyperexponential distribution of order l is a phase-type distribution and provides for
choosing one of l alternative phases by a random process. With probability αs, the process
is at the sth phase and is in it during an exponentially distributed time with a parameter λs.

Suppose that the times elapsed between two consecutive arrivals are independent ran-
dom variables distributed according to the hyperexponential law Hl (l ≥ 2) with probabili-
ties αs and parameters λs (1 ≤ s ≤ l) and the service time of each customer is distributed
exponentially with parameter µ. Let n and m denote the number of channels in the system
and limit on the queue length respectively.

Let us enumerate the Hl/M/n/m system’s states as follows: x0(s) corresponds to the
empty system and the time interval until the arrival of the first customer is in the phase s
(1 ≤ s ≤ l); xk(s) is the state, when there are k customers in the system (1 ≤ k ≤ n+m),
the time interval until the arrival of the next customer is in the phase s (1 ≤ s ≤ l). We
denote by p0(s) and pk(s) respectively, steady-state probabilities that the system is in the
each of these states. To calculate p0(s) and pk(s) we obtain the system of linear equations:

−λsp0(s) + µp1(s) = 0, 1 ≤ s ≤ l;

−(λs + kµ)pk(s) + αs

l∑
u=1

λupk−1(u) + (k + 1)µpk+1(s) = 0, 1 ≤ k ≤ n− 1, 1 ≤ s ≤ l;

−(λs + nµ)pk(s) + αs

l∑
u=1

λupk−1(u) + nµpk+1(s) = 0, n ≤ k ≤ n+m− 1, 1 ≤ s ≤ l;

−(λs + nµ)pn+m(s) + αs

l∑
u=1

λu
(
pn+m−1(u) + pn+m(u)

)
= 0, 1 ≤ s ≤ l;

n+m∑
k=0

l∑
u=1

pk(u) = 1. (2.1)

Solving the system (2.1), we find the steady-state probabilities pk of the presence in the
queueing system of k customers using the formulas

pk =

l∑
u=1

pk(u), 0 ≤ k ≤ n+m. (2.2)
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3 Features of finding probabilities pk in the case of complex-valued or paradoxical
parameters of Hl-approximation

We calculate the approximate steady-state probabilities pk for the G/M/n/m system using
solutions of equations (2.1), written for the Hl/M/n/m system, considering the order of
approximation l from 2 to 6.

To find parameters ofHl-approximation of a certain distribution with a given coefficient
of variation it is sufficient to solve the system of equations of the moments method only for
the case of any one given mean value of this distribution since roots of the equations of the
moments method are invariant with respect to the scale transformation.

The system of equations of the moments method for approximating the distribution of
some random variable X using a random variable Yl distributed by law of Hl is of the form

l∑
s=1

αs
λis

=
mi

i!
, 0 ≤ i ≤ 2l − 1;

l∑
s=1

αs = 1, (3.1)

where mi = E(Xi) is the initial moment of order i of the random variable X. The depen-
dence of the nature of the roots of system (3.1) on values of the variation coefficient V for
the original gamma distributions and Weibull distributions is described in [8]. For the values
V < 1 of the variation coefficient, some of the roots of system (3.1) are complex-valued
but in most cases as a result of summation of probabilities of microstates the steady-state
probabilities pk are real-valued.

To illustrate this fact, we consider the solutions of system (2.1) for complex-valued
parameters αs and λs, limited to the case when l = 2, n = 1 and m = 1. In this case, using
the solutions of system (2.1) and formula (2.2), we obtain

p0 =
µ2

∆

(
(α2λ1 + α1λ2)µ

2+ α2λ
3
1 + α1λ

3
2+

+
(
α2(α1 + 2α2)λ

2
1 + 2α1α2λ1λ2 + α1(2α1 + α2)λ

2
2

)
µ
)
,

p1 =
λ1λ2µ

∆

(
µ2 + 2(α2λ1 + α1λ2)µ+ α2λ

2
1 + α1λ

2
2

)
, p2 = 1− p0 − p1,

∆ = (α2λ1 + α1λ2)
(
µ4 + ((α1 + 2α2)λ1 + (2α1 + α2)λ2) µ

3 + (λ1 + λ2)
2µ2

+((2α1 + α2)λ1 + (α1 + 2α2)λ2)λ1λ2µ+ λ21λ
2
2

)
.

(3.2)

If parameters αs and λs (s = 1, 2) are complex-valued, then they can only be complex
conjugate, and all possible cases of alternation of signs before the imaginary unit can be
reduced to such two:

1) α1 = a+ ib, λ1 = c+ id; α2 = a− ib, λ2 = c− id;
2) α1 = a+ ib, λ1 = c− id; α2 = a− ib, λ2 = c+ id.

(3.3)

In each of these cases, the imaginary parts in expressions (3.2) for pk (k = 0, 1, 2) are
reduced, because the expressions

λ1 + λ2, λ1λ2, α1α2, λ21 + λ22, α2λ1 + α1λ2, α1λ1 + α2λ2,

α2λ
2
1 + α1λ

2
2, α2λ

3
1 + α1λ

3
2, α2

2λ
2
1 + α2

1λ
2
2

of which consist pk, are real-valued.
In the case of complex-valued or paradoxical roots αs and λs of system (3.1), let us

name the function FHl
(t) = 1 −

l∑
s=1

αse
−λst ( t ≥ 0) the distribution pseudo-function
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Table 1 Values of the absolute deviation ∆l(F ) for different distributions

Distribution name ∆2(F ) ∆3(F ) ∆4(F ) ∆5(F ) ∆6(F )

Γ (0.001) 0.3629 0.2605 0.2092 0.1773 0.1549
U [0, 2] 0.1139 0.0632 0.0411 0.0295 0.0224
Γ (0.7) 0.0007 7.2 · 10−5 1.4 · 10−5 3.7 · 10−6 1.2 · 10−6

W (0.7) 0.0071 0.0026 0.0006 ∞ 6.1 · 10−5

W (0.8) 0.0043 ∞ 0.0004 0.0001 ∞
W (0.9) 0.0049 0.0005 ∞ 0.0001 4.8 · 10−5

W (0.95) 0.0031 0.0005 0.0001 ∞ 3.5 · 10−5

Γ (4) 0.3146 0.1412 0.0787 0.0497 0.0340
W (3) 0.3973 0.2790 0.2170 0.1786 0.1524

by law of Hl. Let us show that the function FHl
(t) is a real-valued function if αs and λs

(1 ≤ s ≤ l) are roots of system (3.1).
In fact, if some of the roots of system (3.1) are complex-valued, then they can only be

complex conjugate, and all possible cases of alternation of signs before the imaginary unit
can be reduced to two cases presented in (3.3). In each of these cases, the imaginary parts
in the expression for FHl

(t) are reduced, so the result is the real-valued function:

1) α1e
−λ1t + α2e

−λ2t = 2 e−ct (a · cos(dt) + b · sin(dt)) ;
2) α1e

−λ1t + α2e
−λ2t = 2 e−ct (a · cos(dt)− b · sin(dt)) .

The absolute deviation of the function of distribution by law G from a function FHl
(t)

which parameters are roots of system (3.1), we will evaluate with the help of integral

∆l(F ) =

∞∫
0

|FHl
(t)− FG(t)|dt,

where FG(t) is the probability distribution function by law G.
Let Γ (V ), W (V ) and U [a, b] denote the gamma distribution, Weibull distribution with

coefficients of variation V, and uniform distribution on the interval [a, b] respectively.
Table 1 gives deviation values of∆l(F ) for l = 2, . . . , 6, calculated by results of approx-

imation of different distributions with means 1. With increasing order ofHl-distribution, the
value of deviation ∆l(F ) decreases, and with the increase of the coefficient of variation for
V > 1 the deviation increases, much faster for the Weibull distribution compared with
the gamma distribution. For distributions W (0.7), W (0.8), W (0.9) and W (0.95) for some
values of l the deviation ∆l(F ) = ∞. In each of these cases, one of roots λs of system
(3.1) is real, but negative. Therefore, for the corresponding distribution pseudo-function,
the limit relation lim

t→∞
FHl

(t) = ∞ is valid. For these values of l, the steady-state proba-

bilities pk, obtained using solutions of equations (2.1), written for the Hl/M/n/m system,
can be paradoxical.

Calculations show that properties of the solutions of system (2.1) almost repeats the form
of the rootsαs (1 ≤ s ≤ l) of system (3.1). Let’s show it on examples ofU [0, 0.25]/M/n/m
and Γ (0.7)/M/n/m queueing systems.

For the order of approximation l from 2 to 6 the roots of system (3.1) for uniform distri-
bution on the interval [0, 0.25] are as follows:

l = 2 : α1,2 = 0.5± 0.86603i, λ1,2 = 12± 6.92820i;

l = 3 : α1 = 2.65193, α2,3 = −0.82596± 0.60435i,

λ1 = 18.57748, λ2,3 = 14.7113± 14.03505i;

l = 4 : α1,2 = −0.58906∓ 0.89679i, α3,4 = 1.08906± 4.95602i,

λ1,2 = 16.83032± 21.25934i, λ3,4 = 23.16968± 6.93787i;
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l = 5 : α1 = 15.24547, α2,3 = 1.02783∓ 0.49426i, α4,5 = −8.15056± 2.37119i,

λ1 = 29.17391, λ2,3 = 18.59739± 28.56818i, λ4,5 = 26.81565± 13.94129i;

l = 6 : α1,2 = 0.31983± 1.17903i, α3,4 = −3.40926∓ 12.71978i,

α5,6 = 3.58943± 36.22605i,

λ1,2 = 20.12746± 35.94138i, λ3,4 = 29.88567± 21.01018i;

λ5,6 = 33.98688± 6.94008i.

For l = 2 solutions of the corresponding system (2.1) are complex conjugate with posi-
tive real parts; for l = 3 pk(1) > 0 ∀ k, pk(2) and pk(3) are complex conjugate with negative
real parts for most values of k. For l = 4 we have two pairs of complex conjugate solutions
with negative real parts for most values of k in the first pair and with positive real parts ∀
k in the second pair. For l = 5 pk(1) > 0 ∀ k, and for s = 2, 3 and s = 4, 5 we have two
pairs of complex conjugate solutions pk(s) with positive real parts in the first pair and with
negative real parts in the second pair for most values of k. For l = 6 we have three pairs
of complex conjugate solutions pk(s) with negative real parts in the second pair and with
positive real parts in the first and third pairs.

For the order of approximation l from 2 to 6 the roots of system (3.1) for Γ (0.7) distri-
bution with mean 0.125 are as follows:

l = 2 : α1,2 = 0.5± 6.18520i, λ1,2 = 16± 1.31077i;

l = 3 : α1 = 0.02814, α2,3 = 0.48592± 15.70863i,

λ1 = 39.57700, λ2,3 = 16.21150± 0.53937i;

l = 4 : α1 = 0.00548, α2 = 0.08597, α3,4 = 0.45428± 29.37436i,

λ1 = 69.97401, λ2 = 25.49286, λ3,4 = 16.26656± 0.29607i;

l = 5 : α1 = 0.00186, α2 = 0.01855, α3 = 0.16685, α4,5 = 0.40637± 47.30434i,

λ1 = 108.92822, λ2 = 37.04067, λ3 = 21.45221,

λ4,5 = 16.28945± 0.18743i;

l = 6 : α1 = 0.00081, α2 = 0.00679, α3 = 0.03738, α4 = 0.26943,

α5,6 = 0.34279± 69.58145i,

λ1 = 156.50494, λ2 = 51.28750, λ3 = 27.95129, λ4 = 19.65369,

λ5,6 = 16.30125± 0.12940i.

For l from 2 to 6 properties of solutions pk(s) of system (2.1) in the sense of their signs
and whether they are real or complex, completely coincide with the properties of the roots
αs (1 ≤ s ≤ l) of system (3.1) with the same numbers.

4 Numerical results

Let us present the results of calculating steady-state probabilities on examples of the
U [0, 0.25]/M/10/15, U [0, 0.125]/M/20/15 systems and Γ (V )/M/n/15, W (0.9)/M/n/15
systems for n = 10, 20 and V = 0.001, 0.7, 4.

Let E(Tλ) denote the mean of the times elapsed between two consecutive arrivals. We
take E(Tλ) = 0.125 and E(Tλ) = 0.0625 for n = 10 and n = 20 respectively, and µ = 1
is the parameter of exponential distribution of service times.

The obtained results are verified using simulation models constructed with the help of
the GPSS World tools [7]. The results obtained using GPSS World slightly differ from
one another for different numbers of library random-number generators used for simulating
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Table 2 Results of the calculation of steady-state characteristics of the G/M/10/15 and G/M/20/15 systems with differ-
ent G-distributions

G-distribuion Characte- Method of calculation and values of characteristics

name, ristic H2 H3 H4 H5 H6 GPSS
value of n name World

N 8.4783 8.4809 8.4809 8.4809 8.4809 8.4759
Γ (0.001), ∆l(sim) 0.0036 0.0026 0.0026 0.0026 0.0026 −
n = 10 ∆l,l−1 − 3.38 · 10−3 3.02 · 10−5 3.64 · 10−7 3.49 · 10−9 −

N 16.2230 16.2245 16.2245 16.2245 16.2245 16.1875
Γ (0.001), ∆l(sim) 0.0102 0.0095 0.0095 0.0095 0.0095 −
n = 20 ∆l,l−1 − 2.21 · 10−3 1.07 · 10−5 9.55 · 10−8 1.24 · 10−9 −

N 8.8186 8.8206 8.8206 8.8206 8.8206 8.8138
U [0, 1/4], ∆l(sim) 0.0034 0.0023 0.0023 0.0023 0.0023 −
n = 10 ∆l,l−1 − 2.73 · 10−3 4.64 · 10−5 1.16 · 10−6 3.57 · 10−8 −

N 16.4409 16.4422 16.4422 16.4422 16.4422 16.4356
U [0, 1/8], ∆l(sim) 0.0038 0.0038 0.0038 0.0038 0.0038 −
n = 20 ∆l,l−1 − 1.81 · 10−3 1.93 · 10−5 4.05 · 10−7 1.36 · 10−8 −

N 8.9531 8.9531 8.9531 8.9531 8.9531 8.9605
Γ (0.7), ∆l(sim) 0.0017 0.0017 0.0017 0.0017 0.0017 −
n = 10 ∆l,l−1 − 2.11 · 10−5 9.39 · 10−8 1.21 · 10−9 2.55 · 10−11 −

N 16.5339 16.5339 16.5339 16.5339 16.5339 16.5306
Γ (0.7), ∆l(sim) 0.0027 0.0027 0.0027 0.0027 0.0027 −
n = 20 ∆l,l−1 − 1.41 · 10−5 4.20 · 10−8 4.46 · 10−10 1.08 · 10−11 −

N 9.2464 9.2463 − 9.2463 9.2463 9.2428
W (0.9), ∆l(sim) 0.0019 0.0019 − 0.0019 0.0019 −
n = 10 ∆l,l−1 − 1.97 · 10−4 − − 4.55 · 10−9 −

N 16.7440 16.7440 − 16.7440 16.7440 16.7426
W (0.9), ∆l(sim) 0.0027 0.0027 − 0.0027 0.0027 −
n = 20 ∆l,l−1 − 1.40 · 10−4 − − 2.04 · 10−9 −

N 10.1667 9.7778 9.7522 9.7532 9.7536 9.7521
Γ (4), ∆l(sim) 0.0784 0.0216 0.0094 0.0052 0.0032 −
n = 10 ∆l,l−1 − 0.0680 0.0146 5.41 · 10−3 2.25 · 10−3 −

N 16.5677 16.2055 16.1864 16.1874 16.1876 16.1773
Γ (4), ∆l(sim) 0.0652 0.0183 0.0092 0.0062 0.0048 −
n = 20 ∆l,l−1 − 0.0576 0.0117 4.41 · 10−3 1.83 · 10−3 −

random variables, i.e., times elapsed between two consecutive arrivals and service times.
Therefore, we use averaged results obtained using simulation models with different values
of random-numbers generators that take on values of natural numbers from 6 to 10.

Let us introduce the designation: N is the average number of customers in a queueing
system, and

∆(l,l−1) =

n+15∑
k=0

|pk(l) − pk(l−1)|, ∆l(sim) =

n+15∑
k=0

|pk(l) − pk(sim)|,

pk(sim) =
1

5

10∑
i=6

pk(sim,i), 0 ≤ k ≤ n+ 15, 2 ≤ l ≤ 6.
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Here pk(l) are values of probabilities pk obtained using theHl-approximation, pk(sim) is the
average value of probabilities pk(sim,i), obtained by means of the simulation model using
the number i of random-numbers generator for 6 ≤ i ≤ 10. Thus, the quantities ∆l(sim)

are measures of deviations of the distributions {pk(l)} from distribution {pk(sim)}, and the
quantities∆(l,l−1) give an opportunity to estimate the deviation of distributions {pk(l)} from
distributions {pk(l−1)}.

In Table 2 we present the results of calculation of steady-state characteristics of the
G/M/10/15 and G/M/20/15 systems with the considered gamma, Weibull and uniform
distributions. The values of deviations ∆l(sim) and ∆(l,l−1) decrease with increasing order
of Hl-distributions in approximations, and it means that the values of distribution {pk(l)}
with each step getting closer to a true distribution {pk}. With the growth of the variation
coefficient of distributions after the value of V > 1, as expected taking into account the
behavior of deviations ∆l(F ), the values of the absolute deviations ∆l(sim) and ∆(l,l−1)
also increase. For the distribution W (0.9) the deviation ∆4(F ) = ∞ and, consequently,
some values of ”probabilities” of the distribution {pk(4)} go beyond the interval [0, 1].

Presented results show that increasing the number of channels of theG/M/n/m system
has no significant effect on accuracy of calculating the steady-state probabilities.

Testing the proposed method on the M/G/1/m systems, for which we can find exact
values of the steady-state distribution {pk}, shows that in cases where the deviation ∆(6,5)

is less than 10−2, the deviation of the distribution {pk(l)} from the true distribution {pk}
and deviation ∆(l+1,l) are numbers of the same order, and at the same time the deviations
of distribution {pk(sim)} from the distribution {pk} usually no less than 10−4. Thus, in
most cases we can use values ∆(l,l−1) to evaluate accuracy of the approximation of the
distribution {pk(l−1)} to the true {pk} for 3 ≤ k ≤ 6. In cases where ∆(l,l−1) < 10−4, we
can argue that the distribution {pk(l−1)} is more accurate approximation than {pk(sim)}.

5 Conclusions

This paper shows that the application of hyperexponential approximation of distributions
the times elapsed between two consecutive arrivals allows us to calculate steady-state prob-
abilities of the G/M/n/m queueing systems with high accuracy (higher than in the case of
using simulation models). We find these probabilities using solutions of a system of linear
algebraic equations obtained by the method of fictitious phases.

To obtain parameters of Hl-approximation of a certain distribution it is necessary to
solve the system of equations of the moments method. For the values V < 1 of the varia-
tion coefficient, some of the roots of this system are complex-valued or, having a sense of
probabilities, go beyond the interval [0, 1], but in most cases the final result is close to the
desired distribution {pk}.

Computing deviations ∆(l,l−1) allows us to track the accuracy of approaching distribu-
tions {pk(l−1)} to the true distribution {pk} without the need to use simulation models.
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