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Abstract. In this paper we use the contraction mapping theorem to obtain asymptotic stability results
about the zero solution for the following linear delay Levin-Nohel difference equation

t—1
Az(t)+ Y alt,s)z(s) + b(t)z(t — h(t)) = 0.

s=t—r(t)

An asymptotic stability theorem with a necessary and sufficient condition is proved. In addition, the case
of the equation with several delays is studied.
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1 Introduction

Certainly, the Lyapunov direct method has been, for more than 100 years, the efficient tool
for the study of stability properties of ordinary, functional, partial differential and difference
equations. Nevertheless, the application of this method to problems of stability in differen-
tial and difference equations with delay has encountered serious difficulties if the delay
is unbounded or if the equation has unbounded terms ([12],[13],[18]-[21],[28]). Recently,
Burton, Furumochi, Zhang, Raffoul, Islam, Yankson and others have noticed that some of
these difficulties vanish or might be overcome by means of fixed point theory (see [1]-
[16],[22],[24]-[27],[30]-[32]). The fixed point theory does not only solve the problem on
stability but has a significant advantage over Lyapunov’s direct method. The conditions of
the former are often averages but those of the latter are usually pointwise (see [12]).
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2 Stability in linear delay Levin-Nohel difference equations

In paper, we consider the following linear delay Levin-Nohel difference equation with
variable delays

t—1
Ax(t)+ > alt,s)z(s) + b(t)x(t — h(t)) =0, t > to, (1.1)
s=t—r(t)

with an assumed initial condition
2 (t) = 6 (t), L€ [m(to)  to] N Z.
where ¢ : [m (t9) ,to] N Z — R is a bounded sequence and for ¢y > 0
m(tg) = min(inf{s — r(s) : s > to},inf{s — h(s) : s > to}).

Here A denotes the forward difference operator Ax (t) = x (¢t + 1) —x (¢) for any sequence
{z (t), t € Z" }. Throughout this paper, we assume that b : [0,00) NZ — R, a : [0,00) N
Zx[m(0),00)NZ — Randr, h € [0,00)NZ — Z* witht—r (t) — coand t—h (t) — oo
ast — oo.

Equation (1.1) can be viewed as a discrete analogue of the linear delay Levin-Nohel
integro-differential equation

2 (t) + /ti o a(t, s)x(s)ds + b(t)z(t — h(t)) =0, t > to. (1.2)

In [16], Dung investigated (1.2) and obtained the asymptotic stability theorem with a nec-
essary and sufficient condition.

Our purpose here is to use the contraction mapping theorem to show the asymptotic
stability of the zero solution for Eq. (1.1). An asymptotic stability theorem with a necessary
and sufficient condition is proved. In addition, a study of the general form of (1.1) with
several delays is given. For details on contraction mapping principle we refer the reader to
[29] and for more on the calculus of difference equations, we refer the reader to [17] and
[23].

2 Main results

For the convenience of the reader, let us recall the definition of asymptotic stability. For each
to, we denote C'(tp) the space of bounded sequences on [m(ty), to] N Z with the supremum
norm ||.||, . For each (¢, ¢) € [0,00) NZ x C(to), we denote by z(t) = x(t, o, ¢) the
unique solution of Eq. (1.1).

Definition 2.1 The zero solution of Eq. (1.1) is called
(1) stable if for each € > 0O there exists a 6 > 0 such that |x(t,to, ¢)| < € forallt >ty

ifllelly, <9,

(11) asymptotically stable if it is stable and tlim |x(t,to, @)| = 0.
—00

In order to be able to construct a new fixed mapping, we transform the Levin-Nohel
difference equation into an equivalent equation. For this, we use the variation of parameter
formula. In the process, for any sequence =, we denote

b

b
Zx(ks)annd H:v(k')zlforanya>b.
k=a k=a
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Lemma 2.1 Suppose that

A(z) # 1, Vz € [tyg,00) N Z, (2.1)
where
z—1
Az) = D alzs5) +b(2). (2.2)
s=z—r(z)

Then x is a solution of equation (1.1) if and only if

t—1 t—1 t—1
w(t) = o(to) [T(1 = A() =Y La(s) J] (1 —A)
z=to s=tg z=s+1
t—1 t—1
=Y No(s) [ (1= A2)), =10, (2.3)
s=to z=s+1

where

t—1 t—1 u—1
L.(t)= ) a(t,s)Z( > a(u,v)x(v)+b(u)x(uh(u))),

s=t—r(t) u=s \v=u—r(u)
t—1 u—1
N, (t) = b(t) Z Z a(u,v)z(v) + b(u)z(u — h(u)) | . (2.4)
u=t—h(t) \v=u—r(u)
Proof. Obviously, we have
t—1 t—1
w(s) =a(t) = > Ax(u), z(t—h(t) ==z(t) — Y Ax(u).
u=s u=t—h(t)
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After substituting Ax from (1.1), we obtain

t—1
Aty +x(t) | D alt,s)+b(t)
s=t—r(t)

t—1 -1
+ Y alts))

s=t—r(t)

i a(u,v)z(v) + b(u)x(u — h(u))
u—r(u)

t—1 u—1
+b(t) Y > a(u,v)z(v) + bu)z(u — h(w) | =0, t>1. (2.5)
u=t—h(t) \v=u—r(u)
Then
Az(t) + A()z(t) + Ly(t) + No(t) = 0, t > to,

where A, L, and N, are given by (2.2) and (2.4), respectively. By the variation of constants
formula, we get

t—1 t—1
x(t) = olto) [J (1 Z Lo(s) [T (1-A(2)
z=to s=to z=s+1
t—1
—ZN [T = A), t=to. (2.6)
s=tg z=s+1

Since each step is reversible, the converse follows easily. This completes the proof.

Theorem 2.1 Suppose that the following two conditions hold

t—1
[A(2)] <1, ¥z € [to,00) N Z, lim 1_](1 — A(2)) exists, (2.7)
t—1
supz H —A(z)) =a <1, (2.8)
t>0 —s+t1
where
s—1 s—1 u—1
wis)= > la(sw) D | D la(w,v)] + [b(w)]
w=s—7(s) u=w \v=u—r(u)
s—1 u—1

o) D Y la(u,0)] + [b(u)]

u=s—h(s) \v=u—r(u)
Then the zero solution of (1.1) is asymptotically stable if and only if

t—1

[1-A@) = 0ast — . (2.9)
2=0
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Proof. Sufficient condition. Suppose that (2.9) holds. Denoted by C' the space of bounded
sequences x : [m(tg),00) N Z — R such that z(t) = ¢(t), t € [m(to), to] N Z. It is known
that C' is a complete metric space endowed with a metric ||z|| = Sup;> ) |2(t)]. Define

the operator P on C' by (Px)(t) = ¢(t), t € [m(ty),to] N Z and

t—1 t—1 t—1
(Pr)(®) = o(to) [J (1= A¢) = 3 La(s) [ (1= A(2))
z=to s=tg z=s+1
t—1 t—1
=Y Nu(s) ] 1= A(2)), t=to.
s=to z=s+1

Obviously, Pz is continuous for each « € C'. Moreover, it is a contraction operator. Indeed,
letx,y € C

[(Pz)(t) — (Py)(t)]
t—1 t—1
<> La(s) = Ly(s)| [ (1 - A(2)

s=tg z=s+1

t—1 t—1
+ ) INo(s) = Ny(s)] T (1—A(2)).

s=to z=s+1

Since z(t) = y(t) = ¢(¢t) for all t € [m(to), to] N Z, this implies that
(

|La(s) — Ly(s)|
s—1 s—1 u—1
< D0 las,w) Do DD la(uwo)+ )] | lz—yll,
w=s—7(s) u=w \ v=u—r(u)

and

[Nz (s) = Ny (s)]
s—1 u—1

<) > > latw o)l + )] ] ) llz =yl

u=s—h(s) \v=u—r(u)
Consequently, it holds for all ¢ > £, that

((Pz)(t) — (Py) ()]

t—1 -1 s—1 u—1 t—1
<> D lalswld | Y latwv)l+ )| JT 01— A()
s=to w=s—r(s) u=w \v=u—r(u) z=s+1
t—1 s—1 u—1 t—1
IO Yo latwo) + @)l ] ] (=A@ e -yl
s=lo u=s—h(s) \v=u—r(u) z=s+1

Hence, it follows from (2.8) that
[(Pz)(t) — (Py)(t)| < aflz —yll, t = to.

Thus P is a contraction operator on C.
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We now consider a closed subspace S of C' that is defined by
S={zeC:|zt)|—>0ast — oo}.

We will show that P(S) C S. To do this, we need to point out that for each z € S,
|(Pz)(t)| = 0ast — oo. Let z € S, by the definition of P we have

t—1
|(Pz)(t)] < |o(to) [T (1 - A(Z))‘
t—1 — t—1
3 e T 0-aen|+ [T we T1 o
s=to z=s+1 s=to z=s+1

=1L+ 1+ 15 t >t

The first term I; tends to 0 by (2.9). For any T € (to,t) NZ, we have the following estimate
for the second term

T-1 t—1 t—1
B<|Y Lis) [[ (1-4 9 11 1—A<z>>‘
s=tp z=s+1 z=s+1
s—1 u—1
< Z Z wd | D0 latwo)lllz] + o) I,
s=to w=s—r(s) u=w \v=u—r(u)
t—1
x I a-4¢)
z=s+1
t—1 s—1 s—1 u—1
+> > lalsw) Do D lalw, )| a()] + b(u)| [2(u — h(w))]
s=T w=s—r(s) u=w \v=u—r(u)
t—1
X (1—-A(2))
z=s+1
T-1 s—1 s—1 u—1
< Yo olatsw) Y| Y lalu,v)| + |b(w)
s=to w=s—r(s) u=w \v=u—r(u)
t—1
X (1= A) (Il + lIoll,)
z=s+1
t—1 s—1 s—1 u—1
+> > lalsw) D D lalw, )l a(@)] + b(u)| [2(u — h(w))]
s=T w=s—r(s) u=w \v=u—r(u)
t—1
« T (- A=)
z=s+1
= Iy + I2o.

Since t — r(t) — oo as t — oo, this implies that u — r(u) — oo as T' — oo. Thus, from
the fact |x(v)| — 0, v — oo we can infer that for any £ > 0 there exists T} = T > t( such
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that
c t—1 s—1 s—1 u—1 t—1
ba<o= D, lalsw)d (> lav)+p@)l] [ (1-A@),
s=T1 w=s—r(s) u=w \v=u—r(u) z=s5+1

and hence, I22 < § for all ¢ > T7. On the other hand, ||z| < oo because x € S. This
combined with (2.9) yields Is; — 0 as ¢ — co. As a consequence, there exists 1o > T}
such that I5; < % forall t > T5. Thus, Iy < e forallt > 15, thatis, Iy — 0 ast — oo.
Similarly, Is — 0 as t — oco. So P(S) C S.

By the Contraction Mapping Principle, P has a unique fixed point x in S which is a
solution of (1.1) with z(t) = ¢(t) on [m(to), to] N Z and x(t) = =(t, to, ) — 0ast — oo.

To obtain the asymptotic stability, we need to show that the zero solution of (1.1) is
stable. By condition (2.7), we can define

-1

t
K= 1-A . 2.10
351321:[0( (2)) < o0 (2.10)

Using the formula (2.3) and condition (2.8), we can obtain

to—1
()] < K |Igll,, [T (1 —AR)" + ezl + 6l,), t > to,

z=0

which leads us to .

0—

K1 (1—A() +a
z=0
]l < — 161¢, - .10

Thus for every, ¢ > 0, we can find 6 > 0 such that [|¢[|, < ¢ implies that ||z| < e. This
shows that the zero solution of (1.1) is stable and hence, it is asymptotically stable.

Necessary condition. Suppose that the zero solution of (1.1) is asymptotically stable
and that the condition (2.9) fails. It follows from (2.7) that there exists a sequence {t,},
t, — oo as n — oo such that

tn—1
. . 1 . . .
TLILH;O 1_10(1 A(z))” " exists and is finite.
z=

Hence, we can choose a positive constant L satisfying

tn—1
0< JJr-A@)" <L, vn>1. (2.12)
z2=0
Then, condition (2.8) gives us
tn—1 S tn—1
= ws) [[Ja-A@) " '<a [[0-A@R) " <L
s=0 z=0 z=0

The sequence {c¢,, } is increasing and bounded, so it has a finite limit. For any dy > 0, there
exists ng > 0 such that

tn—1 s

S ws) [Ja-AE)" < 2‘570{ Yn > ny, (2.13)

s=tn, z2=0
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where K is as in (2.10). We choose g such that g < %L;fl and consider the solution
x(t) = x(t,tn, ¢) of (1.1) with the initial data ¢(t,,) = do and |p(s)| < bo, s < tp,. It
follows from (2.11) that

[2(t)] < 1= do, Yt > tn,. (2.14)
Applying the fundamental inequality |a — b — ¢| > |a| — |b| — |c| and then using (2.14),
(2.13) and (2.12), we get

tn—1 tn—1 tn—1
[e(ta)] = |6(tny) [ L= AG)|=| D Lals) J] @A)
Z=tn0 s=tn0 z=s+1
tn—1 tn—1
I3 M) [T - A)
§=tng z=s+1
tn—1 tn—1 tn—1
>0 [[ 1-4=) - Y wis) [[ a-A@)
Z=tn0 s:tnO z=s+1
th—1 tng—1 th—1 s
> [Ta-4a@) (60— ] 0-A@) Y ws) [[-AE)
2=tn z=0 s=tn, z=0
tn—1 tn—1 S
> [T a-A4@) (60— K wis) [J - A)™
2=tn, §=tng z=0
> 15 7 - A(z) > -2
3% I =4 = 57 >0

which is a contradiction because z(t,,) — 0 as t,, — 0o. The proof is complete.
Let b(t) = 0 we get the following corollary.

Corollary 2.1 Suppose that the following two conditions hold

t—1
|Ao(2)] < 1, Vz € [to,00) N Z, tlggo 1:[0(1 — Ao(z)) exists, (2.15)
t—1 t—1

sup Y wo(s) J[ (1—A4o(2) =a<1, (2.16)

t20 s=0 z=s+1
where

z—1
Ao(z)= ) alz9),
s=z—r(z)

and
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Then the zero solution of

t—1
Ax(t)+ Y a(t,s)z(s) =0,
s=t—r(t)
is asymptotically stable if and only if
t—1
[Tt - 40(2)) = 0ast — oc. (2.17)
z=0

Let a(t, s) = 0, we get the following.

Corollary 2.2 Suppose that the following two conditions hold

t—1
b(2)| <1, Yz € [to,00) NZ, lim [ - b(2)) exists, (2.18)
z=0
t—1 s—1 t—1
sup » [b(s)] Y [p(w)] J] @ -b(z)=a<1. (2.19)
t20 s=0 u=s—h(s) z=s5+1

Then the zero solution of
Ax(t) + b(t)z(t — h(t)) =0,

is asymptotically stable if and only if

t—1
[T -5(2)) = 0ast — oo. (2.20)
z=0

Next we turn our attention to the following delay Levin-Nohel difference equation with
several delays

M t—1 M

Axt)+> >0 ar(ts)a(s) + D br(t)a(t — hi(t) =0, t > to, (2.21)

k=1 s=t—rj(t) k=1
with the initial condition
z(t) = ¢(t), t € [m(to),to] NZ,
where ¢ : [m (t9) ,to) N Z — R is a bounded sequence and for ¢y > 0
mg(to) = inf{s — ri(s) : s > to}, ni(to) = inf{s — h(s) : s > o},
m (to) = min (mg(to), nk(to)) .

1<k<M

We assume that by, : [0,00) NZ — R, ag : [0,00) NZ x [m(0),00) NZ — R and
Tk, M : [0,00)NZ — Z7F witht — 74, (t) — ocoand t — hg(t) — coast — oo, 1 < k < M.
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Lemma 2.2 Suppose that

A(2) # 1, Vz € [tg,00) N Z, (2.22)
where
o M z—1
A =" D alz9) +bel2)
k=1 \s=z—rk(z)
Then x is a solution of equation (2.21) if and only if
t—1 t—1 -
() = ¢(to) [J (1 Z Li(s) [ 1 —4(2))
z=to s=tg z=s+1
t—1 t—1
=) Nau(s) [] (1 —4A(2)), t=>to,
s=tgo z=s+1
where
B M s—1 s—1 M u—1
Lo(s) =) ag(s,w) D > | D ai(u,v)z(v) + bi(wa(u — hi(u))
k=1 w=s—rk(s) u=w i=1 \v=u—r;(u)

s—1 M u—1

M
s) = Z br(s) Z Z a;(u,v)x(v) + bj(u)z(u — hi(u))
k=1

u=s—hg(s) i=1 \v=u—r;(u)

The proof follows along the lines of Lemma 2.1, and hence we omit it.

Theorem 2.2 Suppose that the following two conditions hold

t—1

|A(z)| <1, Vz € [to,00) N Z, lim | | (1 — A(2)) exists,

t—o00
z=0

t—1
supz H —A(R)=a<1,

t>0 el
where

s—1 M u—1

Z Z lar(s,w)] YN D ai(w,v)] + [bi(uw)]

k=1 w=s—rp(s) u=w =1 \v=u—r;(u)

M u—1

s—1
+Z|bk(8)| Yool DD ai(wv)| + b))
k=1

u=s—hg(s) i=1 \v=u—r;(u)
Then the zero solution of (2.21) is asymptotically stable if and only if

t—1
H(l —A(2)) = 0ast — oco.
z=0

The proof is similar to that of Theorem 2.1, and hence, we omit it.
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