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Asymptotic behavior of eigenvalues of a boundary value problem for
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Abstract. In the paper we study asymptotic behavior of eigenvalues of a boundary value problem for a
second order elliptic differential operator equation in the case when one and the same spectral parameter
participates linearly in the equation and in the boundary conditions, moreover the spectral parameter in
the boundary conditions stands in front of the derivative of the desired function. Asymptotic formulas for
the eigenvalues of the considered boundary value problems are found.
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1 Introduction

In the paper, we study asymptotic behavior of the eigenvalues of the following boundary
value problem for a second order elliptic differential-operator equation in separable Hilbert
space H:

−u′′ (x) +Au(x) = λu(x), x ∈ (0, 1) , (1.1)

u (0)− λu′(0) = 0,

u(1) + λu′(1) = 0, (1.2)

where λ is a spectral parameter; A is a linear, unbounded, self -adjoint, positive-definite
operator in H , and the inverse operator A−1 is completely continuous in H . It is shown that
the eigenvalues of boundary value problem (1.1), (1.2) are real and simple.

Later we show that problem (1.1), (1.2) have two series eigenvalue, and one which con-
vergence to zero.

Asymptotic behavior of eigenvalues of boundary value problems for equation (1.1) with
the boundary conditions of the form

u′ (0) + λu(0) = 0, u(1) = 0, (1.3)

was studied in the papers [9], [13], while with the boundary conditions of the form

u′ (0) + λu(0) = 0, u′(1)− λu(1) = 0, (1.4)
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was studied in [1], where it is proved that the eigenvalues of boundary value problems (1.1),
(1.3) and (1.1), (1.4) are discrete and have two series of eigenvalues:

λk ∼
√
µk, (k → +∞) , λn,k ∼ µk + n2π2, (k, n→ +∞).

In [2] some spectral properties of boundary value problems are studied for equation (1.1)
with the boundary conditions of the form

u′(1) = 0, u′ (0)− dλu′(0) = 0, (1.5)

where d > 0 is some number, and asymptotic formulas for the eigenvalues are found. It is
shown that boundary value problem (1.1), (1.5) has one series of eigenvalues that behaves
as λk,n ∼ µk + n2π2, (k, n→ +∞). A similar issue was studied in [3] for equation (1.1)
with the boundary conditions of the form

u′ (0) + dλ2u(0) = 0, u(1) = 0, (1.6)

where d > 0 is some number. Peculiarity of boundary value problems (1.1), (1.6) is that
this problem has two series of eigenvalues one of which converges to zero, i.e. for bound-
ary value problems (1.1), (1.6) the classic case is violated. In [4]-[6] asymptotic behavior
of eigenvalues of boundary value problems are studied for a second order elliptic differ-
ential operator equation in the case when unlike the papers [1], [2], [9], [13] one and the
same spectral parameter occurs quadratically in the equation and linearly in the boundary
condition.

Some spectral properties of boundary values problems for a fourth order elliptic differ-
ential -operator equation with a spectral parameter in the one of boundary conditions were
studied in [8].

Boundary value problems with a spectral parameter in the equation and in the boundary
conditions for second order ordinary differential equations compared with similar boundary
value problem for second order elliptic differential –operator equations were studied in
different aspects and deeper. Note some of them. In [10] boundary value problem (1.1),
(1.5) is considered in the case when H := R is a real axis and A = 0, where in particular,
asymptotic behavior of eigenvalues of the considered boundary value problem is studied.

In [11], [7] some spectral properties of boundary value problems are studied for sec-
ond order ordinary differential equations in the case when a spectral parameter participates
linearly in the equation, and in the boundary conditions participates as a linear function.

In [14] a spectral problem is considered for ordinary differential equations with a quadratic
spectral parameter in the equation and in the boundary conditions, where it is proved that
the spectrum of the considered boundary value problems is discrete and the system of root
function is doubly complete in certain spaces.

2 Some properties of eigenvalues

Lemma 2.1 The eigenvalues of boundary value problem (1.1), (1.2) are real.

Proof. We denote the eigen elements of the operator A, corresponding to the eigenvalues
µk,, by ϕk, k ∈ N . It is known that the system {ϕk} forms a complete orthonormed basis

in the space H . Then from the expansion u(x) =
∞∑
k=1

(u(x), ϕk)H ϕk, for the Fourier

coefficients uk(x) = (u(x), ϕk)H , we obtain the following spectral problem:

−u′′k (x) + µkuk(x) = λuk(x), x ∈ (0, 1) , (2.1)
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uk (0)− λu′k(0) = 0,
uk(1) + λu′k(1) = 0.

(2.2)

Thus the study of the eigenvalues of boundary value problems (1.1), (1.2) is reduced
to the study of eigenvalues of boundary value problem (2.1), (2.2), for different natural k.
Spectrum of boundary problem (1.1), (1.2) consists of those λ under which problem (2.1),
(2.2) has nontrivial solution uk(x) even if for one k.

The number λ = µk cannot be the eigenvalue of problem (2.1), (2.2) as in this case
this problem has only a trivial solution. In what follows, the proof of lemma 2.1 follows
from the similar lemma in the papers [11], [12] on reality of eigenvalues of boundary value
problems (2.1), (2.2) of the form for every k.

Lemma 2.2 The eigenvalues of boundary value problem (1.1), (1.2) are simple.

As was noted above, problem (1.1), (1.2) is reduced to the study of spectral problem (2.1),
(2.2) for every k. A similar problem for boundary values problem of the form (2.1), (2.2)
was studied in [11].

Therefore we omit the proof of Lemma 2.2.

Lemma 2.3 The number λ = 0 is not an eigenvalue of boundary value problem (1.1), (1.2).

Proof. It suffices to prove that boundary value problem (2.1), (2.2) for λ = 0, i.e., the
problem

−u′′k (x) + µkuk(x) = 0, x ∈ (0, 1) , (2.3)

uk(0) = uk(1) = 0 (2.4)

for every k, has only a trivial solution. The general solution of the equation (2.3) has the
form

uk(x) = c1e
−x√µk + c2e

−(1−x)√µk , (2.5)

where ci, i = 1, 2 are arbitrary constants. Taking into account (2.5) in (2.4), we will get a
system with respect to ci, whose determinant is of the form:

D = 1− e−2
√
µk .

Obviously, for any k,D 6= 0. Hence it follows that for any k, the function uk(x) determined
by formula (2.5) is identically equal to zero, i.e., λ = 0 is not an eigenvalue of boundary
value problem (2.1) and (2.2), and by the same token, of boundary value problem (1.1),
(1.2).Lemma 2.3 is proved.

3 Asymptotic formulas for eigenvalues

Theorem 3.1 Let A-be a self-adjoint, positive-definite operator in H , and A−1 be com-
pletely continuous in H .

Then boundary value problem (1.1), (1.2) hawe two series eigenvalues: λk → 0 at
k → ∞; λk,n = µk + γn, where µk = µk(A) → +∞ are eigenvalues of the operator A,
γn ∼ n2π2 at n→∞.

Proof. The general solution of ordinary differential equation (2.1) has the form:

uk(x, λ) = c1e
−x
√
µk−λ + c2e

−(1−x)
√
µk−λ, (3.1)

where ci, (i = 1, 2) are arbitrary constants. Having substituted (3.1) in (3.2), we get a system
with respect to ci , i = 1, 2, whose determinant is of the form:

D (λ) =
(
1 + λ

√
µk − λ

)2
−
(
1− λ

√
µk − λ

)2
e−2
√
µk−λ.
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Thus, the eigenvalues of boundary value problem (2.1), (2.2) and by the same token, of
boundary value problem (1.1), (1.2), are the zeros of the equation D (λ) = 0 (with respect
to λ, λ 6= µk), at least for one k:(

1 + λ
√
µk − λ

)
2 −

(
1− λ

√
µk − λ

)
2e−2

√
µk−λ = 0. (3.2)

Equation (3.2) is decomposed into two equations(
1 + λ

√
µk − λ

)
−
(
1− λ

√
µk − λ

)
e−
√
µk−λ = 0, (3.3)(

1 + λ
√
µk − λ

)
+
(
1− λ

√
µk − λ

)
e−
√
µk−λ = 0. (3.4)

Thus, the eigenvalues of boundary value problem (2.1), (2.2) consist of those real λ 6= µk,
that at least for one k satisfy at least one of the equations, (3.3) or (3.4). We rewrite equations
(3.3), (3.4) following from in the form

sh

(
1

2

√
µk − λ

)
+ λ
√
µk − λ ch

(
1

2

√
µk − λ

)
= 0, (3.5)

ch

(
1

2

√
µk − λ

)
+ λ
√
µk − λ sh

(
1

2

√
µk − λ

)
= 0. (3.6)

At first we study equation (3.5). We find those eigenvalues λ, for which λ < µk.
We will be consider cases λ < 0 and 0 < λ < µk. We take

√
µk − λ = y. Hence

λ = µk − y2 . If λ < 0 , then
√
µk < y < +∞ . Thus equation (3.5) have following form

sh
y

2
+ y

(
µk − y2

)
ch
y

2
= 0,
√
µk < y < +∞. (3.7)

Equation (3.7) equivalent to equation

y
(
y2 − µk

)
cth

y

2
− 1 = 0,

√
µk < y < +∞. (3.8)

We consider of function fk(y) = y
(
y2 − µk

)
cthy2 − 1,

√
µk < y < +∞. The derivatives

this function f ′k (y) =
(3y2−µk)shy−y(y2−µk)

2sh2 y
2

> 0 at each k under all y ∈
(√
µk,+∞

)
.

Thus function fk(y) monotone increasing in interval
(√
µk,+∞

)
under each k. Conse-

quence that

fk (
√
µk) = lim

y→√µk+0
fk (y) = lim

y→√µk+0
y
(
y2 − µk

)
cth

y

2
− 1 = −1 < 0

and
fk (+∞) = lim

y→+∞
fk (y) = lim

y→+∞

[
y
(
y2 − µk

)
cth

y

2
− 1
]
= +∞,

in corollary that in interval
(√
µk,+∞

)
equation (3.8) under each k have exactly one zero.

Define this zero element yk. We show yk asymptotically behavior as
√
µk. Let ε > 0 suffi-

ciently small number. Then

fk (
√
µk + ε) = (

√
µk + ε)

(
(
√
µk + ε)2 − µk

)
cth

√
µk + ε

2
− 1 =

= (
√
µk + ε)

(
2ε
√
µk + ε2

)
cth

√
µk + ε

2
− 1→ +∞, at k → +∞.
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Consequence, beginning with some k, fk(
√
µk + ε) > 0. At another hand, for any

k, fk(
√
µk) < 0. Thus, yk is between

√
µk and

√
µk + ε. According any ε > 0, we have

equivalents: yk ∼
√
µk at k → +∞. Hence and from equality

√
µk − λ = y for eigenvalue

boundary value problem (2.1), (2.2) which satisfying λ < 0 , following relation is obtained:
λk → 0 at k →∞.

Now the consider case 0 < λ < µk. Itis clearly that in this case equation (3.5) have
following form

sh
y

2
+ y

(
µk − y2

)
ch
y

2
= 0, 0 < y <

√
µk. (3.9)

Let us consider the function ψk(y) = shy2 +y
(
µk − y2

)
chy2 , y ∈ (0,

√
µk). Obviously,

for every fixed k, and for all y ∈
(
0,
√
µk
)
, ψk(y) > 0. Therefore, equation (3.9) has no

solutions on the interval
(
0,
√
µk
)

for any k. Consequently, problem (1.1), (1.2) has no
solutions satisfying the condition 0 < λ < µk.

Now find the eigenvalues λ, for which λ > µk. To the equation (3.5) we put√
λ− µk = z, (0 < z < +∞), then it takes the form

sin
z

2
+ z(µk + z2) cos

z

2
= 0, z ∈ (0,+∞) . (3.10)

Let z 6= (2n− 1)π, n ∈ N . In this case, equation (3.10) is equivalent to the equation

tg
z

2
+ z(µk + z2) = 0, z ∈ (0,+∞) , z 6= (2n− 1)π, n ∈ N. (3.11)

Let us consider the function

ϕk(z) = tg
z

2
+ z(µk + z2), z ∈ (0,+∞) , z 6= (2n− 1)π, n ∈ N.

Since in each interval ((2n − 1)π, ( 2n + 1)π), n ∈ N , the function ϕk(z) takes the
values from −∞ to +∞, and its derivative ϕ′k(z) =

1
2 cos2 z

2
+ 3z2 + µk > 0, then in it for

every k, the function ϕk(z) has only one zero zn,k: (2n−1)π < zn,k < (2n+1)π, n ∈ N .
For every k ∈ N we find asymptotic formulas for zn,k, as n→∞. From (3.11) we have

tg
z

2
= −z(µk + z2), z ∈ (0,+∞) , z 6= (2n− 1)π, n ∈ N.

Denote qk(z) = −z(µk + z2), z ∈ (0,+∞) . Obviously for every k, qk(z) < 0, q′k(z) =
−(µk + 3z2) < 0, q′′k(z) = −6z < 0. So qk(z) is a negative, decreasing, strictly upwards
convex function for every k, lim

z→0+
qk(z) = 0, and lim

z→+∞
qk(z) = −∞. Obviously, the points

zn,k are the abscissas of the intersection point of the function qk(z) and the branches of the
function tg z2 . By increasing n and k, the points zn,k will approach the points (2n−1)π, i.e.,
zn,k ∼ (2n−1)π. Hence and from the equality

√
λ− µk = z for the eigenvalues satisfying

the condition λ > µk, we get the asymptotic formula:

λ
(1)
k,n ∼ µk + (2n− 1)2π2. (3.12)

Similarly we can investigate to equation (3.6) to equation (3.5) and we can easy show that
in this case as problem (2.1), (2.2) have two series eigenvalue and from one is convergences
to zero, second series asymptotically behaves as following

λ
(2)
k,n ∼ µk + (2n)2π2. (3.13)

From (3.12) and (3.13) it follows that for the eigenvalues of boundary value problems (1.1),
(1.2) we have the asymptotic formula λk,n ∼ µk + n2π2.

Theorem 3.1 is proved.
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