On Wiman-Valiron type estimations for parabolic equations

Dunya E. Farajli

Received: 01.01.2019 / Revised: 27.09.2019 / Accepted: 30.10.2019

Abstract. In the paper we established Wiman-Valiron type estimations for parabolic equations of the form

\[u'(t) + A(t)u(t) = 0 \]

in Hilbert space, where \(A(t) \) is a uniformly positive-definite self-adjoint operator with a discrete spectrum. Imposing asymptotic character conditions on the distribution function \(N(\lambda) \) of the eigen-values of the operator \(A(t) \), we derive estimations for the norm of the solution of the equation that in particular characterize the behavior of the solution as \(t \to 0 \) depending on the behavior of the Fourier coefficients of initial data.

Keywords. Differential equations · asymptotics · discreteness · entire function · logarithmic measure · differential inequality.

Mathematics Subject Classification (2010):

1 Introduction

Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function,

\[M(r) = \max_{|z|=r} |f(z)|; \mu(r) = \max_{n} |a_n| r^n \]

be a maximum of the modulus and maximum term of the function \(f(z) \) in the circle of radius \(r \). As known, the inequality \(\mu(r) \leq M(r) \) always holds. But it is very important to estimate \(M(r) \) through \(\mu(r) \) from above Wiman [8] and Valiron [7] fist established the classical result: The following inequality is valid

\[M(r) \leq \mu(r)(\log \mu(r))^{\frac{1}{2} + \varepsilon}, \varepsilon > 0. \]

(1.1)

And this inequality can violate only on some set \(E \subset (0, \infty) \) of finite logarithmic measure, \(\int \frac{dr}{r} < \infty \).

* Corresponding author

Dunya E. Farajli
Institute of Mathematics and Mechanics
of NAS of Azerbaijan, Baku, Azerbaijan
E-mail: dunya.faraji@mail.ru
In 1963, the American mathematician Rosenbloom [3] established more accurate and overall result: for some class of increasing functions $\varphi(y), y > 0$, satisfying the condition of the form
\[\int_0^\infty \left(\int_0^y \varphi(t) \, dt \right) \frac{1}{y} \, dy < \infty, \tag{1.2} \]
the following estimation
\[\frac{M(r)}{\sqrt{\varphi(\log M(r))}} \leq c \mu(r), c = \text{const} > 0 \tag{1.3} \]
is valid.

Hence, in particular for the function $\varphi(y) = y^k$, the Wiman-Valiron result (1.1) is obtained. In the monograph of Suleymanov [4], published in M.V. Lomonosov MSU publishing house in 2012, theory of Wiman-Valiron-Rosenbloom type estimations was constructed for solving evolution equations of type
\[u'(t) \pm A(t)u(t) = 0 \tag{1.4} \]
in Hilbert space, where $A(t)$ in particular, is a self-adjoint positive operator with a discrete spectrum, where the role of the functions $M(r)$ and $\mu(r)$ are played by the functions
\[M(t) = \|u(t)\|, \mu(t) = \max_k |(u(t), \varphi_k(t))|, \]
where $\{\varphi_k(t)\}_{k \geq 1}$ is a complete orthonormed system of eigen-functions of the operator $A(t)$. These estimations, in particular, characterize the behavior of the solution of equation (1.4) as $t \to 0$ or $t \to \infty$ depending on the behavior of Fourier coefficients of initial data.

2 Formulation and proof of the main result.

In the present paper we establish the Rosenbloom type estimations (1.3) for parabolic equations of the form
\[u'(t) + A(t)u(t) = 0 \tag{2.1} \]
in Hilbert space and study the behavior of the solution as $t \to 0$. Equation (2.1), in particular, contains the heat equation ($A(t) = -\Delta$) in the domain $\Omega \subset \mathbb{R}^n$ with a smooth boundary.

Let $u(t)$ be the solution of equation (2.1). Denote
\[\mu(t) = \max_k |(u(t), \varphi_k(t))|; g(t) = \frac{1}{2} \log (u(t), u(t)). \]

Let $N(\lambda)$ be the number of eigen-values λ_k of the operator $A(t)$ such that $\lambda_k \leq \lambda, \lambda > 0$. The following lemma was proved in Suleymanovs above mentioned monograph ([4], p.88):

The key lemma. The following nonlinear differential equation
\[e^{2g(t)} \leq \mu^2(t) \cdot \Delta N \left(g'(t), g''(t) \right), \]
where
\[\Delta N(a, b) = N \left(a + c \sqrt{b + k(t)a} \right) - N \left(a - c \sqrt{b + k(t)a} \right), \]
\[k(t) > 0, k(t) \in L_1(0, \infty), c = \text{const} > 0 \]
is valid. Note that for proving the lemma, in Suleymanov’s monograph a special method based on theory of probability was offered.

In the following theorem we impose a condition on the asymptotic behavior of the distribution function $N(\lambda)$ of eigen values of the operator $A(t)$, establish Wiman-Valiron type estimations for solving equation (4)

Theorem 2.1 Let the function satisfy the following conditions

1. $N(\lambda) \leq c\lambda^{s+1}, c > 0, s \geq -1, \lambda \geq 1$.
2. For $\lambda > \delta > 0, \lambda \to \infty$.

$$N(\lambda, \delta) \equiv N(\lambda + \delta) - N(\lambda - \delta) = c\delta (1 + \lambda^{v}) \lambda^{s}, 0 < v < 1.$$

Let the function $\varphi(y) > 0, y > 0$, do not decrease and the following integral a be finite:

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{y} \varphi(t)dt \right)^{-\frac{1}{2(s+1)}} dy < \infty \quad (\varphi)$$

Then, maybe out of some set of finite logarithmic measure, for solving equation (2.1) the following Wiman-Valiron-Rosenbloom type estimation is valid:

$$\frac{\|u(t)\|}{\sqrt{\varphi(t^{-\beta} \log \|u(t)\|)}} \leq \mu(t)t^{-\gamma}, \quad (B - B)$$

where $\gamma >, 0 < \beta < 1, t \to 0$ (γ is calculated specifically).

Proof. We immediately note that the functions for which the asymptotic formulas of the form

$$N(\lambda) = c\lambda^{s/m} + O\left(\lambda^{\frac{n-1}{m}}\right), \lambda \to \infty \quad (2.2)$$

are true satisfy conditions 1 and 2 on the function $N(\lambda)$.

Such formulas were established for self-adjoint positive elliptic operators of order in bounded domain $\Omega \subset R^{n}$ in the papers of Weyl, Courant, Hörmander, Agmon, Seeley, Shubin, Ivriy, Birman, Solomyak, Vasilyev, Clark, Kostyuchenko, Levitan, Mikhailets, Safarov and others.

For example, in the paper of Safarov and Netrusov ([2], 2005) the unimprovable asymptotic formula

$$N(\lambda) = \lambda^{n} + O\left(\lambda^{n-\alpha}\right), 0 < \alpha < 1. \quad (2.3)$$

was established for the Laplace-Dirichlet operator $(-\Delta_{D})$ in domain $\Omega \subset R^{n}$ with a smooth boundary for the function $N(\lambda)$.

For formula (2.2) condition 2 of the theorem is fulfilled for while for $s = \frac{n}{m} - 1, v = \frac{1}{m}$, formula (2.3) it is fulfilled for $s = n - 1 - \alpha, \nu = \alpha$.

The functions

$$\varphi(y) = y^{2s+1+\varepsilon}, \text{or \hspace{0.5cm}} \varphi(y) = y^{2s+1}(\log y)^{2(s+1)+\varepsilon}$$

satisfy the condition (φ). Having calculated the derivatives g', g'', we find

$$g' < 0, g'' > 0, g'' - kg' > 0$$

Introduce a new variable:

$$\xi(t) = \int_{0}^{t} \exp\left(\int_{0}^{y} k(\tau) d\tau\right) dy.$$
Hence we determine the inverse function \(t = t(\xi) \). For simplicity we consider that \(k(t) = k = \text{const} > 0 \). Assume:
\[
\tilde{g}(\xi) = g(t(\xi)) = g(t).
\]

We find:
\[
\tilde{g}(\xi') = g'(t)e^{-kt},
\]
\[
\sqrt{g'' + k g'} = e^{kt}\sqrt{\tilde{g}''(\xi)}.
\]

We determine \(\lambda(t) \) and \(\delta(t) \) as follows:
\[
\lambda(t) = \left[|g'| - \frac{1}{2}\sqrt{\tilde{g}'' + k|g'|}\right] = e^{kt}\left[|\tilde{g}'| - \frac{1}{2}\sqrt{\tilde{g}''}\right]
\]
\[
\delta(t) = \sqrt{g'' + k|g'|} = e^{kt}\sqrt{\tilde{g}''}.
\]

Then we get:
\[
\lambda(t) = e^{kt}\left[|\tilde{g}'| - \frac{3}{2}\sqrt{\tilde{g}''} + \sqrt{\tilde{g}''}\right] = e^{kt}\left[|\tilde{g}'| - \frac{3}{2}\sqrt{\tilde{g}''}\right] + \delta(t)
\]

We consider the two cases:

1. \(|\tilde{g}'| - \frac{3}{2}\sqrt{\tilde{g}''} + \sqrt{\tilde{g}''} > 0\); 2. \(|\tilde{g}'| - \frac{3}{2}\sqrt{\tilde{g}''} \leq 0\).

Let condition 1) be fulfilled. Then it is clear that \(\lambda(t) > \delta(t) \) and \(\lambda < |\tilde{g}'| \) (since \(\lambda \leq 1 \) then \(|\tilde{g}'| > 1 \)). Then from (1) we get:
\[
\Delta N (\lambda, \delta) \leq c\sqrt{\tilde{g}''} (1 + |\tilde{g}'|^v) |\tilde{g}'|^s \leq 2c\sqrt{\tilde{g}''} |\tilde{g}'|^{s+v}.
\]

Lemma 2.1 Under the theorem conditions, the set
\[
E_1 = \left\{ \xi > 0 : \tilde{g}''(\xi) |\tilde{g}'(\xi)|^{2s} > \xi^{\frac{s}{2}} \sqrt{\varphi(\xi^\beta \tilde{g}(\xi))} \right\}
\]
has a finite measure. The proof of this lemma is similar to the proof of the similar lemma from Suleymanovs monograph ([4], p.74) with regard to the parameter \(\beta \) and \(s \) was changed by \(s + v \). Thus, (**) by out \(E_1 \) of the following inequality holds:
\[
\Delta N (\tilde{g}', \tilde{g}''') \leq c\xi^{-\frac{s}{2}} \sqrt{\varphi(\xi^\beta \tilde{g}(\xi))}.
\]

Passing in the right hand side, to the variable \(t \) we get that out of the set \(E \) of finite logarithmic measure, the following inequality is fulfilled:
\[
\Delta N (g', g''') \leq c\xi^{-\frac{s}{2}} \sqrt{\varphi(t^\beta g(t))}.
\]

Then by virtue of the key lemma we get
\[
e^{2\tilde{g}(t)} \leq \mu^2(t)\xi^{-\frac{s}{2}} \sqrt{\varphi(t^{-\beta} g(t))}
\]
or the same,
\[
\|u(t)\| \leq \mu(t)\xi^{-\frac{s}{2}} \sqrt{\varphi(t^{-\beta} \log \|u(t)\|)}.
\]

The theorem is proved.
Corollary. Assume $\varphi(y) = y^{2s+1+\varepsilon}$. We get:

$$
\|u(t)\| \leq \mu(t) t^{-\gamma} (\log \|u(t)\|)^k,
$$

where

$$
\gamma = \alpha + \beta \left(\frac{2k + 1 + \varepsilon}{4}\right), k = \frac{2s + 1 + \varepsilon}{4}
$$

The last estimation as $t \to 0$ is equivalent to the estimation

$$
\|u(t)\| \leq \mu(t) t^{-\gamma} (\log t^{-\gamma} \mu(t))^k.
$$

Remark. Assuming here $\bar{\mu}(t) = \bar{\gamma} \mu(t), k = \frac{1}{2} + \varepsilon$, we get the exact form of the Wiman-Valiron estimation in theory of entire functions:

$$
\|u(t)\| \leq \bar{\mu}(t) (\log \bar{\mu}(t))^{\frac{1}{2} + \varepsilon}, t \to +0.
$$

Case 20) of the theorem is studied in the same way.

References