On curvatures of linear coframe bundle with homogeneous lift of a Riemannian metric

Habil D. Fattayev *

Received: 15.04.2019 / Revised: 23.09.2019 / Accepted: 23.10.2019

Abstract. In this paper the homogeneous lift of a Riemannian metric to the linear coframe bundle over a Riemannian manifold is constructed and curvature properties of this metric are investigated.

Keywords. Riemannian metric · Linear coframe bundle · Homogeneous lift · Levi-Civita connection · Curvature tensor · Scalar curvature

Mathematics Subject Classification (2010): 55R10, 53C07, 53C15

1 Introduction

It is well - known that the studies connected with Sasaki metric in the fiber bundles are one of the basic foundations of the modern differential geometry [1-7], [10], [13], [14]. However, the Sasaki metric is non homogeneous in the fibres of above mentioned bundles and is not used for study the global properties of these bundles. In [8] R.Miron introduced the homogeneous lift G of a Riemannian metric g to tangent bundle. Similar homogeneous lift of a Riemannian metric g in the cotangent bundle $T^*(M_n)$ was investigated by P.Stavre and L.Popescu [15]. The homogeneous lift of a Riemannian metric g to the tensor bundle of type $(1, 1)$ and the curvature properties of the Levi-Civita connection of this metric are studied in [9].

This paper is devoted to the investigation of curvature properties of homogeneous lift of a Riemannian metric in the linear coframe bundle. In 2 we briefly describe the definitions and results that are needed later, after which the homogeneous lift \tilde{g} of a Riemannian metric g to the linear coframe bundle $F^*(M_n)$ is constructed in 3. The Levi-Civita connection of homogeneous lift \tilde{g} is studied in 4. Curvature properties of homogeneous lift of a Riemannian metric are investigated in 5.

2 Preliminaries

In this section, we summarize all the basic definitions and results, which be used later. In the following all manifolds, maps, tensor fields, connections and metrics under consideration are supposed to be differentiable of class C^∞.

* Corresponding author

H.D.Fattayev
Baku State University, Baku, Azerbaijan
E-mail: h-fattayev@mail.ru
Let \((M_n, g)\) be an \(n\)–dimensional Riemannian manifold and
\[
F^*(M_n) = \{(x, u^*) | x \in M_n, u^* : \text{basis (coframe) for } T_x^*(M_n)\}
\]
be the linear coframe bundle over \(M_n\) (see, [11, 12]). We denote by \(\pi\) the natural projection of \(F^*(M_n)\) to \(M_n\) defined by \(\pi(x, u^*) = x\). If \((U, x^1, x^2, \ldots, x^n)\) is a system of local coordinates in \(M_n\), then a coframe \(u^* = (X^\alpha) = (X^1, X^2, \ldots, X^n)\) for \(T_x^*(M_n)\) can be expressed uniquely in the form \(X^\alpha = X^\alpha_i (dx^i)_x\) and hence
\[
(\pi^{-1}(U); x^1, x^2, \ldots, x^n, X^1_1, X^1_2, \ldots, X^n_n)
\]
is a system of local coordinates in \(F^*(M_n)\) (see, [11]). We note that indices \(i, j, k, \ldots, \alpha, \beta, \gamma, \ldots\) have range in \(\{1, 2, \ldots, n\}\), while indices \(A, B, C, \ldots\) have range in \(\{1, \ldots, n, n+1, \ldots, n+n^2\}\).

We put \(h_\alpha = \alpha \cdot n + h\) \((h_\alpha = n + 1, n + 2, \ldots, n+n^2)\). Summation over repeated indices is always implied.

We denote by \(\mathcal{S}^r_s(M_n)\) the set of all differentiable tensor fields of type \((r, s)\) on \(M_n\).

Also we consider a symmetric linear connection \(\nabla\) on \(M_n\) with components \(\Gamma^\alpha_{\beta\gamma}\).

Let a vector field \(V \in \mathcal{S}^1_0(M_n)\) and a covector field \((1\text{-form}) \omega \in \mathcal{S}^0_1(M_n)\) are given on \(M_n\). In terms of local components, if \(V = V^i \partial_i\) and \(\omega = \omega_i dx^i\). Then the complete and horizontal lifts \(C V, H V \in \mathcal{S}^0_1(F^*(M_n))\) of \(V\) and the \(\beta\)–th vertical lifts \(V_\beta \omega \in \mathcal{S}^0_1(F^*(M_n))\) \((\beta = 1, 2, \ldots, n)\) of \(\omega\) defined by
\[
C V = V^i \partial_i - X^\alpha_m \partial_i V^m \partial_\alpha, \tag{2.1}
\]
\[
H V = V^i \partial_i + X^\alpha_m \Gamma^m_{ik} V^k \partial_\alpha, \tag{2.2}
\]
\[
V_\beta \omega = \sum_i \delta^\beta_\alpha \omega_i \partial_\alpha, \tag{2.2}
\]
with respect to the natural frame \(\{\partial_i, \partial_\alpha\} = \left\{<\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^\alpha}>\right\}\), respectively (see [11] for more details).

The vertical lift of a smooth function \(f\) on \(M_n\) is a function \(V f\) on \(F^*(M_n)\) defined by \(V f = f \circ \pi\).

Let \((U, x^i)\) be a coordinate system in \(M_n\). In \(U \subset M_n\), we put
\[
X^{(i)} = \frac{\partial}{\partial x^i}, \theta^{(i)} = dx^i, i = 1, 2, \ldots, n.
\]

Taking account of (2.1) and (2.2), we easily see that the components of \(H X^{(i)}\) and \(V_\beta \theta^{(i)}\) are given by
\[
H X^{(i)} = (A^H_i) = \left(\delta^h_i \right), \tag{2.3}
\]
\[
V_\beta \theta^{(i)} = (A^H_{\alpha \beta}) = \left(\delta^\beta_\alpha \delta^\alpha_i \right), \tag{2.4}
\]
with respect to the natural frame \(\{\partial_i, \partial_\alpha\}\), respectively. The set \(\{H X^{(i)}, V_\beta \theta^{(i)}\}\) is called the frame adapted to linear connection \(\nabla\) on \(\pi^{-1}(U) \subset F^*(M_n)\). On putting
\[
D_i = H X^{(i)}, \quad D_{\alpha \beta} = V_\beta \theta^{(i)},
\]
we write the adapted frame as \(\{ D_i \} = \{ D_i, D_{i_0} \} \). From equations (2.1)-(2.4), we see that \(H \) and \(V_{\beta \omega} \) have respectively, components

\[
\begin{align*}
H &= \begin{pmatrix} V^i \\ 0 \end{pmatrix}, \tag{2.5} \\
V_{\beta \omega} &= \begin{pmatrix} 0 \\ \delta_{\beta \omega_i} \end{pmatrix}. \tag{2.6}
\end{align*}
\]

with respect to the adapted frame \(\{ D_i \} \).

The Lie-bracket of the linear coframe bundle \(F^*(M_n) \) over \(M_n \) are expressed in the form

\[
[H X, H Y] = H [X, Y] + \sum_{\sigma=1}^{n} \left(V_{\sigma} \circ R (X, Y) \right),
\]

\[
[H X, V_{\beta \omega}] = V_{\beta} (\nabla X \omega),
\]

\[
[V_{\beta \omega}, V_\gamma \theta] = 0
\]

for all \(X, Y \in \mathfrak{X}_0^1(M_n) \) and \(\omega, \theta \in \mathfrak{X}_1^0(M_n) \), where \(\beta, \gamma = 1, 2, ..., n \) and \(R \) is the curvature tensor field of \(\nabla \) defined by

\[
R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z
\]

for all \(X, Y, Z \in \mathfrak{X}_1^1(M_n) \).

3 Homogeneous lift of a Riemannian metrics

The diagonal lift \(D g \) of a Riemannian metric \(g \) on \(M_n \) to the linear coframe bundle \(F^*(M_n) \) defined by formula (see, [3])

\[
D g = g_{ij} dx^i \otimes dx^j + \delta_X \alpha \beta g^{ij} \delta X^i \otimes \delta X^j
\]

and satisfies the following conditions:

\[
D g (H X, H Y) = V(g(X, Y)) = g(X, Y) \circ \pi.
\]

\[
D g (V_{\sigma} \omega, V_{\sigma} \theta) = \delta_{\alpha \beta} V \left(g^{-1} \right) (\omega, \theta) = \delta_{\alpha \beta} \left(g^{-1} \right) (\omega, \theta) \circ \pi
\]

for all \(X, Y \in \mathfrak{X}_0^1(M_n) \) and \(\omega, \theta \in \mathfrak{X}_1^0(M_n) \), where \(\delta_X \alpha \beta = dX^\alpha - \Gamma^m_i X^\alpha_m dx^k \) and \(g^{ij} \) denote contravariant components of \(g \).

We easily see, that the metric \(D g \) is not \(0 \)-homogeneous on the fibers of the linear coframe bundle \(F^*(M_n) \), i.e. for any \(\lambda \in \mathbb{R}_+ \),

\[
D g (x, u^*) \neq D g (x, \lambda u^*).
\]

Now, we define a new lift \(\tilde{g} \) of a Riemannian metric \(g \) on \(M_n \), to the coframe bundle \(F^*(M_n) \) as follows:

\[
\tilde{g} = g_{ij} dx^i \otimes dx^j + \frac{1}{n} \delta_{\alpha \beta} g^{ij} \delta X^i \otimes \delta X^j,
\]

\[
\text{H.D. Fattayev 3}
\]
where \(h \) is a function defined as
\[
 h = \sum_{\alpha=1}^{n} \|X^\alpha\|^2 = \sum_{\alpha=1}^{n} g^{ij} X_i^\alpha X_j^\alpha = \sum_{\alpha=1}^{n} g^{-1}(X^\alpha, X^\alpha). \tag{3.1}
\]

It is easy to see that \(\tilde{g} \) is 0–homogeneous with respect to \(X_i^\alpha \), i.e.
\[
 \tilde{g}(x, \lambda u^*) = g_{ij} dx^i \otimes dx^j + \frac{\lambda^2}{\lambda^{2n}} \delta_{\alpha \beta} g^{ij} \delta X_i^\alpha \otimes \delta X_j^\beta = \tilde{g}(x, u^*), \forall \lambda \in R_+.
\]

The metric \(\tilde{g} \) has components
\[
 (\tilde{g}_{ij}) = \begin{pmatrix} g_{ij} & 0 \\ 0 & \frac{1}{h} \delta_{\alpha \beta} g^{ij} \end{pmatrix} \tag{3.2}
\]
with respect to the adapted frame \(\{D_I\} \) in \(F^*(M_n) \).

From (3.2) it easily follows that if \(g \) is a Riemannian metric in \(M_n \), then \(\tilde{g} \) is a Riemannian metric in \(F^*(M_n) \). The metric \(\tilde{g} \) is similar to that of the Riemannian metric studied by Miron in the slit tangent bundle \(T(M_n) \) \{0\} [8] (for the slit cotangent bundle \(T^*(M_n) \) \{0\} and slit \((1,1)\)– tensor bundle \(T^1_1(M_n) \) \{0\} see [15] and [9], respectively).

Remark 3.1 Since \(u^*(X^1, X^2, ..., X^n) \neq 0 \) is a basis of the cotangent space \(T^*_x(M_n) \), the condition \(h \neq 0 \) is fulfilled at each point \(x \in M_n \) and the bundle of linear coframes \(F^*(M_n) \) is naturally a slit bundle. This means that the metric \(\tilde{g} \) is defined in the linear coframe bundle \(F^*(M_n) \).

It is easily to verify that the inverse matrix \((\tilde{g}^{IJ}) \) of matrix \((\tilde{g}_{IJ}) \) is as follows:
\[
 (\tilde{g}^{IJ}) = \begin{pmatrix} g^{ij} & 0 \\ 0 & h \delta_{\alpha \beta} g^{ij} \end{pmatrix} \tag{3.3}
\]
with respect to the adapted frame \(\{D_I\} \) in \(F^*(M_n) \).

Also, we can represent the metric \(\tilde{g} \) by the following global formulas:
\[
 \tilde{g}(H X, H Y) = g(X, Y) \circ \pi.
\]
\[
 \tilde{g}(V^\alpha \omega, V^\beta \theta) = \frac{1}{h} \delta_{\alpha \beta} \left(g^{-1}(\omega, \theta) \circ \pi \right), \tag{3.4}
\]
for all vector fields \(X, Y \in \mathfrak{X}^0(M_n) \) and covector fields \((1–) \) forms \(\omega, \theta \in \mathfrak{X}^1(M_n) \).

Let us consider local \(1– \) forms \(\tilde{\eta}^I \) in \(\pi^{-1}(U) \) defined by
\[
 \tilde{\eta}^I = A^I^J dx^J,
\]
where
\[
 A^{-1} = (A^I_J) = \begin{pmatrix} A^i_j & A^i_{j8} \\ A^i_{j8} & A^i_{j8} \end{pmatrix} = \begin{pmatrix} \delta^i_j & 0 \\ -X^\alpha_m \Gamma^m_{ij} \delta^\alpha_j & \delta^\alpha_j \delta^\beta_i \end{pmatrix}. \tag{3.5}
\]

The matrix (3.5) is the inverse of the matrix
\[
 A = (A^K_J) = \begin{pmatrix} A^K_j & A^K_{j8} \\ A^K_{j8} & A^K_{j8} \end{pmatrix} = \begin{pmatrix} \delta^K_j & 0 \\ X^\alpha_m \Gamma^m_{jk} \delta^\alpha_j & \delta^\alpha_j \delta^\beta_j \end{pmatrix}. \tag{3.6}
\]
of the transformation $D_K = A_K J \partial J$ (see (2.3) and (2.4)). It is easy to establish that the set $\{ \tilde{\eta}^I \}$ is the coframe dual to the adapted frame $\{ D_K \}$, i.e.

$$\tilde{\eta}^I (D_K) = A^I J A_J J = \delta^K_I.$$

Since the adapted frame is non-holonomic, we put

$$[D_I, D_J] = \Omega_{IJ} K D_K$$

from which we have

$$\Omega_{IJ} K = (D_I A_J K - D_J A_I K) \tilde{A}_L^K.$$

According to (3.5) and (3.6), the components of non-holonomic object $\Omega_{IJ} K$ are given by

$$\left\{ \begin{array}{l}
\Omega_{ij,k} = - \Omega_{jk,i} = - \delta^r_{jk} \Gamma^i_k, \\
\Omega_{ij,k} = X^m_i R_{jk}^m.
\end{array} \right.$$

all the others being zero.

4 Levi-Civita connection of \tilde{g}

We note that the Levi-Civita connection ∇ of a Riemannian metric g is given by well-known Koszul formula

$$2g (\nabla_X Y, Z) = X g (Y, Z) + Y g (Z, X) - Z g (X, Y) + g ([X, Y], Z)
-g ([Y, Z], X) + g ([Z, X], Y)$$

(4.1)

for all vector fields $X, Y, Z \in \mathcal{I}^1 (M_n)$.

By using (2.5), (2.6), (3.1), (3.3), (3.7) and (4.1), we have

Theorem 4.1 Let M_n be a Riemannian manifold with metric g and $\tilde{\nabla}$ be the Levi-Civita connection of the linear coframe bundle $F^* (M_n)$ equipped with the metric \tilde{g}. Then $\tilde{\nabla}$ satisfies

$$i) \quad \tilde{\nabla}_X H Y = H (\nabla_X Y) + \frac{1}{2} \sum_{\sigma=1}^{n} \partial \sigma \left(X^\sigma \circ R (X, Y) \right),$$

$$ii) \quad \tilde{\nabla}_X V^\alpha \omega = V^\alpha (\nabla_X \omega) + \frac{1}{2} \sum_{\sigma=1}^{n} \delta^\alpha_{\sigma} \left(X^\sigma \circ R (X, Y) \tilde{\omega} \right),$$

$$iii) \quad \tilde{\nabla}_{V^\alpha \omega} H Y = \frac{1}{4} \sum_{\sigma=1}^{n} \delta^\alpha_{\sigma} \left(X^\sigma \circ R (Y, \tilde{\omega}) \right),$$

$$iv) \quad \tilde{\nabla}_{V^\alpha \omega} V^\beta \theta = - \tilde{g} \left(V^\alpha \omega, \sum_{\sigma=1}^{n} V^\sigma X^\sigma \right) V^\beta \theta - \tilde{g} \left(V^\beta \theta, \sum_{\sigma=1}^{n} V^\sigma X^\sigma \right) V^\alpha \omega$$

$$+ \tilde{g} \left(V^\alpha \omega, V^\beta \theta \right) \sum_{\sigma=1}^{n} V^\sigma X^\sigma,$$

for all $X, Y \in \mathcal{I}^1 (M_n)$, $\omega, \theta \in \mathcal{I}^0 (M_n)$, where $\tilde{\omega} = g^{-1} \circ \omega \in \mathcal{I}^1 (M_n)$, $\tilde{X}^\alpha = g^{-1} \circ X^\alpha \in \mathcal{I}^0 (M_n)$.

We note that the analogue of Theorem 4.1 for the case of a diagonal lift Dg of a Riemannian metric g to the linear coframe bundle $F^*(M_n)$, was proved in [3]. Let us put

$$\nabla D_I D_J = \tilde{\Gamma}^{K}_{IJ} D_K$$

with respect to the adapted frame $\{D_K\}$ of linear coframe bundle $F^*(M_n)$, where $\tilde{\Gamma}^{K}_{IJ}$ denote the components of the Levi-Civita connection ∇. Then by using the Theorem 4.1, we immediately get the following.

Theorem 4.2 Let (M_n, g) be a Riemannian manifold and $\tilde{\nabla}$ be the Levi-Civita connection of the linear coframe bundle $F^*(M_n)$ equipped with the homogeneous lift \tilde{g} of a Riemannian metric g on M_n. The particular values of $\tilde{\Gamma}^{K}_{IJ}$ for different indices, on taking account of (4.2) are then found to be

$$\tilde{\Gamma}^{k}_{ij} = \Gamma^{k}_{ij}, \quad \tilde{\Gamma}^{k}_{i\alpha \beta} = \tilde{\Gamma}^{k}_{\alpha \beta} = 0,$$

$$\tilde{\Gamma}^{k}_{i\alpha \beta} = \frac{1}{2} \sum_{\sigma=1}^{n} \delta^\sigma_\alpha X^\sigma_m R_{ijk}^m, \quad \tilde{\Gamma}^{k}_{ij\beta} = \frac{1}{2\hbar} \sum_{\sigma=1}^{n} \delta^\sigma_\beta X^\sigma_m R_{ijk}^m,$$

$$\tilde{\Gamma}^{k}_{i\alpha \beta \gamma} = -\frac{1}{\hbar} \left(g^{im} \left(\sum_{\sigma=1}^{n} \delta^\sigma_\alpha X^\sigma_m \delta^\beta_\gamma \delta^\gamma_i + g^{jm} \left(\sum_{\sigma=1}^{n} \delta^\beta_\gamma X^\sigma_m \right) \delta^\gamma_i \delta^\gamma_k \right) \right),$$

with respect to the adapted frame $\{D_K\}$, where $R^k_{ij\beta} = g^{kl} g^{js} R_{ljs} m$.

5 Curvature properties of Levi-Civita connection $\tilde{\nabla}$

Let \tilde{R} be a curvature tensor field of the Levi-Civita connection $\tilde{\nabla}$. Then we have

$$\tilde{R} (D_I, D_J) D_K = \nabla_{D_I} \nabla_{D_J} D_K - \nabla_{D_J} \nabla_{D_I} D_K - \Omega_{IJK} L^L D_K,$$

where $\nabla_I = \nabla_{D_I}$. The curvature tensor field \tilde{R} has components

$$\tilde{R}_{IJK}^L = D_I \tilde{\Gamma}_{JK}^L - D_J \tilde{\Gamma}_{IK}^L + \tilde{\Gamma}_{IPL}^L \tilde{\Gamma}_{JK}^P - \tilde{\Gamma}_{JPL}^L \tilde{\Gamma}_{IK}^P - \Omega_{IJK}^P \tilde{\Gamma}_{PK}^L,$$

with respect to the adapted frame $\{D_I\}$. Taking account (3.7) and (4.3), we obtain:

$$\tilde{R}_{ijk}^l = R_{ijk}^l - \frac{1}{2\hbar} \sum_{\sigma=1}^{n} (X^\sigma_r X^\sigma_t) R_{ijk}^m R^r_{,k}.pr,$$

$$+ \frac{1}{2\hbar} \sum_{\sigma=1}^{n} X^\sigma_r X^\sigma_t \left(R_{jkp}^m R^r_{,i}.pr - R_{ikp}^m R^r_{,j}.pr \right),$$

$$\tilde{R}_{i\alpha \beta}^l = -\frac{1}{2\hbar} X^\alpha_m \nabla_{D_I} R^l_{,k}.im,$$

$$\tilde{R}_{i\alpha \beta \gamma}^l = \frac{1}{2\hbar} X^\alpha_m \nabla_{D_I} R^l_{,j}.im,$$
\[\begin{align*}
\hat{R}_{ij}^k &= \frac{1}{2} \sum_{\tau=1}^{n} X_{\tau}^i \left(\nabla_\tau R_{jkl}^k - \nabla_j R_{\tau kl}^k \right), \\
\hat{R}_{\tau ij}^k &= \frac{1}{2} \sum_{\tau=1}^{n} \left(X_{\tau}^i \nabla_\tau R_{jkl}^k - X_{\tau}^j \nabla_\tau R_{i kl}^k \right) + \frac{1}{2n} \delta_{ij} \left(R_{j}^g - R_{j}^l \right) + \frac{1}{4n^2} \nabla_j X_{\tau}^i \left(R_{j}^g - R_{j}^l \right) + \frac{1}{4n^2} \nabla_j X_{\tau}^i \left(R_{j}^g - R_{j}^l \right), \\
\hat{R}_{\tau ij}^k &= \frac{1}{2} \sum_{\tau=1}^{n} \left(X_{\tau}^i \nabla_\tau R_{jkl}^k - X_{\tau}^j \nabla_\tau R_{i kl}^k \right) - \frac{1}{2n} \delta_{ij} \left(R_{j}^g - R_{j}^l \right) - \frac{1}{2n^2} \nabla_j X_{\tau}^i \left(R_{j}^g - R_{j}^l \right), \\
\hat{R}_{\tau ij}^l &= \frac{1}{2} \sum_{\tau=1}^{n} \left(X_{\tau}^i \nabla_\tau R_{jkl}^l - X_{\tau}^j \nabla_\tau R_{i kl}^l \right) - \frac{1}{2n} \delta_{ij} \left(R_{j}^g - R_{j}^l \right) - \frac{1}{2n^2} \nabla_j X_{\tau}^i \left(R_{j}^g - R_{j}^l \right), \\
\hat{R}_{\tau ij}^l &= -\frac{1}{2n} \delta_{ij} \left(R_{j}^g - R_{j}^l \right) - \frac{1}{2n^2} \nabla_j X_{\tau}^i \left(R_{j}^g - R_{j}^l \right).
\end{align*} \]

Therefore, the following theorem holds.

Theorem 5.1 Let \((M_*, \bar{g})\) be a Riemannian manifold and \(F^*(M_*)\) be its linear coframe bundle with metric \(\bar{g}\). Then the coefficients of the Riemannian curvature tensor of metric \(\bar{g}\) with respect to the adapted frame \(\{D_1\}\) are given by (5.1), where \(X_{\tau}^i = g^{im} X_{\alpha}^m\).

Let $\tilde{R}_{IJ} = \tilde{R}_{KIJ}^{\ K}$ are the components of the Ricci tensor field with respect to the adapted frame $\{D_I\}$, then the scalar curvature $\tilde{r} = \tilde{g}^{IJ} \tilde{R}_{IJ}$ based on equalities (3.4) and (5.1), is given by

$$\tilde{r} = \tilde{g}^{ij} \tilde{R}_{ij} + \tilde{g}^{ia} \tilde{R}_{ia,j} = g^{ij} \left(\tilde{R}_{kj}^{\ k} + \tilde{R}_{k,ij}^{\ \ k} \right)$$

$$+ h g_{ij} \delta^{\alpha\beta} \tilde{R}_{k\alpha,j}^{\ \ k} + h g_{ij} \delta^{\alpha\beta} \tilde{R}_{k\alpha,ia,j}^{\ \ k} =$$

$$r - \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{kij}^{\ \ m} R_{qjp}^{\ \ s} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$- \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$- \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$- \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$+ \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$+ \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$+ \frac{1}{2\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m} + \frac{1}{4\pi} \left(\sum_{\sigma=1}^{n} X^\sigma_m X^\sigma_r \right) g^{ij} g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$= r + \frac{1}{2\pi} \left(1 - n^2 \right) \left(\sum_{\sigma=1}^{n} X^\sigma_p X^\sigma_p \right) g^{km} g^{ps} R_{qjp}^{\ \ s} R_{ij}^{\ \ m}$$

$$+ \frac{2}{n^2} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau i} X^{\tau j} \right) g_{ij} + \frac{2}{n^2} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau i} X^{\tau j} \right) g_{ij} - \frac{1}{n} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau i} X^{\tau j} \right) g_{ij} - \frac{1}{n} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau i} X^{\tau j} \right) g_{ij}$$

$$+ \frac{1}{n} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau i} X^{\tau j} \right) g_{ij} - \frac{1}{n} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau i} X^{\tau j} \right) g_{ij}$$
Thus we have

\[\frac{1}{n} \left(n^2 - 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^\tau \right) = r - \frac{1}{2n} \left(1 - n^2 \right) \left(\sum_{\tau=1}^{n} X_k^\tau X^{\tau p} \right) g^{kq} g^{ps} R_{qks}^r \]
\[+ \frac{1}{2n} (n^2 - 1) \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^\tau \right) - \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau p} X^{\tau p}_\tau \right) \]
\[= r + (1 - n^2) \left(\frac{1}{2n} \cdot A - \frac{1}{n^2} \cdot B \right) - \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \cdot B \]
\[- \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^\tau \right). \]

Thus we have

Theorem 5.2 Let \((M_n, g)\) be a Riemannian manifold and \(F^* (M_n)\) be its coframe bundle equipped with metric \(\tilde{g}\). Then the scalar curvature of \(\tilde{g}\) satisfies the following equation:

\[\tilde{r} = r + (1 - n^2) \left(\frac{1}{2n} \cdot A - \frac{1}{n^2} \cdot B \right) - \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \cdot B, \]
(5.2)

where \(r\) is the scalar curvature of \(g\) and

\[A = \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^\tau \right) g^{kq} g^{ps} R_{qks}^r, \quad B = \sum_{\tau=1}^{n} X^{\tau k} X_k^\tau. \]

Now we suppose that \((M_n, g), n > 2\) be a Riemannian manifold of constant curvature \(\kappa\), i.e.

\[R_{kmj}^a = \kappa (\delta_k^a g_{mj} - \delta_m^a g_{kj}) \]
(5.3)

and

\[r = n (n - 1) \kappa. \]

Then by using (5.2) and (5.3), we deduce the following equation:

\[\tilde{r} = r + (1 - n^2) \left(\frac{1}{2n} \cdot A - \frac{1}{n^2} \cdot B \right) - \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \cdot B \]
\[= r + (1 - n^2) \left(\frac{1}{2n} \left(\sum_{\tau=1}^{n} X_k^{\tau p} X^{\tau p}_\tau \right) g^{kq} g^{ps} R_{qks}^r - \frac{1}{n^2} \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^{\tau p} \right) \right) \]
\[- \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^\tau \right) = r \]
\[+ (1 - n^2) \left(\frac{1}{2n} \left(\sum_{\tau=1}^{n} X_k^{\tau p} X^{\tau p}_\tau \right) g^{kq} g^{ps} \kappa (\delta_k^a g_{qs} - \delta_s^a g_{qk}) - \frac{1}{n^2} \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^{\tau p} \right) \right) \]
\[- \frac{1}{n} \left(n^4 - 3n^2 + 1 \right) \left(\sum_{\tau=1}^{n} X^{\tau k} X_k^\tau \right) = n (n - 1) \kappa + B \cdot \left(\frac{1}{n^2} \cdot (n^2 - 1) \right) \]
\[- \frac{1}{n} \left(n^4 - 3n^2 + 1 \right). \]

Thus we have
Theorem 5.3 Let \((M_n, g)\), \(n > 2\) be a Riemannian manifold of constant curvature \(\kappa\). Suppose that \(M_n\) has the scalar curvature \(r = n(n-1)\kappa\). Then \((F^*(M_n), \tilde{g})\) has the scalar curvature
\[
\tilde{r} = n(n-1)\kappa + B \cdot \left(\frac{1}{n} \cdot (n^2 - 1) - \frac{1}{n} (n^4 - 3n^2 +1) \right)
\]
where
\[
B = \sum_{\tau=1}^{n} X^{\tau k} X^{\tau}_k.
\]

Corollary 5.1 If the base manifold \((M_n, g)\) has constant curvature, then its linear coframe bundle \(F^*(M_n)\) equipped with metric \(\tilde{g}\) is not (curvature) homogeneous.

Proof. The equation (5.4) implies that the scalar curvature \(\tilde{r}\) is never constant if \(\kappa\) is a constant. Hence the assertion follows.

References