
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 39 (4), 1-15 (2019).

Inverse boundary value problem for one partial differential equation of
third order

Elmira H. Yusifova ?

Received: 09.03.2019 / Revised: 15.09.2019 / Accepted: 21.09.2019

Abstract. In this paper, we consider the boundary value problem for one partial differential equation of
third order. The existence and uniqueness of the inverse boundary value problem for this equation are
proved.

Keywords. boundary value problem, partial differential operator of third order, spectral parameter,
eigenfunction, Riesz basis

Mathematics Subject Classification (2010): 35J25, 35K20, 35R30.

1 Introduction

Let DT = {(x, t) : 0 < x < 1, 0 < t < T}, and let f(x, t), ϕi(x), i = 0, 2 and h(t)
are the given functions defined for x ∈ [0, 1] and t ∈ [0, T ].

In this paper we shall discuss the following inverse boundary value problem: find the
functions u(x, t) and a(t) connected in the area DT by equation

uttt(x, t) + uxx(x, t) = a(t)u(x, t) + f(x, t) (1.1)

under the fulfillment of the following initial and boundary conditions, and the condition of
redefinition for the function u(x, t):

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), utt(x, T ) = ϕ2(x) 0 ≤ x ≤ 1, (1.2)

u(0, t) = ux(1, t) = 0, 0 ≤ t ≤ T, (1.3)

u(1, t) = h(t), 0 ≤ t ≤ T. (1.4)

Recently, inverse boundary value problems have found very wide application in various
fields of science: geophysics, aerodynamics, hydrodynamics, filtration theory, explosion
theory, mineral exploration, biology, medicine, computer tomography, etc. Various inverse
problems for individual types of partial differential equations studied in many works. We
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note here, first of all, Tikhonov [13], Lavrent’ev [4], Lavrent’ev, Romanov and Shishatsky
[5], Ivanov, Vasin and Tanina [2] and others. For more information, see, for example,
Denisov [1].

Different boundary value problems for a partial differential equation of third order were
investigated in [6, 7]. In [12] the inverse problem is considered to determine the solution of
a third-order equation and the unknown right-hand side of this equation.

In this paper, the existence and uniqueness of the solution of the inverse boundary value
problem (1.1)-(1.4) are proved.

2 Statement of the problem and reduction it to an equivalent problem

To study problem (1.1)-(1.4), we first consider the following problem

y′′′(t) = a(t)y(t), 0 < t < T, (2.1)

y(0) = 0, y′(0) = 0, y′′(T ) = 0, (2.2)

where a(t) ∈ C[0, T ] is given function and y(t) is desired function (by the solution of prob-
lem (2.1)-(2.2) we mean the function y(t) belonging to C3(0, T ) and satisfying conditions
(2.1)-(2.2) in the usual sense).

Lemma 2.1 Let a(t) ∈ C[0, T ] such that

‖a(t)‖∞ ≤ R = const,

where ‖ · ‖∞ is the standard sup-norm in C[0, T ] and

2T 3R

3
< 1. (2.3)

Then problem (2.1)-(2.2) has only trivial solution.

Proof. It is easy see that the problem

y′′′(t) = 0, 0 < t < T,
y(0) = 0, y′(0) = 0, y′′(T ) = 0

(2.4)

has only trivial solution. Then problem (2.4) has one Green function and boundary value
problem (2.1)-(2.2) is equivalent the following integral equation

y(t) =

T∫
0

G(t, τ)y(τ) dτ, 0 ≤ t ≤ T, (2.5)

where

G(t, τ) =

{
− t2

2 , t ∈ [0, τ ],

−tτ + τ2

2 , t ∈ [τ, T ].
(2.6)

Setting

A(y(t)) =

T∫
0

G(t, τ)a(τ)y(τ) dτ, (2.7)
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we can write Eq. (2.5) in the form

y(t) = Ay(t). (2.8)

We will study equation Eq. (2.8) in the space C[0, T ]. It is easy to see that the operator
A is continuous in C[0, T ]. Now we show that this operator is contraction in space C[0, T ].
Indeed, for any y(t), y(t) ∈ C[0, T ] we have

‖Ay(t)−Ay(t)‖∞ ≤ ‖a(t)‖∞ ‖y(t)− y(t)‖∞

T∫
0

|G(t, τ)| dτ. (2.9)

From (2.6) we obtain
T∫
0

|G(t, τ)| dτ =
1

6
t3 +

1

2
t2T.

Obviously, the function g(t) = 1
6 t

3+ 1
2 t

2T, 0 ≤ t ≤ T takes its maximum value in C[0, T ]

at t = T and g(T ) = 2
3T

3. Therefore,

T∫
0

|G(t, τ)| dτ ≤ 2

3
T 3, 0 ≤ t ≤ T. (2.10)

Now from (2.9) with the use of (2.10), we get

‖Ay(t)−Ay(t)‖∞ ≤
2

3
T 3 ‖a(t)‖∞ ‖y(t)− y(t)‖∞ . (2.11)

Then by (2.3) it follows from (2.11) that the operator A is contraction in C[0, T ]. Hence
the operator A in the space C[0, T ] has unique fixed point which is a solution of Eq. (2.8).
Thus, the integral equation (2.5) in C[0, T ] has unique solution. Since y(t) = 0 is a solution
of the boundary value problem (2.1)-(2.2) this problem has only a trivial solution. The proof
of this lemma is complete.

Along with problem (1.1)-(1.4) we consider the following auxiliary inverse problem: it
is required to determine a pair {u(x, t), a(t)} of functions u(x, t) and a(t) having properties
1 and 2 from the definition of classical solutions of problem (1.1)-(1.4), relations (1.1)-(1.3)
and

h′′′(t) + uxx(1, t) = a(t)h(t) + f(1, t), 0 < t < T. (2.12)

Lemma 2.2 Let ϕi(x) ∈ C[0, 1], i = 0, 2, f(x, t) ∈ C(DT ), h(t) ∈ C3[0, T ], h(t) 6= 0
for t ∈ [0, T ] and the following matching conditions hold

ϕ0(1) = h(0), ϕ1(1) = h′(0), ϕ2(1) = h′′(T ). (2.13)

Then the following statements are true:
(i) each classical solution {u(x, t), a(t)} of problem (1.1)-(1.4) is also solution of prob-

lem (1.1)-(1.3), (2.12) ;
(ii) each solution {u(x, t), a(t)} of problem (1.1)-(1.3), (2.12) such that

2T 3 ‖a(t)‖∞
3

< 1 (2.14)

is a classical solution of problem (1.1)-(1.4).
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Proof. Let {u(x, t), a(t)} be a solution of problem (1.1)-(1.4). Considering the condi-
tion h(t) ∈ C3[0, T ] and differentiating three times (1.4), we obtain

uttt(1, t) = h′′′(t), 0 ≤ t ≤ T. (2.15)

Putting x = 1 in Eq. (2.1) we have

uttt(1, t) + uxx(1, t) = a(t)u(1, t) + f(1, t), 0 ≤ t ≤ T. (2.16)

By virtue of (1.4) and (2.15) it follows from (2.16) that (2.12) holds.
Now suppose that {u(x, t), a(t)} is a solution of problem (1.1)-(1.3), (2.12) and the

condition (2.14) hold. Then it follows from (2.12) and (2.16) that

d3

dt3
(u(1, t)− h(t)) = a(t) (u(1, t)− h(t)) , 0 ≤ t ≤ T. (2.17)

Next, by virtue of condition (1.2) and matching conditions (2.13), we get

u (1, 0)− h (0) = ϕ0 (1)− h (0) = 0,

ut (1, 0)− h′ (0) = ϕ1 (1)− h′ (0) = 0,

utt (1, T )− h′′ (T ) = ϕ2 (1)− h′′ (T ) = 0. (2.18)

By Lemma 2.1 it follows from (2.17) and (2.18) that the condition (1.4) holds. The proof
of this lemma is complete.

3 The existence and uniqueness of a classical solution of the inverse boundary value
problem (1.1)-(1.4)

The first component u(x, t) of solution {u(x, t), a(t)} of problem (1.1)-(1.3), (2.12) we
will seek in the following form

u(x, t) =
∞∑
k=1

uk(t) sinλkx, λk =
π

2
(2k − 1), (3.1)

where uk(t) = 2
1∫
0

u(x, t) sinλkx dx, k = 1, 2, . . . . Then, applying the formal Fourier

scheme, from (1.1) and (1.2) we obtain

u′′′k (t)− λ2kuk(t) = Fk(t;u, a), k = 1, 2, . . . ; 0 ≤ t ≤ T, (3.2)

uk(0) = ϕ0k, u′k(0) = ϕ1k, u
′′
k(T ) = ϕ2k, (3.3)

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = 2

1∫
0

f(x, t) sinλkx dx,

ϕik = 2

1∫
0

ϕi(x) sinλkx dx, i = 0, 2 ; k = 1, 2, . . . .
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In order to convert problem (3.2)-(3.3) to problem with homogenous boundary condi-
tions we introduce the desired function

uk (t) = vk (t) +
ϕ2k

2
t2 + tϕ1k + ϕ0k, (3.4)

where vk (t) is a solution of the following problem

v′′′k (t)− λ2kvk(t) = gk(t; vk, a), k = 1, 2, . . . ; 0 ≤ t ≤ T, (3.5)

vk(0) = v′k(0) = v′′k(T ) = 0, k = 1, 2, . . . , (3.6)

where

gk(t; vk, a) = fk(t) + a(t)vk (t) +
(
a(t) + λ2k

) (ϕ2k

2
t2 + tϕ1k + ϕ0k

)
. (3.7)

We first consider the homogeneous equation corresponding to (3.5)

v′′′k (t)− λ2kvk(t) = 0, k = 1, 2, . . . ; 0 ≤ t ≤ T. (3.8)

It is obvious that the general solution of Eq. (3.5) has the form

vk (t) = c1ke
λ

2
3
k t + e−

1
2
λ

2
3
k t

(
c2k cos

√
3

2
λ

2
3
k t+ c3k sin

√
3

2
λ

2
3
k t

)
, (3.9)

where c1k, c2k, c3k are arbitrary constants.
We can show that the problem

v′′′k (t)− λ2kvk(t) = 0, vk(0) = v′k(0) = v′′k(T ) = 0 (3.10)

has only a trivial solution. It is known (see [12]) that problem (3.10) has only one Green
function, where the Green function of this problem is the function Gk(t, τ) that satisfies the
following conditions:

1) the functionGk(t, τ) is continuous and has continuous derivative with respect to t for
any t, τ ∈ [0, T ];

2) for any fixed τ ∈ [0, T ] the function Gk(t, τ) has continuous derivatives of second
and third orders with respect to t in each of intervals [0, τ) and (τ, T ] and the derivative of
third order for t = τ has a leap equal to 1:

Gktt(τ + 0, τ)−Gktt(τ − 0, τ) = 1. (3.11)

3) in each of intervals [0, τ) and (τ, T ] the function Gk(t, τ) that regarded as a function
of t satisfies Eq. (3.8) and boundary conditions (3.6).

Since the general solution of homogeneous equation (3.8) has the form (3.9) the Green
function for boundary value problem (3.10) has the form

Gk(t, τ) =


c1ke

λ
2
3
k t + e−

1
2
λ

2
3
k t

(
c2k cos

√
3
2 λ

2
3
k t+ c3k sin

√
3
2 λ

2
3
k t

)
, t ∈ [0, τ ],

c1ke
λ

2
3
k t + e−

1
2
λ

2
3
k t

(
c2k cos

√
3
2 λ

2
3
k t+ c3k sin

√
3
2 λ

2
3
k t

)
, t ∈ [τ, T ],

(3.12)

where c1k, c2k, c3k, c1k, c2k, c3k are some functions that depend on τ .
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Differentiating (3.10) two time on t we obtain

Gkt(t, τ) =



c1kλ
2
3
k e

λ
2
3
k t − λ

2
3
k e
− 1

2
λ

2
3
k t

(
c2k cos

(√
3
2 λ

2
3
k t−

π
3

)
+c3k sin

(√
3
2 λ

2
3
k t−

π
3

))
, t ∈ [0, τ ],

c1kλ
2
3
k e

λ
2
3
k t − λ

2
3
k e
− 1

2
λ

2
3
k t

(
c2k cos

(√
3
2 λ

2
3
k t−

π
3

)
+c3k sin

(√
3
2 λ

2
3
k t−

π
3

))
, t ∈ [τ, T ],

(3.13)

Gktt(t, τ) =



c1kλ
4
3
k e

λ
2
3
k t + λ

4
3
k e
− 1

2
λ

2
3
k t

(
c2k cos

(√
3
2 λ

2
3
k t−

2π
3

)
+c3k sin

(√
3
2 λ

2
3
k t−

2π
3

))
, t ∈ [0, τ ],

c1kλ
4
3
k e

λ
2
3
k t + λ

4
3
k e
− 1

2
λ

2
3
k t

(
c2k cos

(√
3
2 λ

2
3
k t−

2π
3

)
+c3k sin

(√
3
2 λ

2
3
k t−

2π
3

))
, t ∈ [τ, T ],

(3.14)

Then it can be seen from (3.12) and (3.13) that the continuity of the function Gk(t, τ) and
its derivatives for t = τ gives us

c1ke
λ

2
3
k τ + e−

1
2
λ

2
3
k τ

(
c2k cos

√
3

2
λ

2
3
k τ + c3k sin

√
3

2
λ

2
3
k τ

)

= c1ke
λ

2
3
k τ + e−

1
2
λ

2
3
k τ

(
c2k cos

√
3

2
λ

2
3
k τ + c3k sin

√
3

2
λ

2
3
k τ

)
,

c1ke
λ

2
3
k τ − e−

1
2
λ

2
3
k τ

(
c2k cos

(√
3

2
λ

2
3
k τ −

π

3

)
+c3k sin

(√
3

2
λ

2
3
k τ −

π

3

))

= c1ke
λ

2
3
k τ − e−

1
2
λ

2
3
k τ

(
c2k cos

(√
3

2
λ

2
3
k τ −

π

3

)
+c3k sin

(√
3

2
λ

2
3
k τ −

π

3

))
,

and from (3.14) we see that the condition (3.11) can be written as

c1kλ
4
3
k e

λ
2
3
k τ + λ

4
3
k e
− 1

2
λ

2
3
k τ

(
c2k cos

(√
3

2
λ

2
3
k τ −

2π

3

)

+c3k sin

(√
3

2
λ

2
3
k τ −

2π

3

))
−
[
c1kλ

4
3
k e

λ
2
3
k τ

+λ
4
3
k e
− 1

2
λ

2
3
k τ

(
c2k cos

(√
3

2
λ

2
3
k τ −

2π

3

)
+ c3k sin

(√
3

2
λ

2
3
k τ −

2π

3

))]
= 1

Denote by

γ1k = c1k − c1k, γ2k = c2k − c2k, γ3k = c3k − c3k,
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we obtain a record of the last relations in the form of a system of equations:

γ1ke
λ

2
3
k τ + e−

1
2
λ

2
3
k τ

(
γ2k cos

√
3
2 λ

2
3
k τ + γ3k sin

√
3
2 λ

2
3
k τ

)
= 0,

γ1ke
λ

2
3
k τ − e−

1
2
λ

2
3
k τ

(
γ2k cos

(√
3
2 λ

2
3
k τ −

π
3

)
+γ3k sin

(√
3
2 λ

2
3
k τ −

π
3

))
= 0,

γ1ke
λ

2
3
k τ + e−

1
2
λ

2
3
k τ

(
γ2k cos

(√
3
2 λ

2
3
k τ −

2π
3

)
+ γ3k sin

(√
3
2 λ

2
3
k τ −

2π
3

))
=

1

λ
4
3
k

,

(3.15)

whose determinant is the Wronskian of the fundamental system

eλ
2
3
k t, e−

1
2
λ

2
3
k t cos

√
3

2
λ

2
3
k t, e−

1
2
λ

2
3
k t sin

√
3

2
λ

2
3
k t

for t = τ , and consequently, is different from zero. Therefore, the system (3.15) uniquely
defines a function γik, i = 1, 3:

γ1k = 1

3λ
4
3
k

e−λ
2
3
k τ ,

γ2k = 2

3
√
3λ

4
3
k

e
1
2
λ

2
3
k τ

(
sin
√
3
2

(
λ

2
3
k τ −

π
3

)
+ sin

√
3
2 λ

2
3
k τ

)
,

γ3k = − 2

3
√
3λ

4
3
k

e
1
2
λ

2
3
k τ

(
cos

√
3
2

(
λ

2
3
k τ −

π
3

)
+ cos

√
3
2 λ

2
3
k τ

)
.

(3.16)

It is obvious that

c1k = c1k + γ1k, c2k = c2k + γ2k, c3k = c3k + γ3k,

where γik, ı = 1, 3 determined by (3.16).
Substituting the last relation in (3.12) after some calculations, we obtain

Gk(t, τ) =



c1ke
λ

2
3
k t + e−

1
2
λ

2
3
k t

(
c2k cos

√
3
2 λ

2
3
k t+ c3k sin

√
3
2 λ

2
3
k t

)
, t ∈ [0, τ ],

c1ke
λ

2
3
k t + e−

1
2
λ

2
3
k t

(
c2k cos

√
3
2 λ

2
3
k t+ c3k sin

√
3
2 λ

2
3
k t

)
+

+ 1

3λ
4
3
k

eλ
2
3
k (t−τ) − 2

3λ
4
3
k

e−
1
2
λ

2
3
k (t−τ) sin

(√
3
2 λ

2
3
k (t− τ) + π

6

)
, t ∈ [τ, T ],

(3.17)
where cik, i = 1, 3, are some arbitrary constants.

To determine cik, i = 1, 3, we use the boundary conditions (3.6). Then we have

c1k + c2k = 0,

c1k − 1
2c2k +

√
3
2 c3k = 0,

c1kλ
4
3
k e

λ
2
3
k T + λ

4
3
k e
− 1

2
λ

2
3
k T

(
c2k cos

(√
3
2 λ

2
3
k T −

2π
3

)
+ c3k sin

(√
3
2 λ

2
3
k T −

2π
3

))
+1

3e
λ

2
3
k (T−τ) + 2

3e
− 1

2
λ

2
3
k (T−τ) cos

√
3
2 λ

2
3
k (T − τ) = 0.

Solving the last system, we find

c1k = − 1

3λ
4
3
k

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

)−1(
eλ

2
3
k ( 3

2
T−τ) + 2e

1
2
λ

2
3
k τ cos

√
3

2
λ

2
3
k (T − τ)

)
,
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c2k =
1

3λ
4
3
k

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

)−1(
eλ

2
3
k ( 3

2
T−τ) + 2e

1
2
λ

2
3
k τ cos

√
3

2
λ

2
3
k (T − τ)

)
,

c3k =

√
3

3λ
4
3
k

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

)−1(
eλ

2
3
k ( 3

2
T−τ) + 2e

1
2
λ

2
3
k τ cos

√
3

2
λ

2
3
k (T − τ)

)
.

Substituting the resulting expression for cik, i = 1, 3, in (3.17) using some transformations
we obtain the Green function Gk(t, τ) for the boundary value problem (3.10):

Gk(t, τ) =

{
αk(T, t, τ), t ∈ [0, τ ],
βk(T, t, τ), t ∈ [τ, T ],

(3.18)

where

αk(T, t, τ) = − 1

3λ
4
3
k

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

)−1{
eλ

2
3
k ( 3

2
T+t−τ)

−2eλ
2
3
k ( 3

2
T− t

2
−τ) cos

(√
3

2
λ

2
3
k t−

π

3

)

+2 cos

√
3

2
λ

2
3
k (T − τ)

(
eλ

2
3
k (t+ 1

2
τ) − 2e−

1
2
λ

2
3
k (t−τ) cos

(√
3

2
λ

2
3
k t−

π

3

))}
,

βk(T, t, τ) =

= − 1

3λ
4
3
k

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

)−1{
−2eλ

2
3
k ( 3

2
T− t

2
−τ) cos

(√
3

2
λ

2
3
k t−

π

3

)

+2 cos

√
3

2
λ

2
3
k (T − τ)

(
eλ

2
3
k (t+ 1

2
τ) − 2e−

1
2
λ

2
3
k (t−τ) cos

(√
3

2
λ

2
3
k t−

π

3

))

+2e
1
2
λ

2
3
k (3T−(t−τ)) sin

(√
3

2
λ

2
3
k (t− τ) +

π

6

)

−2 cos

√
3

2
λ

2
3
k T

(
eλ

2
3
k (t−τ) − 2e−

1
2
λ

2
3
k (t−τ) sin

(√
3

2
λ

2
3
k (t− τ) +

π

6

))}
.

Note that the boundary value problem (3.5)-(3.6) is equivalent to the following integral
equation

vk(t) =

T∫
0

Gk(t, τ)gk(τ ; vk, a) dτ, 0 ≤ t ≤ T. (3.19)

Substituting (3.19) in (3.4) and using (3.7), we get

uk (t) =
ϕ2k

2
t2 + tϕ1k + ϕ0k+

+

T∫
0

Gk(t, τ)
[
Fk(τ ;uk, a) + λ2k

(ϕ2k

2
τ2 + τϕ1k + ϕ0k

)]
dτ. (3.20)
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From here, after some calculations, we obtain

uk(t) =

=

(
√

3

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

))−1{
2ϕ0k

[
−eλ

2
3
k t sin

(√
3

2
λ

2
3
k T −

π

3

)

+e
1
2
λ

2
3
k (3T−t) cos

(√
3

2
λ

2
3
k t−

π

6

)
− e

1
2
λ

2
3
k t sin

(√
3

2
λ

2
3
k (T − t)− 2π

3

)]

+
2

λ
2
3
k

ϕ1k

[
−eλ

2
3
k t sin

(√
3

2
λ

2
3
k T −

2π

3

)

+e−
1
2
λ

2
3
k t sin

(√
3

2
λ

2
3
k (T − t)− 2π

3

)
+ e

1
2
λ

2
3
k (3T−t) sin

√
3

2
λ

2
3
k t

]

+

√
3

λ3k
ϕ2k

[
eλ

2
3
k (T

2
+t) − 2e

1
2
λ

2
3
k (T−t) cos

(√
3

2
λ

2
3
k t−

π

3

)]}

+

T∫
0

Gk(t, τ)Fk(τ ;u, a) dτ. (3.21)

After substituting (3.21) into (3.1) for to determine the component u(x, t) of solution
(u(x, t), a(t)) of problem (1.1)-(1.3), (2.12), we obtain

u(x, t) =

=

∞∑
k=1


(
√

3

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

))−1{
2ϕ0k

[
−eλ

2
3
k t sin

(√
3

2
λ

2
3
k T −

π

3

)

+e
1
2
λ

2
3
k (3T−t) cos

(√
3

2
λ

2
3
k t−

π

6

)
− e

1
2
λ

2
3
k t sin

(√
3

2
λ

2
3
k (T − t)− 2π

3

)]

+
2

λ
2
3
k

ϕ1k

[
−eλ

2
3
k t sin

(√
3

2
λ

2
3
k T −

2π

3

)

+e−
1
2
λ

2
3
k t sin

(√
3

2
λ

2
3
k (T − t)− 2π

3

)
+ e

1
2
λ

2
3
k (3T−t) sin

√
3

2
λ

2
3
k t

]

+

√
3

λ3k
ϕ2k

[
eλ

2
3
k (T

2
+t) − 2e

1
2
λ

2
3
k (T−t) cos

(√
3

2
λ

2
3
k t−

π

3

)]}

+

T∫
0

Gk(t, τ)Fk(τ ;u, a) dτ

 sinλkx. (3.22)
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Now by (3.1) from (2.12) we find

a(t) = [h(t)]−1
{
h′′′(t)− f(1, t)−

∞∑
k=1

(−1)k+1λ2kuk(t)

}
. (3.23)

In order to obtain the equation for the second component a(t) of solution {u(x, t), a(t)}
of problem (1.1)-(1.3), (2.12), we substitute (3.21) in (3.23):

a(t) = [h(t)]−1
{
h′′′(t)− f(1, t)

−
∞∑
k=1


(
√

3

(
e

3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T

))−1{
2ϕ0k

[
−eλ

2
3
k t sin

(√
3

2
λ

2
3
k T −

π

3

)

+e
1
2
λ

2
3
k (3T−t) cos

(√
3

2
λ

2
3
k t−

π

6

)
− e

1
2
λ

2
3
k t sin

(√
3

2
λ

2
3
k (T − t)− 2π

3

)]

+
2

λ
2
3
k

ϕ1k

[
−eλ

2
3
k t sin

(√
3

2
λ

2
3
k T −

2π

3

)

+e−
1
2
λ

2
3
k t sin

(√
3

2
λ

2
3
k (T − t)− 2π

3

)
+ e

1
2
λ

2
3
k (3T−t) sin

√
3

2
λ

2
3
k t

]

+

√
3

λ3k
ϕ2k

[
eλ

2
3
k (T

2
+t) − 2e

1
2
λ

2
3
k (T−t) cos

(√
3

2
λ

2
3
k t−

π

3

)]}

+

T∫
0

Gk(t, τ)Fk(τ ;u, a)dτ

 (−1)k+1λ2k

 . (3.24)

Therefore, the solution of problem (1.1)-(1.3), (2.12) is reduces to the system (3.22)-
(3.23) with respect to the unknown functions a(t) and u(x, t).

The following lemma plays an important role in studying the question of the uniqueness
of a solution to problem (1.1)-(1.3), (2.12).

Lemma 3.1 If {u(x, t), a(t)} is an any solution of problem (1.1)-(1.3), (2.12), then the
functions

uk(t) = 2

1∫
0

u(x, t) sinλkx dx, k = 1, 2, . . . ,

satisfy on [0, T ] system (3.21).

Proof. Let {u(x, t), a(t)} be the any solution of problem (1.1)-(1.3), (2.12). Then multi-
plying both sides of Eq. (1.1) on the function 2 sinλkx, k = 1, 2, . . . , integrating resulting
equality over x from 0 to 1 and using the relations

2

1∫
0

uttt(x, t) sinλkx dx =
d3

dt3
(2

1∫
0

u(x, t) sinλkx dx) = u′′′k (t), k = 1, 2, . . . ,



E.H. Yusifova 11

2

1∫
0

uxx(x, t) sinλkx dx = −λ2k(2
1∫

0

u(x, t) sinλkx dx) = −λ2kuk(t), k = 1, 2, . . .

we obtain that Eq. (3.2) holds.
In a similar way from (1.2) we obtain that condition (3.3) holds.
Thus, uk(t), k = 1, 2, . . . , is a solution of problem (3.2)-(3.3). It follows immediately

that the functions uk(t), k = 1, 2, . . . , satisfy on [0, T ] system (3.21). The proof of this
theorem is complete.

It is obvious that if uk(t) = 2
1∫
0

u(x, t) sinλkx dx k = 1, 2, . . . , is a solution of system

(3.21), then the pair {u(x, t), a(t)} of functions u(x, t) =
∞∑
k=1

uk(t) sinλk(x) and a(t) is a

solution of system (3.22), (3.24).
It follows from Lemma 3.1 that the following result is true.

Corollary 3.1 Suppose that the system (3.22), (3.24) has an unique solution. If the problem
(1.1)-(1.3), (2.12) has a solution, then this solution is unique.

Now, in order to study problem (1.1)-(1.3), (2.12), we consider the following spaces:
1. Denote by B3

2,T (see [3]) set of all functions u(x, t) of the form

u(x, t) =

∞∑
k=1

uk(t) sinλkx, λk =
π

2
(2k − 1),

considered DT , where each of functions uk(t), k = 1, 2, . . . , is continuous on [0, T ] and

JT (u) ≡

{ ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

}1/2
< +∞.

The norm in this space is defined as follows:

‖u(x, t)‖B3
2,T

= JT (u).

2. By E3
T we denote the space which consists of a topological product

B3
2,T × C[0, T ],

and the norm of element z = {u, a} is defined by the formula

‖z‖E3
T

= ‖u(x, t)‖B3
2,T

+ ‖a(t)‖C[0,T ] .

Note that B3
2,T and E3

T are Banach spaces.
Now we consider in the space E3

T the operator

Φ(u, a) = {Φ1(u, a), Φ2(u, a)} ,

where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=1

ũk(t) sinλkx,

Φ2(u, a) = ã(t),

and ũk(t), k = 1, 2, . . . and ã(t) are equal to the right-hand sides of (3.21) and (3.24),
respectively.
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Lemma 3.2 The inequality holds

cosx ≥ −1

4
ex, 0 ≤ x < +∞. (3.25)

The proof of this lemma is similar to that of [10, Lemma 4].
It follows from (3.25) that

e
3
2
λ

2
3
k T + 2 cos

√
3

2
λ

2
3
k T ≥

1

2
e

3
2
λ

2
3
k T .

By virtue of this relation we have

eλ
2
3
k t

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,
e

1
2
λ

2
3
k (3T−t)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,

e
1
2
λ

2
3
k t

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,
eλ

2
3
k (T

2
+t)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2, 0 ≤ t ≤ T,

eλ
2
3
k (t+ 1

2
τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,
e−

1
2
λ

2
3
k (t−τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,

eλ
2
3
k (t+ 1

2
τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,
e−

1
2
λ

2
3
k (t−τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,

eλ
2
3
k ( 3

2
T− t

2
−τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,
eλ

2
3
k (t+ 1

2
τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,

e
1
2
λ

2
3
k (3T−(t−τ))

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2,
eλ

2
3
k (t−τ)

e
3
2
λ

2
3
k T + 2 cos

√
3
2 λ

2
3
k T

≤ 2, 0 ≤ τ ≤ t ≤ T.

Using this relation we get ( ∞∑
k=1

(λ3k ‖ũk(t)‖∞)2

) 1
2

≤ 12
√

2

( ∞∑
k=1

(λ3k |ϕ0k|)2
) 1

2

+ 12
√

2

( ∞∑
k=1

(λ3k |ϕ1k|)2
)

+6
√

5

( ∞∑
k=1

(λ2k |ϕ2k|)2
) 1

2

+ 16
√

5T

 T∫
0

∞∑
k=1

(λ2k |fk(τ)|)2dτ


1
2

+16
√

5T ‖a(t)‖∞

( ∞∑
k=1

(
λ3k ‖uk(t)‖∞

)2) 1
2

, (3.26)
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‖ã(t)‖∞ ≤
∥∥∥[h(t)]−1

∥∥∥
∞

{∥∥h′′′(t)− f(1, t)
∥∥
∞

+

( ∞∑
k=1

λ−2k

) 1
2

4
√

3

( ∞∑
k=1

(λ3k |ϕ0k|)2
) 1

2

+ 4
√

3

( ∞∑
k=1

(λ3k |ϕ1k|)2
) 1

2

+6

( ∞∑
k=1

(λ2k |ϕ2k|)2
) 1

2

+ 16
√
T

 T∫
0

∞∑
k=1

(λ2k |fk(τ)|)2dτ


1
2

+16T ‖a(t)‖∞

( ∞∑
k=1

(λ3k ‖uk(t)‖∞)2

) 1
2

 . (3.27)

Suppose that data of problem (2.1)-(2.3), (2.16) satisfied the following conditions:

1. ϕ0(x) ∈ C2[0, 1], ϕ′′′0 (x) ∈ L2(0, 1), ϕ0(0) = ϕ′0(1) = ϕ′′0(0) = 0;
2. ϕ1(x) ∈ C2[0, 1], ϕ′′′1 (x) ∈ L2(0, 1), ϕ1(0) = ϕ′1(1) = ϕ′′1(0) = 0;
3. ϕ2(x) ∈ C1[0, 1], ϕ′′2(x) ∈ L2(0, 1), ϕ2(0) = ϕ′2(1) = 0;
4. f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), f(0, t) = fx(1, t) = 0, 0 ≤ t ≤ T ;
5. h(t) ∈ C3[0, T ], h(t) 6= 0, 0,≤ t ≤ T.

Then from (3.26) and (3.27) we obtain

‖ũ(x, t)‖B3
2,T
≤ A1(T ) +B1(T ) ‖a(t)‖∞ ‖u(x, t)‖B3

2,T
, (3.28)

‖ã(t)‖∞ ≤ A2(T ) +B2(T ) ‖a(t)‖∞ ‖u(x, t)‖B3
2,T
, (3.29)

respectively, where

A1(T ) = 12
√

2
∥∥ϕ′′′0 (x)

∥∥
L2(0,1)

+ 12
√

2
∥∥ϕ′′′1 (x)

∥∥
L2(0,1)

+6
√

5
∥∥ϕ′′2(x)

∥∥
L2(0,1)

+ 16
√

5T ‖fxx(x, t)‖L2(DT ) ,

B1(T ) = 16
√

5T,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
∞

{∥∥h′′′(t)− f(1, t)
∥∥
∞

+

( ∞∑
k=1

λ−2k

) 1
2 [

4
√

3
∥∥ϕ′′′0 (x)

∥∥
L2(0,1)

+ 4
√

3
∥∥ϕ′′′1 (x)

∥∥
L2(0,1)

+6
∥∥ϕ′′2(x)

∥∥
L2(0,1)

+16
√
T ‖fxx(x, t)‖L2(DT )

]}
,

B2(T ) =
∥∥∥[h(t)]−1

∥∥∥
∞

( ∞∑
k=1

λ−2k

) 1
2

16T.

By virtue of (3.28) and (3.29) we have

‖ũ(x, t)‖B3
2,T

+ ‖ã(t)‖∞ ≤ A(T ) +B(T ) ‖a(t)‖∞ ‖u(x, t)‖B3
2,T
, (3.30)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

Therefore, we can prove the following theorem.
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Theorem 3.1 Let conditions 1-5 and condition

(A(T ) + 2)2B(T ) < 1. (3.31)

hold. Then the problem (1.1)-(1.3), (2.12) in the ball K = KR(‖z‖E3
T
≤ R = A(T ) + 2)

of the space E3
T has a unique solution.

Proof. In the space E3
T we consider the equation

z = Φz, (3.32)

where z = {u, a}, the components Φi(u, a), i = 1, 2, of operator Φ(u, a) are determined
by the right-hand sides of equations (3.22) and (3.24).

Consider the operator Φ(u, a) in the ball K = KR of E3
T . Similarly to (3.30) we obtain

that for any z, z1, z2 ∈ KR the following estimates are true:

‖Φz‖E3
T
≤ A(T ) +B(T ) ‖a(t)‖∞ ‖u(x, t)‖B5

2,T
, (3.33)

‖Φz1 − Φz2‖E3
T
≤ B(T )R(‖a1(t)− a2(t)‖∞ + ‖u(x, t)− u(x, t)‖B3

2,T
). (3.34)

Then by (3.31) it follows from estimates (3.33) and (3.34) that the operator Φ(u, a) acts in
the ball K = KR and is constricting. Hence in K = KR the operator Φ(u, a) has an unique
fixed point {u, a} that is unique in the ball K = KR solution of problem (3.32), i.e. it is an
unique solution in K = KR of system (3.22), (3.24).

The function u(x, t) as an element of the space B3
2,T is continuous and has continuous

derivatives ux(x, t), uxx(x, t) in DT . It is easy to see from (3.22) that( ∞∑
k=1

(
λk
∥∥u′′′k (t)

∥∥
∞
)2) 1

2

≤
√

3

( ∞∑
k=1

(
λ3k ‖uk(t)‖∞

)2) 1
2

+ ‖‖fx(x, t)‖∞‖L2(0,1)
+ ‖a(t)‖∞ ‖u(x, t)‖B3

2,T

)
.

Hence It follows that uttt(x, t) is continuous in DT . It is easy to verify that the equation
(1.1) and conditions (1.2), (1.3) and (2.12) are satisfied in the usual sense. Consequently,
{u(x, t), a(t)} is a solution of problem (1.1)-(1.3), (2.12). By virtue of corollary 3.1 it is
unique in the ball K = KR. The proof of this theorem is complete.

Using Lemma 2.2 is proved the following lemma.

Theorem 3.2 Let all conditions of Theorem 3.1 be satisfied,

2

3
(A(T ) + 2)T 3 < 1

and the following matching conditions

ϕ0(1) = h(0), ϕ1(1) dx = h′(0), ϕ2(1) = h′′(T ).

Then problem (1.1)-(1.4) has in the ball K = KR(‖z‖E3
T
≤ R = A(T ) + 2) of the space

E3
T an unique classical solution.
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