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Abstract. In the paper an inverse boundary value problem for pseudo hyperbolic equation of the fourth
order . First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the
Fourier method the equivalent problem is reduced to solving the system of integral equations. The exis-
tence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping
principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the
theorem of existence and uniqueness of a classical solution to the given problem is proved .
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1 Introduction

There are many cases where the needs of the practice bring about the problems of deter-
mining coefficients or the right hand side of differential equations from some knowledge of
its solutions. Such problems are called inverse boundary value problems of mathematical
physics. Inverse boundary value problems arise in various areas of human activity such as
seismology, mineral exploration, biology, medicine, quality control in industry etc., which
makes them an active field of contemporary mathematics. Inverse problems for various
types of PDEs have been studied in many papers. Among them we should mention the pa-
pers of A.N. Tikhonov [1], M.M. Lavrentyev [2, 3], V.K. Ivanov [4] and their followers. For
a comprehensive overview, the reader should see the monograph by A.M. Denisov [5].

2 Problem statement and its reduction to an equivalent problem

Consider for the equation

Ut (T, 1) — QUttzr (T, 1) + Bugrer(z,t) = a(t)u(x, t) + b(t)ue(x, t) + f(z,t)  (2.1)
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2 On solvability of an inverse boundary value problem for the pseudo hyperbolic equation

in the domain D7 = {(x,t) : 0 <z <1, 0 <t <T} aninverse boundary problem with
the initial conditions

u(z,0) = @(x), u(z,0) =) (0<z<1), (2.2)

the boundary conditions

ug(0,8) =0, u(l,t) =0, Ugppz(0,1) =0, uze(1,1)=0 (0<t<T) (2.3)
and with the additional conditions
1
/umtdm—hl()(Ogth), (2.4)
0
u(0,t) = ha(t) (0<t<T), (2.5)

where a > 0, 5 > 0 are the given numbers, f(x,t), ¢(x), 9 (x), hi(t), ha(t) are the given
functions, and wu(z,t),a(t),b(t) are the required functions. The condition (2.5) is a non-
local integral condition of first kind, i.e. the one not involving values of unknown functions
at the domain’s boundary points.

Definition 2.1 The classic solution of problem (2.1) - (2.5) is the triple {u(x, t), a(t), b(t) }
of the functions u(x, t), a(t) and b(t) with the following properties:

1) the function u(z, t) is continuous in Dy together with all its derivatives contained in
equation (2.1);

2) the functions a(t) and b(t) are continuous on [0, T;

3) all the conditions of (2.1) - (2.5) are satisfied in the ordinary sense.

The following lemma holds.

Theorem 2.1 Let f(x,t) € C(Dr), p(x) € C[0,1],%(x) € C[0,1], hi(t) € C?0,T)(i =
1,2), h(t) = hi(t)hh(t) — ha(t)R)(t) # 0(0 < t < T') and the consistency condition

1 1

/ o(x)dz = T (0), / () = 1 (0).0(0) = ha(0), $(0) = I (0).
0 0

Then the problem of finding a classical solution to the problem (2.1)-(2.5) is equivalent
to the problem of finding functions u(x,t) and a(t)) with the properties 1) and 2) of the
definition of the classical solution from the relations (2.1)-(2.3) and satisfying

1
a(t)hi(t) + b(t)h(¢) + / fo,t)da = hY(t) — qupa(1,t) + Puges(1,t) (0<t < T),
" (2.6)
a(t)ha(t)+b(t)Ry(t)+ £(0, 1) = h (t) — Qustea (0, 1) + Blipeae (0,) (0 <t <T). (2.7)
t

Proof. Let u(x,t),a(t),b(t ) be a classical solution to the problem (2.1)-(2.5). Further,
assuming h;(t) € C2[0, T](i = 1,2) and differentiating (2.4) and (2.5), we have

1 1
/ut:rtd:r—h/() 0<t<T), /utt:vt)d:c—h"() 0<t<T), (28)
0 0
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ur(0,8) = hh(t) (0 <t <T), uu(0,t) =hi(t) (0<t<T). (2.9)

Integrating equation (2.1) with respect to x from 0 to 1 and taking into account (2.4), we
have

1
/utt(x, t)dx — auyy(1,t) + Pugrs(1,1)
0

1 1 1
= a(t)/ u(z, t)dx + b(t /ut x t)dx—l—/f(m,t)dx 0<t<T). (2.10)
0 0
From (2.10), by (2.4) and (2.8), we conclude that the relation (2.6) is fulfilled.

Now, setting x = 0 in (2.1) we obtain

utt(07 t) — QUttzx (O, t) + Bumﬁx:ﬂ (07 t)

= a(t)u(0,t) + b(t)us(0,8) + £(0,£) (0 <t <T). (2.11)

Hence, taking into account (2.5) and (2.9), we conclude that (2.7) is fulfilled.
Now suppose that u(zx,t), a(t), b(t) is a solution to the problem (2.1)-(2.3), (2.6), (2.7).
Then from (2.6) and (2.10) we find that

d? /
pTe] /u(m, t)dx — hq(t)

0

1 1
=b(t dt /uxtd:c—hl +a(t /ua:tda:—hl() (0<t<T). (212)
0 0

1 1
By (2.2) and [ ¢(x)dxz = hq(0), [ ¥ (z)dz = R} (0), it is obvious that
0 0

1
/u(m, 0)dx — h1(0) = [ ¢(x)dx — hi1(0) =0,
0

o _

1 1
/ ¢(z,0)dx — (0 /w Ydz — h(0) = 0. (2.13)
0 0

1

Since the problem (2.13), (2.14) has only a trivial solution, [ wu(xz,t)dz —hi(t) = 0
0

(0 <t <T),i.e. the condition (2.4) is fulfilled.

From (2.7) and (2.11) we obtain

@ 0,t hao(t)) = b(t d 0,t ha(t
o (W(0,0) — ha(t)) = b(t) 3 (w(0,1) — ha()
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Fa(t)d (0,0) ~ ha(t) (0<1<T) (213)
By (2.2) and ¢(0) = ha(0),%(0) = h5(0) we have

u(0,0) — ha(0) = ¢(0) — ha(0) =0,
ut(0,0) — h5(0) = 1(0) — hy(0) =

From (2.13) and (2.14) we conclude that the condition (2.5) is fulfilled. The theorem is
proved.

(2.14)

3 Solvability of inverse boundary-value problem

The first component u(z, t) of the solution u(z, t), a(t), b(t) to problem (2.1)-(2.3), (2.6),(2.7)
will be sought in the form:

= 3" un(t) cos Mgz (A = g(zk —1)), (3.1)
k=1
where

1

up(t) = Q/u(x,t) cos \gzdr (k=1,2,...).
0
Then, applying the formal scheme of the Fourier method, from (2.1), (2.2), we get:

(1 + aXP)ul(t) + B \jur(t) = Fi(t,u,a,b) (k=1,2,..;0<t<T), (3.2)
where
1
Fy(t,u,a,b) = fr(t) + a(t)ug(t) + b(t)uy, 2/f x,t) cos Apzdr
0

1
Ok = 2/<p(x) cos \pxdzr, P = 2/1/1(35) cos \gxdr  (k=1,2,...).
0
Solving the problem (3.2), (3.3) we find:

1
uy(t) = oy cos Byt + B—wk sin St
k
t
NG )\2 /Fk T;u,a,b)sin Bi(t — m)dr (k=1,2,...), (3.4)
«

0
where
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Br = (k=1,2,..).

/14 aX?

After substituting the expressions ug(t) (k = 1,2, ...) from (3.4) into (3.1), for the com-
ponent u(z,t) of the solution u(x,t),a(t),b(t) to the problem (2.1)-(2.3), (2.6), (2.7) we

ge

o0

1
u(w,t) = {‘Pk cos Bt + =1y sin Syt
P B
. t
+m /F(T; u, a,b)sin B (t — T)dT} COS A\, . (3.5)
0

Now, from (2.6), (2.7) and (3.1) we have

1
a(t) = (h’{(t) - /f(w,t)dw) ha(t) — (h(t) — £(0,4)) (1)
0

+> (/\1}6( 1)*hy(t) - hll(t)) (Afui(t) + BALuk(t)) (3.6)

k=1

b(t) = h(t) (h3(t) — f(0,1)) — (h” /f x,t)d )

3 (m0) = D 1a(0) ) (@A) + Brfus(r). (3.7)
k=1

By (3.2) and (3.4) we have

aXul (t) + BAjug(t) = —uj(t) + Fi(t,u,a,b)

BAL X} al; B
t —= - F(t by = —E-F(t b
].—|—Oé)\2 k()+1+a)\% k()uvaa ) 1_‘_(1)\% k(auaav )+1+O{>\i
. T
X [gok cos Bt + @zﬂk sinﬁkt—i— 1+ /\2 /F Tiu,a,b)sin By (t — 7)dr | . (3.8)
0

We substitute expression (3.8) into (3.6), (3.7) and have

1
a(t) = [h(t)] { (h" /f x,t)dz) ) () = (R (t) = f(0,)) h5(t)
0
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00 4
+ Z [ G [gpkosﬁkt + i% sin Gt

pt 1+ Oé)\% B

Fy(T;u,a,b)sinf(t — 7)dr

a\? Fk(t;u,a,b)] <(_1)kh’2(t) _h,l(t))}’ (3.9)

+
Q
>:>
c:\hF

1
b(t) = [(B)]™Y) 4 (e — £(0.6)) ha(t) — | (E) / fla,t)dx) | ha(t)
0

— [ BAL (T
+§[1+a)\z wkcosﬂkt—kawksmﬂkt

t

T )\2 /Fk T;u,a,b)sinfy(t — 7)dr
«

0

a\?

T HO’;AI%Fk(t;u,a,b)] <h1(t) — (_A?khQ(t))}. (3.10)

Thus, the problem (2.1)-(2.3), (2.6), (2.7) is reduced to solving the system (3.5), (3.9),(3.10)
with respect to the unknown functions u(z, t), a(t) and b(t).

Using the definition of the solution of the problem (2.1)-(2.3), (2.8),(2.9), we prove the
following lemma.

Lemma 3.1 If {u(x,t),a(t),b(t)} is any solution to the problem (2.1)-(2.3), (2.6),
(2.7), then the functions

1
2/u x,t)cos \pxdr (k=1,2,...)
0

satisfy the system (3.4)) in [0, T .

Remark 3.1 It follows from lemma 1 that to prove the uniqueness of the solution to
the problem (2.1)-(2.3), (2.6), (2.7), it suffices to prove the uniqueness of the solution to the
system (3.5), (3.9),(3.10).

Differentiating (3.4) twice, we get

t

/ Fi(1,u,a,b) cos \p(t — 7)dr. (3.10)

"(t) = — i t t+——s
uy (1) Brpr sin it + 1)y cos By, +1+0M2
0

In order to investigate the problem (2.1)-(2.3), (2.6), (2.7), consider the following spaces.
Denote by BS:; [6] the set of all functions of the form

= wnlt) cos hw (i = 2 (2K — 1))
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defined on D7 such that the functions u(¢)(k = 1,2, ...) are continuous on [0, 7] and

(g(mruk ) @muk >5<oo.

The norm on this set is given by

e, Dlag, = (Z (o nukmuf) + (Z (¥ Humn)?)

k=1 k=1

Denote by E?F’4 the space Bg’é‘; x C'[0, T of the vector-functions z(z, t) = u(z,t), a(t), b(t)
with the norm

12l g2a = Nlull gs + la@ oo,y + 16 0,7 -

It is known that B3 - and E. are Banach spaces.
Now, in the space E3. consider the operator

&(u,a,b) = {P1(u,a,b), P2(u,a,b),P3(u,a,b)},

where
D1(u,p,q) = u(z,t) = Z ) cos Az, Po(u,a,b) =a(t), P3(u,a,b) = l;(t)
k=0

and ux(t), a(t), Z)(t) equal to the right hand sides of (3.4), (3.9), (3.10), respectively.
It is easy to see that

B B
Al <1+aX < (1+a))2, mxk < B < ﬁxk.

Taking into account these relations, by means of simple transformations we find

(i (A st Hcm)2>é <2 ( Ool (N7 \m)?); - 2\/16**“ <§: (! Wy)

k=1 k=1

N

TOO
2= [vE( [ 0tmmar )+ Thawloun
0

X <Z ()‘2 ”uk(t)”C[O,T]>2 dT)

k=1

150 T (Z (5t k) egory) d7> : (3.11)

k=1
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1

(o) T (o]
22 (X 01e)?) + 2T ([ 3 (R 1Ail) ar)
k=1 0

k=1

N
[N

(3 (4 1Ol opm)’) <

k=1

1 1
o 2 2

(A2 Huk@)HC[o,T])Q) F2T 100 ooy (Z (Ai\\uut)I!qo,T])Q)

k=1

2
+- T la(®) o, (

k=1

1
2 s 2\ 2
F2T B0 epo (Z (@)l epor) ) , (3.12)
k=1
1
la(®)lleoz = H[h(t)rl‘c[OT /f 7, 1)dz ) (1
0 Co,T)

=

50 ~ 0.0 RO gy + 1860] + RO, (Z Ag?)

k=1
l

oo 1 TOO
(kZ:l (AL lee)?)® + § 1*“(2@ [ ) +a1ﬂ 0/2 (AR 1f(r))) dr)

k=1

N

Jun

T [ee) 2 2 T o0 2
+m ”C’[OT <Z (Asz“k ”(J[OT) ) \be HC[OT] (Z (>‘4 ’“k HC[O,T]) )

k=1 k=

—_

1
2

=

(i e HCOT)Z)

k=1

+ lle®)llopo,ry (Z (A% (e ”COT1>2>

k

+[16() | oo, (Z (Ai Hu;c(t)Ho[o,T]>2> ] } , (3.13)

k=1

6l = || O™ | o {H (h’{<t) - / f(x,t)dw) ha(t)

[ (R5E) ~ £(0.6)) B (8) | gy + Nea ()] + Ix (D) (Z Af)
k=1

clo.1]

NI

N
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1

o T o
(3 O’ + )+ VT ([ X ORIt ar)
= 0

k=1

1+a

(i (AL lexl)?)* +

[ NI
w\m

[N

aj\;a Ollcpo,m (i (Akz [[uk(t) HC[OT])Z)é_{_\F 16() [l 0,77 (i <>‘i H“;c(t)HC[o,T]>2>

k=1 k=1

+

N

o0

+ la(@®)l o1y (Z ()‘2 Huk(t)Hc[o,T]>2>

k=1

150 (Z (x Hu@(t)\\cw,ﬂf) ] } . (3.14)

k=1

(i (e it HCOT]f)

k=1
Suppose that the data of the problem (2.1)-(2.3), (2.6), (2.7) satisfy the following condi-

.o (315)
la(®)llcpoz) < A2(T) + Ba(D)(lla®ll oy + 1oOllcppr) )], » (3.16)
[5O)|.5, < 43D+ B@)UaOlcpor + D) ) Nt D, o (8:17)
where
I5] 2v1l+
A =20+ 20w, GG 0@
F VT + ) [feal )]
Va g i ebn):
2 1 1
o0 = 575+ @)

1
/faztdxh'
0

H[(h5(8) = £, ()| ooy

clo.7]

N|=
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+ 1RO+ [ Ol ooz X (Z W)
k=1
y {g ng(g))(w)‘ m

+a\1/aT o)Ly + Hllfx@fvf>”0[07T1HL2<0,1> J

[+

L2(0»1) Lo(0,1)

N[

BaT) = 001, <O+ 10 Ol g (kZ A;Q) <z +1)s

1
- /f(:c,t)da:)hQ(t) +||(hy(t) — f(ovt))hl(t)HC[o,T]
0

C[o,T]

\/1+oz

0]+ 120 o % (Z A,?) <20
k=1

L2(0,1) Hw L5(0,1)
1
b1l Dl + Moo |
1
1 L a) T
By(T) = [(t) X a0+ (e Blllopz | DoA2) x (== +1
C[o,1] P ay/a
It follows from the inequalities (3.15)- (3.17) that
l(,Oll gz + Nl o + |01
, (3.18)

< A(T) + BID)lla®ll oy + 18 o) lulz, O

4
,T

where

A(T) = A1(T) + Ao(T) + A3(T) B(T) = By(T) + By(T) + Bs(T).
Theorem 3.1 Let the conditions 1° — 49 be fulfilled and
(A(T) +2)*B(T) < 1. (3.19)
Then the problem (2.1)-(2.3), (2.6), (2.7) has a unique solution in the ball K’ = Kr(||2| ;5.4 <
T

R = A(T) + 2) of the space E;A.
Proof. In the space E;A consider the equation

z =Pz, (3.20)
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where z = {u, a, b} and the components @;(u, a,by (i = 1,2, 3) ) of the operator ®(u, a, b
are given by the right hand sides of the equations (3.5),(3.9), (3.10). Consider the operator
b(u, a, by in the ball K = Ky, from E;’J4 . Similarly to (3.18), we see that for any z, z1, 22 €
KR, the following estimates hold:

|82l g5 < AT) + BO)pO oo + laOllcpm) e Dllgza . (3:21)

Bz — ¢Z2HE;»4 < B(T)R (ch(t) = b2 ()l o,y

11618 = ol opo.zy + s, t) = uae, )l gz ) - (3.22)

Then, it follows from (3.19) together with the estimates (3.21) and (3.22) that the op-
erator @ acts in the ball X' = K and is contractive. Therefore, in the ball K = Kg the
operator ¢ has a unique fixed point {u, a, b}, that is a unique solution to the equation (3.20),
i.e. a unique solution to the system (3.5),(3.9), (3.10).

The function u(x, t) , as an element of the space Bgfp , is continuous and has continuous
derivatives uy (z, 1), Uypy (2, 1), Ugze (T, 1), Ugge @ (X, 1), ut (2, 1), Utgga (2, t) in D

Next, from (3.2) it follows that u}(t) (k = 1,2,...) is continuous in [0, 7] and conse-
quently we have:

1

(Z N e @)l egozy) ) Sf (Z (AR lunt HC[OTV)
k=1 k=1

+ H | fo(x,t) + a(t)ug(x,t) + b(t)u (z, t)“c[o,T] HL2(0 1)} :

From the last relation it is obvious that uy (z,t), us, (x,t), Uee (x, t) is continuous in
Dr.

It is easy to verify that the equation (2.1) and conditions (2.2), (2.3), (2.6), (2.7) are sat-
isfied in the ordinary sense. Consequently, {u(z,t), a(t),b(t)} is a solution to the problem
(2.1)-(2.3), (2.6), (2.7), and by Lemma 1 it is unique in the ball K = Kp .

By Theorem 1 the unique solvability of the initial problem (2.1)-(2.5) follows from the
theorem.

Theorem 3.2 Let all the conditions of Theorem 2 be fulfilled and

1
o(2)dz = hy (0 /w )i = H,(0).0(0) = ha(0), $:(0) = I (0).
0

o _

Then the problem (2.1)-(2.5) has a unique classical solution in the ball X' = Kr(]|z|| z5.4 <
T
R = A(T) + 2) of the space E;A.
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