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Abstract. We show continuity in parabolic generalized Orlicz-Morrey spaces MΦ,ϕ(Dn+1
+ ) of parabolic

nonsingular integral operators. We shall give necessary and sufficient conditions for the boundedness of
the parabolic nonsingular integral operator on parabolic generalized Orlicz-Morrey spaces MΦ,ϕ(Dn+1

+ ).
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1 Introduction and main results

The classical Morrey spaces were introduced by Morrey [23] to study the local behavior
of solutions to second-order elliptic partial differential equations. Although such spaces
allow to describe local properties of functions better than Lebesgue spaces, they have some
unpleasant issues. It is well known that Morrey spaces are non separable and that the usual
classes of nice functions are not dense in such spaces. Moreover, various Morrey spaces
are defined in the process of study. Guliyev, Mizuhara and Nakai [10,22,24] introduced
generalized Morrey spaces Mp,ϕ(Rn) (see, also [11,12,32]). Later, Guliyev [12] defined
the generalized Morrey spaces Mp,ϕ(Rn) with normalized norm

‖f‖Mp,ϕ ≡ sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−1/p ‖f‖Lp(B(x,r)),

where the functionϕ is a positive measurable function on Rn×(0,∞). Here and everywhere
in the sequel B(x, r) is the ball in Rn of radius r centered at x and |B(x, r)| = vnr

n is its
Lebesgue measure, where vn is the volume of the unit ball in Rn.

The Orlicz space were first introduced by Orlicz in [29,30] as generalizations of Lebesgue
spaces Lp(Rn). Since then, the theory of Orlicz spaces themselves has been well developed
and the spaces have been widely used in probability, statistics, potential theory, partial dif-
ferential equations, as well as harmonic analysis and some other fields of analysis.

In [5], the generalized Orlicz-Morrey space MΦ,ϕ(Rn) was introduced to unify Orlicz
and generalized Morrey spaces. Other definitions of generalized Orlicz-Morrey spaces can
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be found in [25] and [31]. In words of [18], our generalized Orlicz-Morrey space is the
third kind and the ones in [25] and [31] are the first kind and the second kind, respectively.
According to the examples in [9], one can say that the generalized Orlicz-Morrey spaces
of the first kind and the second kind are different and that second kind and third kind are
different. However, we do not know the relation between the first and the second kind.

Note that, Orlicz-Morrey spaces unify Orlicz and generalized Morrey spaces. We extend
some results on generalized Morrey space in the papers [7,12,14,15,19,20] to the case of
Orlicz-Morrey space in [5,8,16–18].

Consider the half-space Rn+1
+ = Rn×(0,∞). For x = (x′, t) ∈ Rn+1

+ , x = (x′′, xn, t) ∈
Dn+1
+ = Rn−1 × R+ × R+, Dn+1

− = Rn−1 × R− × R+. In the following, besides the
standard parabolic metric %(x) = max(|x′|, |t|1/2) we use the equivalent one ρ(x) =(
|x′|2+

√
|x′|4+4t2

2

)1/2

introduced by Fabes and Riviére in [4]. The induced by it topology

consists of ellipsoids (parabolic balls)

Er(x) =
{
y ∈ Rn+1 :

|x′ − y′|2

r2
+
|t− τ |2

r4
< 1

}
, |Er| = Crn+2.

It is easy to see that E1(x) and Sn are the unit ball and the unit sphere, respectively, with
respect to the both metrics and ρ(x). On the other hand, the equivalence between the both
parabolic metrics %(x) and ρ(x) follows by the inclusion: for each Er there exist parabolic
cylinders C and C with measure comparable with rn+2 such that C ⊂ Er ⊂ C. In what
follows all estimate obtained over ellipsoids hold true also over parabolic cylinders and we
shall use this property without explicit references.

Let x̃ = (x′′,−xn, t) be the ”reflected point”. The parabolic nonsingular integral opera-
torR is defined by (see [2])

Rf(x) =
∫
Dn+1
+

|f(y)|
ρ(x̃− y)n+2

dy. (1.1)

The operatorR and its commutator appear in [2] in connection with boundary estimates
for solutions to parabolic equations.

In [28] the author was study the boundedness of the parabolic nonsingular integral oper-
ator R on Orlicz spaces LΦ(Dn+1

+ ). Therefore, the purpose of this paper is mainly to study
the boundedness of the operator R on parabolic generalized Orlicz-Morrey spaces of the
third kind MΦ,ϕ(Dn+1

+ ).
A functionϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing)

if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.
For a Young function Φ, we denote by GΦ the set of all decreasing functions ϕ : (0,∞) →
(0,∞) such that t ∈ (0,∞) 7→ Φ−1(t−n−2)ϕ(t)−1 is almost decreasing.

The following results are the fundamental theorems in this paper:

Theorem 1.1 Let Φ ∈ ∆2 and ϕ1, ϕ2 ∈ ΩΦ.
1. The condition∫ ∞

r

(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−n−2

))Φ−1(t−n−2)dt
t
≤ C ϕ2(x, r), (1.2)

whereC does not depend on x and r, is sufficient for the boundedness ofR fromMΦ,ϕ1(Dn+1
+ )

to WMΦ,ϕ2(Dn+1
+ ). If, in addition, Φ ∈ ∇2, then the condition (1.2) is sufficient for the

boundedness ofR from MΦ,ϕ1(Dn+1
+ ) to MΦ,ϕ2(Dn+1

+ ).
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2. If ϕ1 ∈ GΦ, then the condition

ϕ1(x, r) ≤ Cϕ2(x, r), (1.3)

whereC does not depend on x and r, is necessary for the boundedness ofR fromMΦ,ϕ1(Dn+1
+ )

to WMΦ,ϕ2(Dn+1
+ ) and from MΦ,ϕ1(Dn+1

+ ) to MΦ,ϕ2(Dn+1
+ ).

3. If ϕ1 ∈ GΦ satisfies the regularity type condition∫ ∞
t

ϕ1(r)
dr

r
≤ Cϕ1(t), (1.4)

for all t > 0, where C > 0 does not depend on t, then the condition (1.3) is necessary and
sufficient for the boundedness ofR from MΦ,ϕ1(Dn+1

+ ) to WMΦ,ϕ2(Dn+1
+ ). If, in addition,

Φ ∈ ∇2, then the condition (1.3) is necessary and sufficient for the boundedness ofR from
MΦ,ϕ1(Dn+1

+ ) to MΦ,ϕ2(Dn+1
+ ).

If we take Φ(t) = tp, p ∈ [1,∞) at Theorem 1.1 we get the following new result for
generalized Morrey spaces.

Corollary 1.1 Let p ∈ [1,∞) and ϕ1, ϕ2 ∈ Ωp ≡ Ωtp .
1. The condition ∫ ∞

r

ess inf
t<s<∞

ϕ1(s)s
n+2
p

t
n+2
p

+1
dt ≤ Cϕ2(r), (1.5)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of R
from Mp,ϕ1(Dn+1

+ ) to WMp,ϕ2(Dn+1
+ ). If 1 < p <∞, then the condition (1.5) is sufficient

for the boundedness ofR from Mp,ϕ1(Dn+1
+ ) to Mp,ϕ2(Dn+1

+ ).
2. If ϕ1 ∈ Gp, then the condition (1.3) is necessary for the boundedness of R from

Mp,ϕ1(Dn+1
+ ) to WMp,ϕ2(Dn+1

+ ) and from Mp,ϕ1(Dn+1
+ ) to Mp,ϕ2(Dn+1

+ ).
3. Ifϕ1 ∈ Gp satisfies the regularity condition (1.4), then the condition (1.3) is necessary

and sufficient for the boundedness ofR from Mp,ϕ1(Dn+1
+ ) to WMp,ϕ2(Dn+1

+ ). If, in addi-
tion, 1 < p < ∞, then the condition (1.3) is necessary and sufficient for the boundedness
ofR from Mp,ϕ1(Dn+1

+ ) to Mp,ϕ2(Dn+1
+ ).

Remark 1.1 Note that, in [8] was study the boundedness of the nonsingular integral oper-
ator on generalized Orlicz-Morrey spaces of the third kind MΦ,ϕ(Rn+).

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Definitions and Preliminary Results

2.1 On Young Functions and Orlicz Spaces
We recall the definition of Young functions.

Definition 2.1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.
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From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If
there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that

0 < Φ(r) <∞ for 0 < r <∞
will be denoted by Y. If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in
[0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r <∞.

It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r) for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y . A Young function Φ is said to satisfy the ∇2-
condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1.

Definition 2.2 (Orlicz Space). For a Young function Φ, the set

LΦ(Dn+1
+ ) =

{
f ∈ L1

loc(D
n+1
+ ) :

∫
Dn+1
+

Φ(k|f(x)|)dx <∞ for some k > 0

}

is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Dn+1
+ ) = Lp(Dn+1

+ ). If Φ(r) =
0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Dn+1

+ ) = L∞(Dn+1
+ ). The space

LΦloc(D
n+1
+ ) is defined as the set of all functions f such that fχB ∈ LΦ(D

n+1
+ ) for all balls

B ⊂ Dn+1
+ .

LΦ(Dn+1
+ ) is a Banach space with respect to the norm

‖f‖LΦ(Dn+1
+ ) = inf

{
λ > 0 :

∫
Dn+1
+

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

We note that ∫
Dn+1
+

Φ
( |f(x)|
‖f‖LΦ(Dn+1

+ )

)
dx ≤ 1. (2.2)
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The weak Orlicz space

WLΦ(Dn+1
+ ) = {f ∈ L1

loc(D
n+1
+ ) : ‖f‖WLΦ(Dn+1

+ ) < +∞}

is defined by the norm

‖f‖WLΦ(Dn+1
+ ) = inf

{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.

The following lemmas are valid.

Lemma 2.1 [1,21] Let Φ be a Young function and E a set in Dn+1
+ with finite Lebesgue

measure. Then
‖χE‖WLΦ(Dn+1

+ ) = ‖χE‖LΦ(Dn+1
+ ) =

1

Φ−1 (|E|−1)
.

Lemma 2.2 For a Young function Φ and for all parabolic balls E in Dn+1
+ , the following

inequality is valid
‖f‖L1(E) ≤ 2|E|Φ−1

(
|E|−1

)
‖f‖LΦ(E).

The following theorem were proved in [28].

Theorem 2.1 [28] Let Φ be a Young function and R be a parabolic nonsingular integral
operator, defined by (1.1). If Φ ∈ ∆2

⋂
∇2, then the operator R is bounded on LΦ(Dn+1

+ )

and if Φ ∈ ∆2, then the operatorR is bounded from LΦ(Dn+1
+ ) to WLΦ(Dn+1

+ ).

In the case Φ(t) = tp, we get the following result proved in [2].

Corollary 2.1 [2] Let 1 ≤ p < ∞ and f ∈ Lp(Dn+1
+ ). Then there exists a constant Cp

independent of f , such that

‖Rf‖Lp(Dn+1
+ ) ≤ Cp‖f‖Lp(Dn+1

+ ), 1 < p <∞

and
‖Rf‖WL1(Dn+1

+ ) ≤ C1‖f‖L1(Dn+1
+ ).

2.2 Parabolic generalized Orlicz-Morrey Space
Various versions of generalized Orlicz-Morrey spaces were introduced in [25], [31] and

[5]. We used the definition of [5] which runs as follows.
We now define parabolic generalized Orlicz-Morrey spaces of the third kind. The parabolic

generalized Orlicz-Morrey space MΦ,φ(Dn+1
+ ) of the third kind is defined as the set of all

measurable functions f for which the norm

‖f‖MΦ,φ(Dn+1
+ ) ≡ sup

x∈Dn+1
+ , r>0

1

φ(x, r)
Φ−1

(
1

|E+(x, r)|

)
‖f‖LΦ(E+(x,r))

is finite, where E+(x, r) = E(x, r) ∩ Dn+1
+ . Also by WMΦ,ϕ(Dn+1

+ ) we denote the weak
parabolic generalized Orlicz-Morrey space of the third kind of all functions f ∈WLΦloc(D

n+1
+ )

for which

‖f‖WMΦ,ϕ(Dn+1
+ ) = sup

x∈Dn+1
+ ,r>0

ϕ(x, r)−1Φ−1(|E+(x, r)|−1) ‖f‖WLΦ(E+(x,r)) <∞,

where WLΦ(E+(x, r)) denotes the weak LΦ-space of measurable functions f for which

‖f‖WLΦ(E+(x,r)) ≡ ‖fχE+(x,r)
‖WLΦ(Dn+1

+ ).

Note that MΦ,φ(Dn+1
+ ) covers many classical function spaces.
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Example 2.1 Let 1 ≤ q ≤ p < ∞ and Φ ∈ ∆2 ∩ ∇2. From the following special cases,
we see that our results will cover the Lebesgue space Lp(Dn+1

+ ), the classical Morrey space
Mp
q (Dn+1

+ ), the generalized Morrey space Mφ,p(Dn+1
+ ) and the Orlicz space LΦ(Dn+1

+ )
with norm coincidence:

1 If Φ(t) = tp and φ(t) = t
−n+2

p , thenMΦ,φ(Dn+1
+ ) = Lp(Dn+1

+ ) with norm equivalence.

2 If Φ(t) = tq and φ(t) = t
−n+2

p , then MΦ,φ(Dn+1
+ ), which is denoted by Mp

q (Dn+1
+ ), is

the parabolic Morrey space.
3 If Φ(t) = tp, then MΦ,φ(Dn+1

+ ) = Mp,φ(Dn+1
+ ) is the parabolic generalized Morrey

space which were discussed in [10], see also [12,22,24].
4 If φ(t) = Φ−1(t−n−2), then MΦ,φ(Dn+1

+ ) = LΦ(Dn+1
+ ).

Other definitions of generalized Orlicz-Morrey spaces can be found in [9,25–27]. There-
fore, our definition of generalized Orlicz-Morrey spaces here is named “third kind”.

In the case ϕ(x, r) =
Φ−1
(
|E(x,r)|−1

)
Φ−1
(
|E(x,r)|−λ/n

) , we get the parabolic Orlicz-Morrey space

MΦ,λ(Rn) from parabolic generalized Orlicz-Morrey space MΦ,ϕ(Rn). We refer to [6,
Lemmas 2.8 and 2.9] for more information about Orlicz-Morrey spaces.

Lemma 2.3 [6, Lemma 2.12] Let Φ be a Young function and ϕ be a positive measurable
function on Rn × (0,∞).

(i) If

sup
t<r<∞

Φ−1(|E(x, r)|−1)
ϕ(x, r)

=∞ for some t > 0 and for all x ∈ Rn, (2.3)

then MΦ,ϕ(Rn) = Θ.
(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (2.4)

then MΦ,ϕ(Rn) = Θ.

Remark 2.1 Let Φ be a Young function. We denote by ΩΦ the sets of all positive measur-
able functions ϕ on Rn × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|E(x, r)|−1)
ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞,

and
sup
x∈Rn

∥∥∥ϕ(x, r)−1∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.3, we always assume that ϕ ∈ ΩΦ.

The following lemma plays a key role in our main results.

Lemma 2.4 Let E+0 := E+(x0, r0) a parabolic ball in Dn+1
+ . If ϕ ∈ GΦ, then there exist

C > 0 such that
1

ϕ(r0)
≤ ‖χE+0 ‖MΦ,ϕ(Dn+1

+ ) ≤
C

ϕ(r0)
.
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Proof. Let E+ = E+(x, r) denote an arbitrary parabolic ball in Dn+1
+ . By the definition and

Lemma 2.1, it is easy to see that

‖χE+0 ‖MΦ,ϕ = sup
x∈Dn+1

+ ,r>0

ϕ(r)−1Φ−1(|E+|−1) 1

Φ−1(|E+ ∩ E+0 |−1)

≥ ϕ(r0)−1Φ−1(|E+0 |
−1)

1

Φ−1(|E+0 ∩ E
+
0 |−1)

=
1

ϕ(r0)
.

Now if r ≤ r0, then ϕ(r0) ≤ Cϕ(r) and

ϕ(r)−1Φ−1(|E+|−1)‖χE+0 ‖LΦ(E+) ≤
1

ϕ(r)
≤ C

ϕ(r0)
.

On the other hand if r ≥ r0, then ϕ(r0)

Φ−1(|E+0 |−1)
≤ C ϕ(r)

Φ−1(|E+|−1)
and

ϕ(r)−1Φ−1(|E+|−1)‖χE+0 ‖LΦ(E+) ≤
C

ϕ(r0)
.

This completes the proof.

3 Parabolic nonsingular integral operators in the space MΦ,ϕ(Dn+1
+ )

We will use the following statement on the boundedness of the weighted Hardy operator

H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.
The following theorem were proved in [13,15] and in the case w = 1 in [3].

Theorem 3.1 Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neigh-
borhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t) (3.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞
t

w(s)ds

sups<τ<∞ v1(τ)
<∞. (3.2)

Moreover, the value C = B is the best constant for (3.1).

Remark 3.1 In (3.1) and (3.2) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

For any x ∈ Dn+1
+ define x̃ = (x′,−xn) and recall that x0 = (x′, 0). Also define

E+r ≡ E+(x0, r) = E(x0, r) ∩ Dn+1
+ , 2E+r = E+(x0, 2r).
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Lemma 3.1 Let Φ any Young function, f ∈ LΦloc(D
n+1
+ ), be such that∫ ∞

1
‖f‖LΦ(E+(x0,t)) Φ

−1(t−n−2) dt
t
<∞ (3.3)

i) If Φ ∈ ∆2
⋂
∇2, then

‖Rf‖LΦ(E+(x0,r)) ≤
C

Φ−1
(
r−n−2

) ∫ ∞
2r
‖f‖LΦ(E+(x0,t)) Φ

−1(t−n−2) dt
t
. (3.4)

ii) If Φ ∈ ∆2, then

‖Rf‖WLΦ(E+(x0,r)) ≤
C

Φ−1
(
r−n−2

) ∫ ∞
2r
‖f‖LΦ(E+(x0,t)) Φ

−1(t−n−2) dt
t
, (3.5)

where the constants are independent of x0, r and f .

Proof. i) Denote by E+r = E+(x0, r), E+t = E+(x0, t) and for any f ∈ LΦloc(D
n+1
+ ) write

f = f1 + f2 with f1 = fχ2E+r and f2 = fχ(2E+r )c . Because of the Φ-boundedness of the
operatorR (see Theorem 2.1) and f1 ∈ LΦ(Dn+1

+ ) we have

‖Rf1‖LΦ(E+r ) ≤ ‖Rf1‖LΦ(Dn+1
+ ) ≤ C‖f1‖LΦ(Dn+1

+ ) = C‖f‖LΦ(2E+r ).

It is easy to see that for arbitrary points x ∈ E+r and y ∈ (2E+r )c it holds

1

2
ρ(x0 − y) ≤ ρ(x̃− y) ≤ 3

2
ρ(x0 − y). (3.6)

Applying the Fubini theorem toRf2 we get

|Rf2(x)| ≤ C
∫
Dn+1
+

|f2(y)|
ρ(x̃− y)n+2

dy

≤ C
∫
(2E+r )c

|f(y)|
ρ(x0 − y)n+2

dy ≤ C
∫
(2E+r )c

|f(y)|dy
∫ ∞
ρ(x0−y)

dt

tn+3

≤ C
∫ ∞
2r

(∫
2r≤ρ(x0−y)<t

|f(y)|dy

)
dt

tn+3
≤ C

∫ ∞
2r

(∫
E+t
|f(y)|dy

)
dt

tn+3
.

Applying the Hölder’s inequality (see, Lemma 2.2), we get∫
(2E+r )c

|f(y)|
ρ(x0 − y)n+2

dy .
∫ ∞
2r
‖f‖LΦ(E+t )‖1‖LΦ̃(E+t )

dt

tn+3

=

∫ ∞
2r
‖f‖LΦ(E+t )

1

Φ̃−1(|E+t |−1)
dt

tn+3
≈
∫ ∞
2r
‖f‖LΦ(E+t )Φ

−1(t−n−2)dt
t
.

(3.7)

Direct calculations give

‖Rf2‖LΦ(E+r ) ≤
C

Φ−1
(
r−n−2

) ∫ ∞
2r
‖f‖LΦ(E+t ) Φ

−1(t−n−2) dt
t

(3.8)

and the last estimate holds for all f ∈ LΦ(Dn+1
+ ) satisfying (3.3). Thus

‖Rf‖LΦ(E+r ) . ‖f‖LΦ(2E+r ) +
1

Φ−1
(
r−n−2

) ∫ ∞
2r
‖f‖LΦ(E+t ) Φ

−1(t−n−2) dt
t
. (3.9)
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On the other hand,

‖f‖LΦ(2Er) =
C

Φ−1
(
r−n−2

) ‖f‖LΦ(2Er) ∫ ∞
2r

Φ−1
(
t−n−2

) dt
t

≤ C

Φ−1
(
r−n−2

) ∫ ∞
2r
‖f‖LΦ(E+t ) Φ

−1(t−n−2) dt
t

(3.10)

which unified with (3.9) gives (3.4).
ii) Let now f ∈ LΦ(Dn+1

+ ), the weak Φ-boundedness ofR (see Theorem 2.1) implies

‖Rf1‖WLΦ(E+r ) ≤ ‖Rf1‖WLΦ(Dn+1
+ ) . ‖f1‖LΦ(Dn+1

+ ) = ‖f‖LΦ(2E+r ).

The estimate (3.5) follows by (3.8).

For proving our main results, we need the following estimate.

Lemma 3.2 If E+0 := E+(x0, r0), then C ≤ RχE+0 (x) for every x ∈ E+0 .

Proof. If x, y ∈ E+0 , then ρ(x̃ − y) ≤ ρ(x̃ − x0) + ρ(y − x0) < 2r0. We get Cr−n−20 ≤
ρ(x̃− y)−n−2. Therefore

RχE+0 (x) =
∫
Rn
χE+0

(y)ρ(x̃− y)−n−2dy =

∫
E+0
ρ(x̃− y)−n−2dy ≥ Cr−n−20 |E+0 | = C.

Theorem 3.2 Let Φ any Young function, ϕ1, ϕ2 : Dn+1
+ × R+ → R+ be measurable func-

tions satisfying (1.2).
i) If Φ ∈ ∆2

⋂
∇2, then it is bounded from MΦ,ϕ1(Dn+1

+ ) in MΦ,ϕ2(Dn+1
+ ) and

‖Rf‖MΦ,ϕ2 (Dn+1
+ ) ≤ C‖f‖MΦ,ϕ1 (Dn+1

+ ). (3.11)

ii) If Φ ∈ ∆2, then it is bounded from MΦ,ϕ1(Dn+1
+ ) to WMΦ,ϕ2(Dn+1

+ ) and

‖Rf‖MΦ,ϕ2 (Dn+1
+ ) ≤ C‖f‖WMΦ,ϕ1 (Dn+1

+ )

with constants independent of f.

Proof. LetR bounded in LΦ(Dn+1
+ ) than by Lemma 3.1 we have

‖Rf‖MΦ,ϕ2 (Dn+1
+ ) ≤ C sup

x0, r>0

ϕ2(x
0, r)−1

∫ ∞
r
‖f‖LΦ(E+(x0,t)) Φ

−1(t−n−2) dt
t
.

Applying the Theorem 3.1 to the above integral with

w(r) = Φ−1
(
r−n−2

)
, v2(x

0, r) = ϕ2(x
0, r)−1, v1(x

0, r) = ϕ1(x
0, r)−1 Φ−1

(
r−n−2

)
,

g(x0, r) = ‖f‖LΦ(E+(x0,r)), H∗wg(x
0, r) =

∫ ∞
r
‖f‖LΦ(E+(x0,t))w(t)dt

where the condition (3.2) is equivalent to (1.2) we get

‖Rf‖MΦ,ϕ2 (Dn+1
+ ) ≤ C sup

x∈Dn+1
+ , r>0

ϕ1(x
0, r)−1 Φ−1

(
r−n−2

)
‖f‖LΦ(E+(x0,r)) = C‖f‖MΦ,ϕ1 (Dn+1

+ ).

The case p = 1 is treated in the same manner making use of (3.5) and (3.2)

‖Rf‖WM1,ϕ2 (Dn+1
+ ) ≤ C sup

x0∈Dn+1
+ , r>0

ϕ2(x
0, r)−1

∫ ∞
r
‖f‖LΦ(E+(x0,t)) Φ

−1(t−n−2) dt
t

= C sup
x0, r>0

ϕ1(x
0, r)−1 Φ−1

(
r−n−2

)
‖f‖LΦ(E+(x0,r)) = C‖f‖MΦ,ϕ1 (Dn+1

+ ).
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Proof of Theorem 1.1. The first part of the theorem follows from Lemma 3.1 and The-
orem 3.2. We shall now prove the second part. Let E+0 = E+(x0, r0) and x ∈ E+0 . It is easy
to see thatRχE+0 (x) = 1 for every x ∈ E+0 . Therefore, by Lemmas 2.1 and 3.2

1 = Φ−1(w(E+0 )−1)‖RχE+0 ‖LΦ(E+0 ) ≤ ϕ2(E+0 )‖RχE+0 ‖MΦ,ϕ2

≤ Cϕ2(E+0 )‖χE+0 ‖MΦ,ϕ1 ≤ C
ϕ2(E+0 )

ϕ1(E+0 )
.

Since this is true for every E+0 , we are done.
The third statement of the theorem follows from the other statements of the theorem.
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