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Abstract. We consider the global bifurcation of solutions of nonlinear Sturm-Liouville problems with
indefinite weight function. We prove the existence of four families of global continua of solutions corre-
sponding to the usual nodal properties and bifurcating from intervals of the line of trivial solutions.
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1 Introduction

We consider the nonlinear Sturm-Liouville equation

(`y) ≡ −(p(x)y′)′ + q(x)y = λρ(x)y + f(x, y, y′, λ), x ∈ (0, 1), (1.1)

with boundary conditions
α0y(0)− β0y′(0) = 0, (1.2)

α1y(1) + β1y
′(1) = 0, (1.3)

where λ ∈ R is a spectral parameter, p ∈ C1 ([0, 1]; (0,+∞)), q ∈ C ([0, 1]; [0,+∞)),
r ∈ C ([0, 1];R) such that meas {x ∈ [0, 1] : σρ(x) > 0} > 0 for each σ ∈ {+, −},
αi, βi ∈ R, i = 0, 1, are constants such that |αi|+ |βi| > 0 and αiβi ≥ 0 for i = 0, 1. We
also suppose that the nonlinear term f ∈ C([0, 1]×R3;R) satisfies the following conditions:

uf(x, u, s, λ) ≤ 0; (1.4)

there exist constant M > 0 and small number σ0 > 0 such that∣∣∣∣f(x, u, s, λ)u

∣∣∣∣ ≤ K, (x, u, s, λ) ∈ [0, 1]× R3, u 6= 0, |u|+ |s| ≤ σ0. (1.5)

It is known that almost all processes occurring in nature are described by nonlinear dif-
ferential equations with the corresponding initial and boundary conditions. For this reason,
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the study of such problems is important and necessary. It should be noted that the nonlinear
Sturm-Liouville eigenvalue problems arise in many applications, for example, the problem
(1.1)-(1.3) with indefinite weight arise from population modeling. In this model, weight
function changes sign corresponding to the fact that the intrinsic population growth rate is
positive at same points and is negative at others, for details, see [8, 10].

The nonlinear eigenvalue problem (1.1)-(1.3) in the case when ρ > 0 in a more general
boundary conditions was considered in [7, 13, 14]. In these papers prove the existence of
unbounded continua of nontrivial solutions in R×C1 bifurcating from points and intervals
of the line of trivial solutions corresponding to the eigenvalues of the linear problem ob-
tained from (1.1)-(1.3) by setting f ≡ 0. Similar results in nonlinear eigenvalue problems
for elliptic partial differential equations and for ordinary differential equations of fourth
order with definite and indefinite weight functions were obtained in [1-4, 7, 12-15].

Problem (1.1)-(1.3) in the case when nonlinear term f satisfies o(|u| + |u′|) condition
near (u, u′) = (0, 0) was investigated in a paper [6] where we show that there existence
of global continua of nontrivial solutions in R × C1 bifurcating from points of the line of
trivial solutions corresponding to the all eigenvalues of the linear problem (1.1)-(1.3) with
f ≡ 0.

The nonlinear problem (1.1)-(1.3) was considered in a recent paper [5], where the global
bifurcation of solutions was studied only in classes of positive and negative functions. In
this case, the global continua of solutions are bifurcated from the intervals of the line of
trivial solutions corresponding to the principal eigenvalues of the linear problem (1.1)-(1.3)
with f ≡ 0. The reason for studying bifurcation of solutions only in classes of positive
and negative functions is the fact that earlier we were not able to find bifurcation intervals
corresponding to other eigenvalues of the linear problem (1.1)-(1.3) with f ≡ 0.

In the present paper we were able to find bifurcation intervals corresponding to all eigen-
values of the linear problem (1.1)-(1.3) with f ≡ 0. Moreover, we show the existence of
four families of unbounded continua of solutions of problem (1.1)-(1.3) corresponding to
the usual nodal properties and bifurcating from these intervals of the line of trivial solutions.

2 Preliminary and some properties of eigenvalues and eigenfunctions of the linear
Sturm-Liouville problems with indefinite weight

We consider the following linear eigenvalue problem which obtained from (1.1)-(1.3) by
setting f ≡ 0 {

− (p(x)y′(x))′ + q(x)y(x) = λρ(x)y(x), x ∈ (0, 1),
y ∈ B.C., (2.1)

where by B.C. we denote the set of boundary conditions (1.2), (1.3). It is a classical result
(see [11; Ch. 10]) that the eigenvalues of problem (2.1) are all real, simple and form two
unbounded sequences

0 > λ−1 > λ−2 > ... > λ−k > . . .

and
0 < λ+1 < λ+2 < ... < λ+k < . . . .

Moreover, for each k ∈ N and each σ ∈ {+, −} the eigenfunction yσk (x) corresponding to
eigenvalue λσk , has exactly k − 1 simple noda zeros in (0, 1).

Alongside the boundary-value problem (2.1) we shall consider the spectral problem{
(`y)(x)− λρ(x)y(x) = µy(x), x ∈ (0, 1),
y ∈ B.C., (2.2)
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for each fixed λ ∈ R. It is known (see [11]) that for each λ ∈ R the eigenvalues of problem
(2.2) are real, simple and form an infinitely increasing sequence

µ1(λ) < µ2(λ) < . . . < µk(λ) < . . . ;

for each k ∈ N the eigenfunction yk(x, λ) corresponding to the eigenvalue µk(λ) has k− 1
simple nodal zeros in (0, 1).

For each k ∈ N the k-th eigenvalue µk(λ), k ∈ N, of problem (2.2) can be characterized
as follows (see [9]):

µk(λ) = max
V (k−1)

min
y ∈B.C.

Rλ[y] :
1∫

0

y(x)ϕ(x)dx = 0, ϕ ∈ V (k−1)

 , (2.3)

where

Rλ[y] =

1∫
0
(y′2+ q(x)y2−λρ(x)y2)dx+N [y]

1∫
0

y2dx

,

N [y] =


α0
β0
y2(0) + α1

β1
y2(1), if β0 6= 0, β1 6= 0,

α0
β0
y2(0), if β0 = 0, β1 6= 0,

α1
β1
y2(1), if β0 6= 0, β1 = 0,

0, if β0 = β1 = 0

(2.4)

and V (k−1) denotes any set of (k−1) linearly independent functions withϕj(x) ∈ B.C., 1 ≤
j ≤ k − 1. It follows from this max-min characterization that λ ∈ R is an eigenvalue of
problem (2.1) which corresponds to an eigenfunction having k − 1 simple nodal zeros in
(0, 1), if and only if µk(λ) = 0. Note that for each k ∈ N the eigenvalue µk(λ) of problem
(2.2) and the corresponding eigenfunction yk(x, λ) are continuous functions of the param-
eter λ ∈ R.

Lemma 2.1 (see [5, Lemma 2.1]) Let yk(x, λ), k ∈ N, be an eigenfunction of (2.2) corre-
sponding to the k-th eigenvalue µk(λ). Then µk(λ) ∈ C∞(R) and

dµk(λ)

dλ
= −

1∫
0

ρ(x)y2k(x, λ) dx

1∫
0

y2k(x, λ) dx

, λ ∈ R, k ∈ N. (2.5)

Alongside the spectral problem (2.2) we consider the following linear eigenvalue prob-
lems {

(`y)(x) + ψ(x)y(x) = λρ(x)y(x), x ∈ (0, 1),
y ∈ B.C., (2.6){

(`y)(x) + ψ(x)y(x)− λρ(x)y(x) = µy(x), x ∈ (0, 1),
y ∈ B.C., (2.7)

where ψ ∈ C ([0, 1]; [0,+∞).
Let

Rλ, ψ[y] =

1∫
0

(
y′2 + q(x)y2 − λρ(x)y2 + ψ(x)y2

)
dx+N [y]

1∫
0

y2dx

. (2.8)
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Since ψ ∈ C ([0, 1]; [0,+∞)) and N [y] ≥ 0 (see (2.4)), it follows from (2.3) that

0 ≤ µk, ψ(λ)− µk(λ) ≤Mψ, (2.9)

where µk, ψ(λ) is the k-th eigenvalue of the spectral problem (2.7) and Mψ = sup
x∈[0,1]

ψ(x).

It is obvious that for each k ∈ N the eigenvalues λ+k,ψ and λ−k,ψ of problem (2.6) are
positive and negative zeros of function µk, ψ(λ) respectively.

Multiplying both sides of equation in (2.1) by y(x), integrating the resulting equality in
the range from 0 to 1, using the formula for integration by parts, and by taking into account
the boundary conditions (1.2) and (1.3), we obtain

1∫
0

(
y′2 + q(x)y2

)
dx+N [y] = λ

1∫
0

ρ(x)y2dx.

Consequently, for each k ∈ N we have

1∫
0

ρ(x)(y+k (x))
2dx > 0 and

1∫
0

ρ(x)(y−k (x))
2dx < 0. (2.10)

Then it follows from (2.5) that the function µk(λ) (µk, ψ(λ)) decreases in the interval
(0,+∞) and increases in the interval (−∞, 0).

By λ+k,Mψ
and λ−k,Mψ

, k ∈ N, we denote the kth positive and negative eigenvalues of the
following spectral problem{

(`y)(x) +Mψy(x) = λρ(x)y(x), x ∈ (0, 1),
y ∈ B.C. (2.11)

Thus, by the above reasoning, we are convinced of the validity of the following lemma.

Lemma 2.2 The following relations hold:

λ+k ≤ λ
+
k, ψ ≤ λ

+
k,Mψ

, λ−k,Mψ
≤ λ−k, ψ ≤ λ

−
k . (2.12)

Remark 2.1 Since the class of continuous functions C[0, 1] is dense in L1[0, 1] relations in
(2.12) hold for ψ ∈ L1[0, 1].

3 Global bifurcation from zeros of solutions of the nonlinear eigenvalue problem
(1.1)-(1.3)

Let E = C1[0, 1] ∩B.C. be a Banach space with the usual norm ||u||1 = ||u||∞ + ||u′||∞,
where ||u||∞ = max

x∈[0,1]
|u(x)|.

By Sσ, νk , σ, ν ∈ {+, −}, we denote the set of functions u ∈ E satisfying the following
conditions:

(i) the function u has exactly k − 1 simple zeros in (0, 1), all zeros of u in [0, 1] being
nodal;

(ii) σ
1∫
0

ρ(x)u2(x)dx > 0;

(iii) the function νu is positive in a deleted neighborhood of 0.
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Let Sk, σ = Sσ,+k ∪ Sσ,−k , k ∈ N, σ ∈ {+, −}. It follows from the definition of the sets
Sσ, νk and Sk, σ, k ∈ N, σ, ν ∈ {+, −}, that these sets are open sets in E and Sσ, νk ∩S%, θm =
∅, Sk, σ ∩ Sm, % = ∅, where (k, σ, ν) 6= (m, %, θ), (k, σ) 6= (m, %), respectively. Moreover,

if u ∈ ∂Sk, σ, then either
1∫
0

ρ(x)u2(x) dx = 0 or the function u has a double zero in [0, 1] .

We say that (λ, 0) ∈ R×{0} is a bifurcation point of problem (1.1)-(1.3) with respect to
the set R×Sσ, νk (R×Sk, σ) if there exists a sequence {(λn, un)}∞n=1 ∈ R×Sσ, νk (R×Sk, σ)
of solutions of this problem such that λn → λ and un → 0 as n→∞ (see [2]).

We denote by C the closure in R × E of the set of nontrivial solutions of (1.1)-(1.3).
It follows from Theorem 2.1 that yσk ∈ Sk,σ for each k ∈ N and each σ ∈ {+, −},
where yσk is an eigenfunction corresponding to the eigenvalue λσk of problem (2.1). Hence
yσk , σ ∈ {+,−}, is made unique by requiring that yσk ∈ S

+, σ
k and ||yσk ||1 = 1.

Lemma 3.1 (see [5, Lemma 3.1]) If (λ, y) ∈ R × E is a solution of (1.1)-(1.3) such that
y ∈ ∂Sσ, νk , k ∈ N, σ, ν ∈ {+ , −}, then y ≡ 0.

Alongside the problem (1.1)-(1.3) we introduce the approximate problem{
`y(x) = λρ(x)y(x) + f(x, |y|εy, y′, λ), x ∈ (0, 1),
y ∈ B.C., (3.1)

where ε ∈ (0, 1].
By (1.3) it follows that

f(x, |u|εu, v, λ) = o (|u|+ |s|) as |u|+ |s| → 0,

uniformly in x ∈ [0, 1] and λ ∈ R. Hence by [1, Theorem 2] for each k ∈ N, each σ ∈
{+ , −} and each ν ∈ {+ , −} there exists an unbounded continua Dσ, ν

k of solutions of
problem (3.1) such that

(λσk , 0) ∈ D
σ, ν
k ⊂ (R× Sσ, νk ) ∪ (λσk , 0). (3.2)

Remark 3.1 If (λ, y) ∈ Dν,+
k , then it follows from (1.4) that λ > 0, and if (λ, y) ∈ Dν,−

k ,
then, λ < 0.

Lemma 3.2 For each k ∈ N, each ν ∈ {+ , −}, each σ ∈ {+ , −} and for every 0 < r <
τ0 problem (1.1)-(1.3) has a solution (λσ,νk,r , y

σ,ν
k,r ) such that

λσ,νk,r ∈ I
σ
k , y

σ,ν
k,r ∈ S

σ, ν
k and ||yσ,νk,r ||1 = r,

where
I+k = [λ+k , λ

+
k,M ], I−k = [λ−k,M , λ

−
k ].

The proof of this lemma is similar to that of [5, Lemma 3.2] by the use of Lemmas 2.2,
3.1 and Remarks 2.1, 3.1.

Corollary 3.1 For each σ ∈ {+ , −} and each ν ∈ {+ , −} the set of bifurcation points of
nonlinear eigenvalue problem (1.1)-(1.3) with respect to the set Sσ,νk , k ∈ N, is nonempty.
Moreover, if (λ, 0) is a bifurcation point of problem (1.1)-(1.3) with respect to Sσ,νk , then
λ ∈ Iσk .
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For each k ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} we define the set D̂σ,ν
k ⊂ C

to be the union of all the connected components Dσ,ν
k, λ of the set of solutions of problem

(1.1)-(1.3) bifurcating from points (λ, 0) ∈ Iσk × 0 with respect to the set Sσ,νk . By virtue
of Corollary 3.1 for each σ ∈ {+ , −} and each ν ∈ {+ , −} the sets D̃σ,ν

k , k ∈ N, are
nonempty. The set D̂σ,ν

k , k ∈ N, may not be connected in R×E. But it can be seen that the
set Dσ,ν

k = D̃σ,ν
k ∪ (Iσk × {0}), k ∈ N, is connected in R× E.

Theorem 3.1 For each k ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} the connected set
Dσ, ν
k ⊂ C is unbounded in R× E and lies in R× Sσ,νk .

The proof of this theorem can be proved in accordance with the scheme of the proof of
Theorem 1 in [7], by the use of Lemmas 3.1, 3.2, Remarks 2.1, 3.1 and (3.2).

Theorem 3.2 Suppose the condition (1.4) holds for any (x, u, s, λ) ∈ [0, 1]×R3 such that
u 6= 0. Then for each k ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} the connected
component Dσ, ν

k ⊂ C is unbounded in R× E and lies in Iσk × S
σ,ν
k .

Proof. If (λ, y) ∈ R × Sσ,νk is a solution of problem (1.1)-(1.3), then (λ, y) is also a
solution of the following linear eigenvalue problem (2.6), where

ψ(x) =

{
−f(x,y(x),y′(x),λ)

y(x) if y(x) 6= 0,

0 if y(x) = 0.
(3.3)

By virtue of conditions (1.4) and (1.5) it follows from relation (3.2) that

ψ(x) ≥ 0 and |ψ(x)| ≤M for x ∈ [0, 1].

If y ∈ S+,ν
k , then from Theorem 1 implies that λ is a k-th positive eigenvalue of problem

(2.6), and if y ∈ S−,νk , then λ is a k-th negative eigenvalue of this problem. Thus if y ∈
Sσ,,νk , then it follows from Lemma 2.2 that λ ∈ Iσk . Then the statement of this theorem
follows from Theorem 3.1. The proof of Theorem 3.2 is complete.
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