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Abstract. In this paper the behavior of solutions of the initial-boundary problem of nonlinear degener-
ated parabolic equations of higer order in irregular domains and removability of singularity on boundary
are studied. Analogies of those known as Saint-Venant’s principle in theory of elasticity are obtained.
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1 Introduction

The Saint-Venant’s principle is well-known in theory of elasticity. In many papers analo-
gies of Saint-Venant’s principle is used for investigation of the behavior of solutions partial
differential equations. The analogies of Saint-Venant’s principle are some of energy estima-
tions for partial differential equations.

This method firstly is used in [1,2] and energy estimations for generalized solutions of
second order linear equations were studied. We mention also papers [3–27].

Later in [3,4,14] quality properties of solutions nonlinear equations are investigated – a
method was devoloped for obtaining ”increasing lemma” depending on the geometry of a
domain. Otherwise these ”increasing lemma” are energy apriori estimates of type of Saint-
Venant’s principle.

In the study of quality properties of solutions of problems the role of the Saint-Venant’s
estimates is close to role of ”increasing lemmas” of E.M. Landis [14] in analysis of proper-
ties continuously solutions of second order equations.

These estimates of type of Saint-Venant’s principle allow us to study the behavior of
solution in bounded domains with nonsmooth boundary, the behavior of solution in un-
bounded domains. The last gives of type of the Phragmén-Lindelöf theorems for behavior
of solution in unbounded domains with noncompact boundary are obtained.
? Corresponding author

T.S. Gadjiev
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Az-1141, V. Bahabzade 9, Baku, Azerbaijan
E-mail: tgadiev@mail.az

K. Mamedova
Nakhchivan State University, Nakhchivan, Azerbaijan
E-mail: tgadiev@mail.az



2 The behavior of solutions of nonlinear ...

The Saint-Venant’s estimates also allow us to get uniqueness theorems of generalized
solutions.

With help of the Saint-Venant’s estimates we can also get some theorems about remov-
ability singularity on baundary.

Therefore, it is very important to obtain Saint-Venant’s estimates based on the geometry
of domains.

We investigate equations in bounded domains with nonsmooth boundary, in unbounded
domains with noncompact boundaries, also removable singularity at boundary.

2 The behavior of solutions in domains with nonsmooth boundary

Let us consider bounded domain QT = Ω × (0, T ), Ω ⊂ Rn, n ≥ 2, 0 < T < ∞,
∂QT = Γ0 ∪ ΓT ∪ Γ , Γ0 = Ω × {0}, ΓT = Ω × {T}, Γ = ∂Ω × (0, T ), Ω– has a
nonsmooth boundary. Nonsmoothness conditions will be given using a nonlinear frequency.
Using a nonlinear frequency non-smooth domains are divided into two classes: narrow and
wide domains.

The space Lp(0, T,Wm
q,ω(Ωt)) is determined as

{
u(x, t) :

T∫
0

(
‖u‖Wm

q,ω(Ωt)

)p
dt <∞

}
,

whereΩt = QT ∩{(x, τ) : τ = t} andWm
q,ω(Ωt)- weighted Sobolev space such that weight

ω belongs to the Muckenhoupt class (see [8]). The generalized solution is determined from
the space Lp(0, T,Wm

q,ω(Ωt)) ∩W 1
2 (0, T ;L2(Ω)).

We consider initial-boundary problem

∂u

∂t
−
∑
|α|≤2m

(−1)|α|DαAα (x, t, u,Du, . . . ,D
m
x u) = 0, (2.1)

u|t=0 = 0 (2.2)

Dα
xu |Γ = 0, |α| ≤ m− 1, (2.3)

where Dα
x = ∂|α|

∂x
α1
1 ···∂x

αn
n

, |α| = α1 + α2 + . . .+ αn, n ≥ 1.

Assume that the coefficients Aα (x, t, ξ) are measurable with respect to (x, t) ∈ QT ,
continuously with respect to ξ ∈ RM , where M is the number of different multi-indices of
length no more than m and satisfying the conditions∑

|α|≤m

Aα (x, t, ξ) ξ
m
α ≥ C ω (x) |ξm|p − C1ω (x)

m−1∑
i=1

|ξi|p − f1(x, t) (2.4)

|Aα (x, t, ξ)| ≤ C2 ω (x)
m∑
i=0

|ξi|p + f2(x, t), (2.5)

where ξ =
(
ξ0, ..., ξm

)
, ξi =

(
ξiα
)
, |α| = i, p > 1,

f1 ∈ Lp (0, T, Lp,loc (Ωt)) ,

f2 ∈ L1,loc (ΩT ) .

The space Wm
q,ω (Ωt) is the closure of Ωt the functions from Cm

(
Ω
)

with respect to the
norm

‖u‖Wm
q,ω(Ωt)

=

∫
Ωt

ω (x)
∑
|α|≤m

|Dα
xu(x, t)|

q dxdt

1/q

.
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Now we describe the geometry of QT with nonlinear frequency λpp(r, τ) of section
σ(r, τ) = S(r) ∩ Ωτ , where S(r) = QT ∩ ∂QT (r), QT (r) = QT ∩ Br × (0, T ), Br =
B(0, r) is the ball with radius r centered at 0. Thus

λpp(r, τ) = inf

 ∫
σ(r,τ)

ω(x)|∇sv|pdτ


 ∫
σ(r,τ)

ω(x)|v|pdτ


−1

,

where the lower bound is taken by all continuously differentiable functions in the vicinity of
σ(r, τ) that vanish on ∂QT ;∇sv(x) is a projection of the vector∇v(x) on a tangential plane

to σ(r, τ) at the point x. The function u ∈ Lp(0, T ;
◦
Wm

p,ω,loc(Ωt))∩W 1
2 (0, T ;L2,loc(Ωt))

is said to be a generalized solution of the problem (2.1)-(2.2) if the integral identity∫
QT

∂u

∂t
ϕdxdt+

∫
QT

∑
|α|≤m

Aα(x, t, u,Du, . . . ,D
mu)Dαϕdxdt = 0 (2.6)

is fulfilled for the arbitrary function ϕ ∈ Lp(0, T ;
◦
Wm

p,ω,loc(Ωt)) ∩ L2(QT ).
Generally we will consider classes of domains, for which the following estimate∫

Sr

ω(x)|u(x, t)|pdxdt ≤ λ−pp (r)

∫
Sr

ω(x)|∇u(x, t)|pdxdt (2.7)

holds. The necessary and sufficiently conditions on domains for holds estimate (2.7) is given
in [9]. Using a nonlinear frequency we divide non-smooth domains into two classes:

1. The first class is the narrow domain class, i.d. complement of neighborhood of a point
is sufficiently massive. For example, this class contains some cone with a vertex at this
point. In terms of nonlinear frequency this class of domains satisfies the condition

rλp(r) > d1 > 0,∀r ∈ (0, r0), r0 > 0. (A)

2. The second class is the broad domain class, i.d. those points, whose complement of
neighborhood of a point is rather narrow. In terms of the nonlinear frequency, this class
of regions satisfies the condition

rλp(r) < d2 <∞, ∀r ∈ (0, r0). (B)

Also the function ϕ(r) is determined at (0, r0) by inequality

inf
rψ(r)<|x|<r

λp(|x|)(r − rψ(r))ω(x) ≥ µ > 0, (2.8)

where 0 < 1− c0 < µ < 1.
Let

J(r) =

∫
Ωr

ω(x)|Dmu(x, t)|pdxdt,

G(r) =

∫
Ωr

( ∑
|α|≤m

ω(x)
(
|Fα(x, t)|+ |f2(x, t)|

) p
q λ
−m−|α|

p−1
p

p (|x|) + |f1(x, t)|
)
dxdt.

As mentioned above, Saint-Venant type estimates are needed first to get the required esti-
mates. Further using various lemmas we get estimates in bounded domains with non-smooth
boundary, in unbounded domains with noncompact boundary and removable singularity
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on boundary in bounded domains. In unbounded domains we get theorems of Phragmén-
Lindelöf type.

Therefore, we give the following lemma for the case of bounded domains.
Let 0 < ϕ1(r) < c0 < 1 be a measurable function on interval (0, r0) and r0 sufficiently

small.

Lemma 2.1 Assume that J(r) is a continuous nondecreasing function on (0, r0) and satis-
fies the inequality

J(r(1− ϕ1(r))) ≤ λJ(r) + h(r), ∀r ∈ (0, r0),

where 0 < λ < 1 and h(r) is bounded.
Then the estimation

J(r) ≤ C exp

−δ ln 1

λ

r0∫
r

dτ

τϕ1(τ)

 (J(r0) + h(r0)) (2.9)

is valid for J(r). Here 0 < δ < 1− c0.

The proof of this lemma can be found in [3,4,11].
We define a function ψ(r) on (0, r0) by the inequlaity

inf
rψ(r)<|x|<r

λp(|x|)(r − rψ(r))ω(x) ≥ µ > 0, (2.10)

where µ is such that 0 < 1− c0 < ψ(r) < 1.

Theorem 2.1 Let u ∈ Lp(0, T ;
◦
W

m

p,ω,loc(Ωt)) ∩W 1
2 (0, T ;L2(ΩT )) be the generalized so-

lution of problem (2.1)-(2.3). Assume that coefficients satisfy the conditions (2.4) and (2.5),
the domain satisfies the condition (A), the weight satisfies the Muckenhoupt condition, the
function ψ(r) satisfies condition (2.10) and G(r) is bounded.

Then for J(r) the following estimate holds

J

(
r exp

(
− 1− ψ(r)
1− c0 − θ

))
≤ C exp

−θ ln 1

ν

r0∫
r

dτ

τ1− ψ(r)

 (J(r0) +G(r0))

(2.11)
for every ν > 0 and θ < 1− c0.

Proof. This theorem is Saint -Venant’s type estimate. For proof we substitute special test
functions to integral identity (2.6) and do some calculations (see also [4]).

Corollary 2.1 This estimate is new in the case of linear equations of following type

∂u

∂t
−
∑
|α|≤m

aα(x, t)D
αu =

∑
|α|≤m

DαFα(x, t),

c1ω(x) |ξ|2m ≤
∑
|α|=m

aαξ
α ≤ c2ω(x) |ξ|2m, x ∈ Ω, ξ ∈ Rn,

c1, c2 > 0, Fα ∈ L2(Ωt), aα ∈ C |α|−m(QT ) at |α| > m and aα(x, t) is a measurable
function such that |α| ≤ m.
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Corollary 2.2 Let u ∈ Lp(0, T ;
◦
W

m

p,ω,loc(Ωt))∩W 1
2 (0, T ;L2(Ωt)) be generalized solution

of problem (2.1)-(2.3) and 0 ∈ ∂Ω. The domain Ω in the neighborhood of the point has a
boundary such that λp(r) > λ(0)r−1 for any r ∈ (0, r0), λ

(0) > 0. Then there exists
γ0 > 0 such that if for G(r) the following estimate holds

G(r) ≤ Crγ0+εG(r0), ∀r ∈ (0, r0)

for sufficiently small ε, the following estimate holds

ω (x)
∣∣Dju(x, t)

∣∣ ≤ C |x|m−np−j+γ0 (J(r) +G(r))
1
p , (2.12)

j = 0, 1, ...,
[
m− n

p

]
.

The proof of this corollary follows from estimate (2.11) and embedding theorems.

3 The removable singularity of solutions

First we state an auxiliary lemma.

Lemma 3.1 Let I(r) be a non-negative and non-growing function on interval (0, r0), r0 >
0, function satisfying condition

I(r) ≤ θI(rε(r)) +G(rε(r)), 0 < θ < 1, (3.1)

where ε(r) is a measurable function, 0 < c0 < ε(r) < 1 such that

k(r) = (ϕ(r))−1 inf
rε(r)<τ<r

ϕ(τ) ≥ ν > 0, ϕ(r) ≡ 1− ε(r) (3.2)

and function G(r) is a measurable and locally bounded.
Then the following holds:

1) I(ri) < cG(ri) for some sequence ri → 0;
2) or I(r) is growing fast enough as r → 0, namely

I(r) ≥ C exp

ln(θ + δ)−1
r0∫
r

dτ

τ(1− ε(r))

 I(r0), (3.3)

where 0 < δ < 1− θ.

See [10] for the proof of this lemma.
We will define

I(r) =

∫
Ω\Ωr

ω(x) |Dmu|p dxdt.

For small r, for the behavior I(r) following theorem holds. This theorem gives apriori
estimates of energy integrals.

Theorem 3.1 Let u ∈ Lp(0, T ;
◦
W

m

p,ω,loc(Ω,Γ ))∩W 1
2 (0, T ;L2(ΩT )) be generalized solu-

tion of problem (2.1)-(2.3). Assume that coefficients satisfy the conditions (2.4) and (2.5),
the domain satisfies the condition (A), the weight satisfies the Muckenhoupt condition, the
function ψ(r) satisfies condition (2.10) and k(r) satisfies condition (3.2). Then for I(r) the
following holds:
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1) I(ri) ≤ c(1 +G(ri)) for some sequence ri → 0;
2) or I(r) is growing fast enough as r → 0, namely

I(r) ≤ C exp
(
ln

1

k0 + δ

r0∫
r

dτ

τψ(r)

)
, (3.4)

where k0 = const.

Also the following theorem holds.

Theorem 3.2 Let u ∈ Lp(0, T ;
◦
W

m

p,ω,loc(Ω,Γ ))∩W 1
2 (0, T ;L2(ΩT )) be generalized solu-

tion of problem (2.1)-(2.3). In the conditions of Theorem 3.1 the following inequality holds

I(r) ≤ C exp

−c r0∫
r

ψ(τ)τ−1

1 + ψ(τ)
dτ

 , ∀r < r0. (3.5)

Then singularity set Γ of solution u(x, t) removable, i.d. u ∈ Lp(0, T ;
◦
Wm

p,ω(Ω)) ∩
W 1

2 (0, T ;L2(Ω)).

The proof of Theorems 3.1 and 3.2 similarly to correspondingly theorems from [4,10,11].
These theorems generalize the corresponding results in [12,14,16–19].

4 The behavior solutions in unbounded domains. Theorem of types
Phragmén-Lindelöf

Now we consider unbounded domains. First we define a measurable function ψ(r) : 1 <
ψ(r) < ∞, ∀r > r0 > 0 and ϕ0 is continuous, non-growing function such that ϕ0(r) ≥
r−1 sup(h(r))−1 at r > r0. Here the upper bound is taken over all non-decreasing function
h(r) : h(r) ≤ rψ(r) at r0 < r <∞.

Lemma 4.1 Assume that on (r0,∞) non-negative, continuous function I(r) satisfies in-
equality

I(r) ≤ θI(rψ(r)), ψ(r) = 1 + ϕ0(r) (4.1)

for all r ∈ (r0,∞) and 0 < θ < 1. Then for any r ∈ (r0,∞) the following estimate holds

I

(
r exp

(
−ϕ0(r)

1− ν

))
≥ θ exp

ν ln θ−1 r∫
r0

dτ

τϕ0(τ)

 I(r0) (4.2)

for all ν ∈ (0, 1).

The proof of Lemma 4.1 is similar to the proof of the corresponding result in [11].
The unbounded domains which satisfy isoperimetric conditions divided into two classes,

depending on behavior nonlinear frequency function λp(r) at r →∞. First class is narrow
domains and in our terms this condition is

rλp(r) > c > 0, ∀r > r0 > 0. (A1)

Second class is wide domains and in our terms this condition is

rλp(r) ≤ c <∞,∀r > r0 > 0. (B1)
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Also we define the function ψ(r) for h0 > 0 by inequality

inf
r<τ<rψ(r)

rλp (τ) (ψ(r)− 1) ≥ h0, ψ(r) > 1, ∀r > r0. (4.3)

Let
J(r) =

∫
Ωr

ω (x) |Dmu(x, t)|p dxdt,

G(r) =

∫
Ωr

( ∑
|α|≤m

(|Fα(x, t)|+ |f2(x, t)|)
p
p−1 λ

−m−|α|
p−1

p
p (|x|) + |f1(x, t)|

)
dxdt.

The following theorem is true.

Theorem 4.1 Let u ∈ Lp(0, T ;
◦
W

m

p,ω(x),loc(Ωt))∩W 1
2 (0, T ;L2(ΩT )) be generalized solu-

tion of problem (2.1)-(2.3), ω(x) be in Muckenhoupt classes. Assume that coefficients sat-
isfy the conditions (2.4) and (2.5). Moreover domain Ω is narrow enough in the sense that
λp(r) > δ−1 at (r0,∞). Let ψ(r) be any function which satisfy condition (4.3) and ϕ0(r)
be the function under construction by ψ(r) as in Lemma 4.1. Then for J(r) the following
hold:

1.

lim
r→∞

J(r)

G(r)
<∞; (4.4)

2. Or

J
(
r exp

(ϕ0(r)

1− ν

))
≥ θ exp

(
ν ln

1

θ

r∫
r0

dτ

τϕ0(τ)

)
J
(
r0
)

(4.5)

for all ν ∈ (0, 1) and for all r > r0 at big enough r0.

The proof of Theorem 4.1 is similar the proof of the corresponding result in [11].

Corollary 4.1 This is Phragmén-Lindelöf type theorem. Also we can give this type theorems
for wide classes of domains and for integrals of functions.

Corollary 4.2 Many examples can be given showing the sharpness of the results obtained
in different domains.
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