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Abstract. The operator-valued Fourier multiplier theorems in E-valued weighted Lebesgue
and Besov spaces are studied. These results permit us to show embedding theorems in
weighted Besov-Lions type spaces Bl,sp,q,γ (Ω;E0, E), where E0, E are two Banach spaces
and E0 ⊂ E. The most regular class of interpolation space Eα, between E0 and E are
found such that the mixed differential operator Dα is bounded from Bl,sp,q,γ (Ω;E0, E) to
Bsp,q,γ (Ω;Eα) and Ehrling-Nirenberg-Gagliardo type sharp estimates are established. By
using these results the Bsp,q,γ−separability properties of degenerate differential operators
are studied.
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1 Introduction

Fourier multipliers in vector-valued function spaces has been studied e.g. in [12], [17],
[28], [31]. Operator-valued Fourier multipliers in abstract function spaces have been
investigated in [1], [8− 11], [13]. Mikhlin type Fourier multipliers in scalar weighted
spaces have been studied e.g. in [14] and [30]. Moreover, operator-valued Fourier
multipliers in weighted abstract Lp spaces were investigated e.g. in [2], [7], [13],
[16]. Regularity properties of abstract differential equations have been studied e.g.
in [1], [3], [9], [21− 26], [30]. A comprehensive introduction to DOEs and historical
references may be found in [1] and [30] .

In the paper operator-valued multiplier theorems in E−valued Besov space

X = Bs
p,q,γ (Rn;E)

are shown. Then we consider the E−valued anisotropic Sobolev-Besov spaces

Y = Bl,s
p,q,γ (Ω;E0, E) ,

here E0, E are two Banach spaces, E0 is continuously and densely embedded into
E, and γ = γ(x) is a weighted function from Ap, p ∈ (1,∞) class. We prove the
boundedness and compactness of embedding operators in these spaces. This re-
sult generalized and improved the results [4, § 9, 27, § 1.7] for scalar Sobolev space,
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the result [15] for one dimensional Sobolev-Lions spaces and the results [22, 23] for
Hilbert-space valued class. Finally, we consider anisotropic abstract elliptic equation

Lu =
∑
|α:l|=1

aαD
αu+Au+

∑
|α:l|<1

AαD
αu = f, (1.1)

where aα are complex numbers, A, Aα(x) are linear operators in a Banach space
E. Here, l = (l1, l2, ..., ln), α = (α1, α2, ..., αn), lk, αk are integer numbers and

|α : l| =
n∑
k=1

αk
lk

.

We say that the problem (1.1) is X−separable, if there exists a unique solution
u ∈ Y of the problem (1.1) for all f ∈ X and there exists a positive constant C
independent of f such that the following coercive estimate holds∑

|α:l|≤1

‖Dαu‖X + ‖Au‖X ≤ C ‖f‖X . (1.2)

The estimate (1.2) implies that if f ∈ X and u is a solution of (1.1), then all
terms of the equation (1.1) belong to X (i.e. all terms are separable in X).

The paper is organized as follows. In Section 2 the necessary tools from Banach
space theory and some background materials are given. In Sections 3-5 the mul-
tiplier theorems in vector-valued weighted Lebesgue and Besov spaces are proved.
In Section 6 by using these multiplier theorems, embedding theorems in weighted
abstract Besov spaces are shown. Finally, in Section 7 the separability properties of
problem (1.1) is established.

2 Notations and background

Let E be a Banach space and γ = γ(x), x = (x1, x2, ..., xn) be a positive measurable
function on the measurable subset Ω ⊂ Rn. Let Lp,γ (Ω;E) denote the space of
strongly measurable E−valued functions that are defined on Ω with the norm

‖f‖Lp,γ = ‖f‖Lp,γ(Ω;E) =

(∫
Ω
‖f (x)‖pE γ(x)dx

) 1
p

, 1 ≤ p <∞,

‖f‖L∞,γ(Ω;E) = ess sup
x∈Ω

‖f(x)‖E γ(x), p =∞.

For γ(x) ≡ 1, the space Lp,γ (Ω;E) will be denoted by Lp = Lp (Ω;E) .
The weight γ is said to be satisfy an Ap condition [18], i.e., γ ∈ Ap, 1 < p <∞

if there is a positive constant C such that(
1

|Q|

∫
Q
γ (x) dx

)(
1

|Q|

∫
Q
γ
− 1
p−1 (x)dx

)p−1
≤ C,

for all rectangles Q ⊂ Rn.
The Banach space E is called a UMD-space and written as E ∈ UMD if only if

the Hilbert operator

(Hf) (x) = lim
ε→0

∫
|x−y|>ε

f (y)

x− y
dy
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is bounded in the space Lp (R, E), p ∈ (1,∞) (see e.g. [6]). UMD spaces include e.g.
Lp, lp spaces and Lorentz spaces Lpq, p, q ∈ (1,∞). Let C be the set of complex
numbers and

Sϕ = {ξ; ξ ∈ C, |arg ξ| ≤ ϕ} ∪ {0} , 0 ≤ ϕ < π.

Let E1 and E2 be two Banach spaces. We denote that the space of linear bounded
operators from E1 to E2 by L (E1, E2). For E1 = E2 = E it will be denoted by
L(E). A linear operator A is said to be positive in E, with bound M if D (A) is
dense on E and ∥∥∥(A+ ξI)−1

∥∥∥
L(E)

≤M (1 + |ξ|)−1

with ξ ∈ Sϕ, ϕ ∈ [0, π), where M is a positive constant and I is an identity operator
in E. Sometimes instead of A+ ξI will be written A+ ξ and it is denoted by Aξ. It

is known [28, §1.15.1] there exist fractional powers Aθof the positive operator A.
Definition 2.1. A positive operator A is said to be R−positive in a Banach

space E if there exists ϕ ∈ [0, π) such that the set{
(ξ) (A+ ξI)−1 : ξ ∈ Sϕ

}
is R−bounded (see e.g. [9]).

We denote the space of compact operators in E by σ∞(E). Let E
(
Aθ
)

denote

the space D
(
Aθ
)

with the graphical norm defined as

‖u‖E(Aθ) =
(
‖u‖p +

∥∥∥Aθu∥∥∥p) 1
p

, 1 ≤ p <∞, −∞ < θ <∞.

By (E1, E2)θ,p will be denoted interpolation spaces obtained from {E1, E2} by the

K−method [28, §1.3.1], where θ ∈ (0, 1), p ∈ [0, 1]. We denote by D (Rn;E) the
space of E−valued C∞− function with compact support, equipped with the usual
inductive limit topology and S(E) = S (Rn;E) denote the E−valued Schwartz space
of rapidly decreasing, smooth functions. For E = C we will denoted their D (Rn) and
S = S (Rn), respectively. D′ (Rn;E) = L (D (Rn) , E) denote the space of E−valued
distributions and S′(E) = S′ (Rn;E) is a space of linear continued mapping from
S (Rn) into E. The Fourier transform for u ∈ S′ (Rn;E) is defined by

F (u) (ϕ) = u (F (ϕ)) , ϕ ∈ S (Rn) .

Let γ be such that S (Rn;E1) is dense in Lp,γ (Rn;E1). A function Ψ ∈ C(l) (Rn;L (E1, E2))
is called a multiplier from Lp,γ (Rn;E1) to Lq,γ (Rn;E2) if there exists a positive con-
stant C such that ∥∥F−1Ψ(ξ)Fu

∥∥
Lq,γ(Rn;E2)

≤ C ‖u‖Lp,γ(Rn;E1)

for all u ∈ S (Rn;E1).
In a similar way, we can define the multiplier fromBs

p,q,γ (Rn;E1) toBs
p,q,γ (Rn;E2).

We denote the set of all multipliers fromBs
p,q,γ (Rn;E1) toBs

p,q,γ (Rn;E2) byM s,γ
p,q,γ (E1, E2).

For E1 = E2 = E we denote M s,γ
p,p,γ (E1, E2) by M s,γ

p,q,γ(E).
Definition 2.2. Let γ ∈ Aq for q ∈ [1,∞]. Assume that E is a Banach space and

p ∈ [1, 2]. Suppose that there exists a positive constant C0 = C0 (p, γ, E) so that

‖Fu‖Lp′,γ′ (Rn;E) ≤ C0 ‖Fu‖Lp,γ(Rn;E) (2.1)
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for 1
p + 1

p′ = 1, γ′(·) = γ
− 1
p−1 (·) and each u ∈ S (Rn;E). Then E is called weighted

Fourier type γ and p. It is called Fourier type p ∈ [1, 2] if γ (x) ≡ 1(see e.g [19])..
Remark 2.1. The estimate (2.1) shows that each Banach space E has weighted

Fourier type γ and 1. By Bourgain [6] has shown that each B−convex Banach
space (thus, in particular, each uniformly convex Banach space) has some non-trivial
Fourier type p ∈ [1, 2], i.e. UMD spaces are Fourier type for some p ∈ [1, 2] .

In order to define abstract Besov spaces we consider the dyadic-like subsets
{Jk}∞k=0 , {Ik}

∞
k=0 of Rn and partition of unity {ϕk}∞k=0 defined e.g. in [28, § 2.3.2] .

Remark 2.2. Note the following useful properties are satisfied:

supp ϕk ⊂ Īk for each k ∈ N0;
∞∑
k=0

ϕk(s) = 1 for each s ∈ Rn; Im∩ supp ϕk = ∅

if |m− k| > 1; ϕk−1(s) + ϕk (s) + ϕk+1(s) = 1 for each s ∈ supp ϕk and k ∈ N0.
Among the many equivalent descriptions of Besov spaces, the most useful one

for us is given in terms of the so called Littlewood-Paley decomposition. This means
that we consider f ∈ S′(E) as a distributional sum f =

∑
k

fk analytic functions fk

whose Fourier transforms have support in dyadic-like Ik and then define the Besov
norm in terms of the fk’s.

Definition 2.3. Let γ ∈ Aq, 1 ≤ r, q ≤ ∞ and s ∈ R. Let lr(E) denotes
E−valued sequence space [28, § 1.18].

The Besov space Y s = Bs
q,r,γ (Rn;E) is the space of all f ∈ S′ (Rn;E) for which

‖f‖Bsq,r,γ(Rn;E) =
∥∥∥{2ks (ϕ̌k ∗ f)

}∞
k=0

∥∥∥
lr(Lq,γ(Rn;E))

(2.2)

=


[ ∞∑
k=0

2ksr ‖ϕ̌k ∗ f‖rLq,γ(Rn;E)

] 1
r

<∞, if 1 ≤ r <∞,

sup
k∈N0

[ ∞∑
k=0

2ks ‖ϕ̌k ∗ f‖Lq,γ(Rn;E)

]
<∞, if r =∞.

Bs
q,r,γ (Rn;E)-together with the norm in (2.1) is a Banach space. B̊s

q,r,γ (Rn;E) is
the closure of S (Rn;E) in Bs

q,r,γ (Rn;E) with the induced norm. For E = C and
γ(x) ≡ 1 the space Bs

q,r,γ (Rn;E) states to be the usual Besov spasce (see e.g. [4],
[13]).

Let Ω be a domain in Rn. Here, Bs
q,r,γ (Ω;E) denotes the space of restrictions to

Ω of all functions in Bs = Bs
q,r,γ (Rn;E) with the norm given by

‖u‖Bsq,r,γ(Ω;E) = inf
g∈Bs,g|Ω=u

‖g‖Bsq,r,γ(Rn;E) .

Let l = (l1, l2, ..., ln), lk are positive integers, s ∈ R and 1 ≤ q, r ≤ ∞.

Here, Bl,s
q,r,γ (Ω;E) denote a E-valued Sobolev-Besov weighted space of functions

u ∈ Bs
q,θ,γ (Ω;E) that have weak derivatives Dlk

k u = ∂lk

∂x
lk
k

u ∈ Bs
q,r,γ (Ω;E) with the

norm

‖u‖
Bl,,sq,θ,γ(Ω;E)

= ‖u‖Bsq,r,γ(Ω;E) +
n∑
k=1

∥∥∥Dlk
k u
∥∥∥
Bsq,θrγ(Ω;E)

<∞.



5

Let E0 be continuously and densely belongs into E. Bl,s
q,θ,γ (Ω;E0, E) denotes the

space Bs
q,θ,γ (Ω;E0) ∩Bl,s

q,θ,γ (Ω;E) with the norm

‖u‖
Bl,sq,θ,γ

= ‖u‖
Bl,sq,θ,γ(Ω;E0,E)

= ‖u‖Bsq,θ,γ(Ω;E0)
+

n∑
k=1

∥∥∥Dlk
k u
∥∥∥
Bsq,θ,γ(Ω;E)

<∞.

Let (E(X);E∗(X∗)) be one of the pairs. There is an embedding of E∗(X∗) ⊂
[E(X)]∗ as a norming subspace for E(X). This embedding is given by the duality
map

〈., .〉E(X) : E∗(X∗)× E(X)→ C,
where

〈g, f〉Lq,γ(X) =

∫
Rn
〈g (t) , f (t)〉Xdt =

∫
Rn
g (t) f (t) dt

in weighted Lebesgue space setting with E = Lq,γ and

〈g, f〉Bsq,r,γ(X) =
∑

n,m∈N0

〈ϕ̌n ∗ g, ϕ̌m ∗ f〉Lq,γ(X) (2.3)

in Besov space setting with E = Bs
q,r,γ (X). One can check that this definition of

duality is independent of the choice of the {ϕk}∞k=0.

3 The Fourier transform in weighted Besov spaces

Let
Xq,γ = Lq,γ (Rn;E) , Bs

q,r,γ = Bs
q,r,γ(E) = Bs

q,r,γ (Rn;E) .

By applying the Hausdorff-Young inequality we get the following estimates for the
Fourier transform on Besov spaces

Theorem 3.1. Assume that γ ∈ Ap. Let E be a Banach space with weighted

Fourier type γ and p ∈ (1, 2]. Let 1 ≤ q ≤ p′ and s ≥ n
(
1
q −

1
p′

)
and 1 ≤ r ≤ ∞.

Then there exists constant C, depending only on C0 (p, γ, E) so that if f ∈ Bs
q,r,γ

then ∥∥∥{f̂χJm}∞
m=0

∥∥∥
lr(Xq,γ′)

≤ C ‖f‖Bsp,r,γ , (3.1)

where C0 (p, γ, E) is a positive constant defined in the Definition 2.1 and γ′ = γ
− 1
p−1 .

An immediate corollary of Theorem 3.1 follows by choosing for q = r = 1 and
r = q = p′ we obtain respectively

Corollary 3.1. Assume that γ ∈ Ap. Let E be a Banach space with Fourier
type γ and p ∈ (1, 2]. Then the Fourier transform F defines the following bounded
operator

F : B
n
p

p,1,γ → L1,γ′ (Rn;E) , F : B0
p,p′,γ → Lp′,γ′ (Rn;E) . (3.2)

The norms of the above maps F are bounded by a constant depending only on
C0 (n,E) .

Theorem 3.1 and Corollary 3.1 remain valid if F is replaced with F−1.
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Proof of Theorem 3.1. Let f ∈ Bs
p,r,γ . Then, for each k ∈ N0, since ϕ̌k∗f ∈ Xq,γ

and E has weighted Fourier type γ and p,

ϕk · f̂ = F (ϕ̌k ∗ f) ∈ Xp′,γ′ .

Thus by Remark 2.2,

f̂χJm =

(
m+1∑

k=m−1
ϕk · f̂

)
χJm ∈ Xq,γ′ for each m ∈ N0. (3.3)

Moreover, by Definition 2.2 we get∥∥∥ϕkf̂∥∥∥
Xp′,γ′

= ‖F (ϕ̌k ∗ f)‖Xp′,γ′ ≤ C0 ‖ϕ̌k ∗ f‖Xp,γ ,

i.e.
m+1∑

k=m−1
2ks
∥∥∥ϕkf̂∥∥∥

Xp′,γ′
≤ C0

m+1∑
k=m−1

2ks ‖ϕ̌k ∗ f‖Xp,γ . (3.4)

In view of (3.4), it suffices to show that there exists the positive constant C1 so
that the following holds∥∥∥f̂χJm∥∥∥

Xq,γ′
≤ C1

m+1∑
k=m−1

2ks
∥∥∥ϕkf̂∥∥∥

Xp′,γ′
. (3.5)

We consider the case when q 6= p′. Choose 1 ≤ σ < p, that 1
q = 1

p′ + 1
σ ; so, nσ ≤ s.

By the generalized Hölder’s inequality for each m ∈ N0,∥∥∥f̂χJm∥∥∥
Xq,γ′

≤
m+1∑

k=m−1

∥∥∥ϕkf̂χJm∥∥∥
Lq,γ(Jm;E)

(3.6)

≤
m+1∑

k=m−1

∥∥∥∥∥ϕk
(

1 + |.|
4

)n
σ

f̂γ
1
p′ (·)

∥∥∥∥∥
Lp′,γ′ (Jm;E)

∥∥∥∥∥γ 1
p

(
1 + |·|

4

)−n
σ

∥∥∥∥∥
Lσ(Jm)

≤
m+1∑

k=m−1

∥∥∥f̂ϕk∥∥∥
Lp′,γ′ (Jm;E)

∥∥∥∥∥
(

1 + |·|
4

)n
σ

χJm

∥∥∥∥∥
L∞

≤ C2

m+1∑
k=m−1

2ks
∥∥∥f̂ϕk∥∥∥

Lp′,γ′ (Jm;E)
,

where C2 is a positive constant defined by

C2 =

∥∥∥∥∥γ 1
p

(
1 + |·|

4

)−n
σ

∥∥∥∥∥
Lσ(Jm)

≤

∥∥∥∥∥
(

1 + |·|
4

)−n∥∥∥∥∥
L∞(Jm)

∥∥∥γ σp ∥∥∥
L(Jm)

≤ 4n
[

sup
m∈N0

2−(m−1)n
∫
Jm

γ
σ
p (s)ds

] 1
σ

. (3.7)

In view of γ ∈ Ap, we have

sup
m∈N0

2−(m−1)n
∫
Jm

γ
σ
p (s)ds <∞.
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For q = p′ and for each m ∈ N we get∥∥∥f̂χJm∥∥∥
Xq,γ
≤

m+1∑
k=m−1

∥∥∥ϕkf̂χJm∥∥∥
Lp′,γ′ (Jm;E)

≤
m+1∑

k=m−1
2ks
∥∥∥ϕkf̂∥∥∥

Xp′,γ′
. (3.8)

So, from (3.6)-(3.8) we obtain (3.5) .

Remark 3.1. By using the embedding W j
p,γ (Rn;E) ⊂ Bs

q,r,γ for s < j ∈ N we get

that the statement of Theorem 3.1 remains valid if Bs
q,r,γ is replaced by W j

p,γ (Rn;E).
Also, it follows from Corollary 3.1 that if E has weighted Fourier type for γ ∈ Aν ,

ν ∈ [1,∞] and j > n
p then the Fourier transform F defines bounded operator:

W j
p,γ (Rn;E)→ X1,γ′ .

Furthermore, if E has weighted Fourier type for γ ∈ Aν , ν ∈ [1,∞] and j > n
p

then there is a constant C so that

∥∥∥f̂∥∥∥
X1,γ′

≤ C ‖f‖
1− n

jp

Xp,γ

∑
|α|=j

‖Dαf‖Xp,γ

 n
jp

(3.9)

for each f ∈W j
p,γ (Rn;E) .

4 Fourier multipliers on weighted Lebesgue spaces

Let m : Rn → L (E1, E2) be a bounded measurable function. In this section, we
identify conditions on m, generalizing the classical Mikhlin condition so that the
multiplication operator induced by m, i.e. the operator: u → Tm = F−1mFu is
bounded from Lq,γ (Rn;E1) to Lq,γ (Rn;E2). We will first give rather general criteria
for Fourier multipliers in terms of the weighted Besov norm of the multiplier function;
later we derive from these results analogues of the classical Mikhlin and Hörmander
conditions. To simplify the statements of our results, we let

Mp,γ (m) = inf
a>0

{
‖m (a, .)‖

B
n
p
p,1.γ(Rn;L(E1,E2))

}
.

Let
Xk = Xq (Ek) = Lq,γ (Rn;Ek) , k = 1, 2,

X1 (L) = L1 (Rn; L (E1, E2)) , Y = B
n
p

p,1.γ (Rn;L (E1, E2)) .

First we give a multiplier result from X1 to X2 in the spirit of Steklin’s theorem.
Theorem 4.1. Assume that γ ∈ Aq for q ∈ [1,∞]. Let E1, E2 be Banach spaces

with weighted Fourier type γ and p ∈ p ∈ (1, 2]. Suppose that

Tm ∈ B
n
p

p,1,γ (Rn;L (X1, X2)) .
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Then there exists a constant C depending only on C01 (p, γ, E1) and C02 (p, γ, E2),
so that if m ∈ Y , then m is a Fourier multiplier from X1 to X2 and

‖Tm‖L(X1,X2)
≤ CMp,γ (m)

for each q ∈ [1,∞].

Let E∗ denotes the dual space of E and A∗denotes the conjugate of the operator
A.

The proof of Theorem 4.1 uses the following lemma.

Lemma 4.1. Assume that γ ∈ Aq for q ∈ [1,∞] and k ∈ X1 (L). Suppose that
there exists constants Ci so that for each x ∈ E1 and x∗ ∈ E∗2∫

Rn
‖k(s)x‖E2

ds ≤M0 ‖x‖E1
,

∫
Rn
‖k∗(s)x∗‖E∗1 ds ≤M1 ‖x∗‖E∗2 . (4.1)

Then the convolution operator K : X1 → X2 defined by

(Kf) (t) =

∫
Rn
k (t− s) f(s)ds for t ∈ Rn (4.2)

satisfies that

‖K‖L(X1,X2)
≤M

1
q

0 M
1− 1

q

1 .

Proof. Since k ∈ X1 (L) it is well-known that (4.2) defines a bounded operator
on X1. Indeed, for f ∈ X1 ∩X∞ (E1) we have∫

Rn
‖k (t− s) f(s)‖E2

ds =

∫
Rn
‖k (s) fs (t)‖E2

ds ≤ ‖k‖X1(L)
‖f‖X∞(E1)

(4.3)

for each t ∈ Rn and fs (t) = f (t− s) . From (4.3) by applying the Minkowski’s
inequality for integral with weight [20, § A.1] we get

‖Kf(·)‖X2
≤
∫
Rn
‖k(s)fs (t)‖X2

ds ≤
∫
Rn
‖k(s)‖L(E1,E2)

‖fs‖X1
ds

= ‖k‖X1(L)
‖fs‖X1

.

Now, for q = 1 we have from (4.1)

‖Kf‖X1(E1)
≤
∫
Rn

(∫
Rn
‖k (s) fs (t)‖E1

ds

)
γ (t) dt

≤M0

∫
Rn
‖f (t)‖E1

γ (t) dt = M0 ‖f‖X1(E1)
.

Hence,
‖K‖L(X1(E1))

≤M0. (4.4)

If q =∞, then for each X∞ (E1), x
∗ ∈ E∗2 and t ∈ Rn by using (4.1) we get

|〈x∗, (Kf) (t)〉E2 | ≤
∫
Rn
|〈k∗ (t− s)x∗, f(s)〉E1 | γ(s)ds
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≤
∫
Rn
‖k∗ (t− s)x∗‖E∗1 ‖f(s)‖E1

γ(s)ds ≤M1 ‖x∗‖E∗1 ‖f‖X1(E1)
.

Thus,
‖K‖L(X1(E1))

≤M1. (4.5)

Let X̄∞ (E1) denotes the closure inX∞ (E1) norm of the simple functions
m∑
k=1

xkχAk ,

where xk ∈ E1, vol Ak <∞ and m ∈ N. Then one can check that K maps X̄∞ (E1)
into X̄∞ (E1). Indeed, for f = χA, we have

Kf (t) =

∫
t−A

k(s)xds→ 0 for t→∞

and Kf is a continuous function from Rn to E2. Now, the Riesz-Thorin theorem (cf.
[5, Thm 5.1.2]) yields the claim for 1 < p <∞.

Proof of Theorem 4.1. First assume in addition that m ∈ S (L (E1, E2)).
Hence, m̌ ∈ S (L (E1, E2)). Fix x ∈ E1. For an appropriate choice of a > 0, we can

apply Corollary 3.1 to the function t→ m (at)x in B
n
p

p,1.γ (Rn;E2) and use that

F−1 [m (a.)x] (s) = a−nm̌
(s
a

)
x

to get
‖m̌(·)x‖X1(E1)

=
∥∥F−1m (a.)x

∥∥
X1(E1)

≤ C1 ‖m (a.)x‖Y ‖x‖E1
≤ 2C1Mp,γ ‖x‖E1

,

for some constant C1 which depends on C0 (p, γ, E2) .
By the additional assumption on m we get

m∗(·) ∈ S (L (E∗2 , E
∗
1)) , and F−1m∗(·) = [m̌(·)]∗ ∈ S (L (E∗2 , E

∗
1)) .

Let x∗ ∈ E∗2 . Similarly, by applying Corollary 3.1 to an appropriate function

t→ [m (at)]∗ x∗ in B
n
p

p,1.γ (Rn;E∗1)

and using the fact that Mp,γ (m) = Mp,γ (m∗), one has

‖[m̌(·)]∗ x∗‖X1(E∗1) ≤ 2C2Mp,γ (m) ‖x∗‖E∗2

for some constant C2 which depends C0 (p, γ, E∗1). By Lemma 4.1, the convolution
operator

(Tmf) (t) =

∫
Rn
m̌ (t− s) f(s)ds

satisfies
‖Tm‖B(X1,X2)

≤ CMp,γ (m) ,

where C = 2 max {C1, C2}. Furthermore, since m ∈ L1 (Rn;L (E1, E2)), then Tm
satisfies the following

Tmf = F−1m(·)f(·) for all f ∈ S (Rn;E1) , (4.6)

also
Tm ∈ C (σ (X1, X

∗
1 ) , σ (X2, X

∗
2 )) , (4.7)
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where σ (Xk, X
∗
k) denote the interpolation spaces of Xk, X

∗
k .

For the general case, let m ∈ Y . It is known that S (Rn;L (E1, E2)) is dense in Y
when γ ∈ Aν , ν ∈ [1,∞]. Now, let we choose a sequence {mn}∞n ⊂ S (Rn;L (E1, E2))
that converges to m in the Y−norm and obtain operators Tmn ∈ L (X1, X2), where

Tmnf = F−1mn(·)f(·), f ∈ X1.

It is clear to see that, the properties (4.6) and (4.7) pass from Tmn to Tm. One
also has that

‖Tm‖L(X1,X2)
≤ C ‖m‖Y .

Fix a > 0 such that m (a.) ∈ Y . Then IE2 ◦ Tm(a.) = Tm ◦ IE1 , where IZ :
Lq,γ (Rn;Z)→ Lq,γ (Rn;Z) is the isometry

T (f) (t) = a
n
q f (at) .

Thus,
‖Tm‖L(X1,X2)

=
∥∥Tm(a·)

∥∥
L(X1,X2)

≤ C ‖m‖Y ,

i.e.
‖Tm‖L(X1,X2)

≤ CMp,γ (m) .

The following remark collects some basic facts about the Fourier multiplier op-
erators Tm given in Theorem 4.1 that will be used in the proof of Theorem 4.2.

Remark 4.1. Let f ∈ X1 and let Ω be a closed subset of Rn. Then the following
are valid:

(a) Viewing f and Tmf as distributions, if supp f̂ ⊂ Ω then supp F (Tmf) ⊂ Ω;
(b) Tm1+m2 = Tm1 + Tm2 . If ϕ ∈ S, then ϕ̌ ∗ Tmf = Tm (ϕ̌ ∗ f) = Tϕm (f) ;

(c) If ϕ ∈ S is 1 on supp f̂ , then Tϕm (f) = Tm (f) ;
(d) T ∗m restricted to Lq‘,γ (Rn;E∗2) is Tm∗(−.).

5 Fourier multipliers on weighted Besov spaces

Let m : Rn → L (E1, E2) be a bounded measurable function. In this section we
identify conditions on m, generalizing the classical Mikhlin condition so that the
multiplication operator induced by m, i.e. the operator: u → Tm = F−1mFu is
bounded from Bs (E1) to Bs (E2). By applying this Theorem 4.1 to the blocks of
the Littlewood-Paley decomposition of Besov spaces we will now get the main result
of this section. Let

Yk (Ek) = Bs (Ek) = Bs
q,r,γ (Rn;Ek) , k = 1, 2.

Theorem 5.1. Assume that γ ∈ Aq for q ∈ [1,∞]. Let E1, E2 be a Banach
spaces with weighted Fourier type γ and p ∈ (1, 2]. Then there is a constant C
depending only on C01 (p, γ, E1) and C02 (p, γ, E2), so that if

ϕkm ∈ B
n
p

p,1,γ (Rn;L (X1, X2)) and Mp,γ (ϕkm) ≤ A for each k ∈ N0 (5.1)

then m is a Fourier multiplier from Y1 to Y2 and ‖Tm‖B(Y1,Y2)
≤ CA for each s ∈ R

and q, r ∈ [1,∞] .
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Proof. By properties of {ϕk} we have

Tmf = F−1mf̂ =
∑
k∈N0

F−1 [(ϕk−1 + ϕk + ϕk+1)mF [(ϕ̌k ∗ f)]]

=
∑
k∈N0

T(ϕk−1+ϕk+ϕk+1)m (ϕ̌k ∗ f) , (5.2)

where Tm is the Fourier multiplier operator on X1 given by Theorem 4.1. From
Theorem 4.1 implies that mϕk induces a Fourier multiplier operator Tm.ϕk with

‖Tm.ϕk‖L(X1,X2)
≤ CMp,γ (ϕkm) ≤ CA

for some constant C depending only on C0,1 (p, γ, E1) and C0,2 (p, γ, E2) . Let

ψk = ϕk−1 + ϕk + ϕk+1.

Note that ψk(s) ≡ 1 when s ∈ supp ϕk. Then mψk induces the Fourier multiplier
operator Tm.ψk with

Tmψk = Tmϕk−1
+ Tmϕk + Tmϕk+1

∈ B (X1, X2)

and
‖Tm.ψk‖B(X1,X2)

≤ 3CA.

Define T0: S(E1)→ S′(E1) by

T0f = F−1m(·)Ff(·).

If f ∈ S(E1), then ϕ̌k ∗ T0f = Tmψk (ϕ̌k ∗ f) for each k ∈ N0 since

F [Tmψk (ϕ̌k ∗ f)] (.) = m(·)ψk(·)F [(ϕ̌k ∗ f) (·)]

= ϕk(·)m(·)f̂(·) = ϕk(·)F (T0f) = F [(ϕ̌k ∗ T0f) (·)] .
So, by definition of the Besov norm

‖T0f‖Y2 ≤ 3CA ‖T0f‖Y1 .

Thus T0 extends to a bounded linear operator from B̊s
q,r,γ (Rn;E1) into

B̊s
q,r,γ (Rn;E2) .

If q, r < ∞ then all that would remain is to verify the weak continuity condition
(4.7). However, we continue with the proof in order to also cover the case q = ∞
or r =∞. We shall show that the operator Tm : Y1 → Y2 defined by

Tmf =

∞∑
k=1

fk, fk = Tmψk (ϕ̌k ∗ f) ∈ X2 (5.3)

is indeed a (norm) continuous operator. Fix f ∈ Y1. First, we show that the formal
series (5.3) defines an element in S′(E2). Towards this, fix ϕ ∈ S. From Remark 4.1
implies that supp fk ⊂ Īk. Thus

fk (ϕ) = f̂k (ϕ̌) = f̂k (ψk (−·) ϕ̌) = fk (ψk ∗ ϕ)
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and so by using Hölder inequality with weight γ ∈ Aq as in (3.7) we get

∞∑
k=1

‖fk (ϕ)‖E2
≤
∞∑
k=1

‖fk‖X2

∥∥∥γ− 1
q (ψk ∗ ϕ)

∥∥∥
Lq′ (C)

≤M
∞∑
k=1

2ks ‖ϕ̌k ∗ f‖X2

∥∥∥2−ksψk ∗ ϕ
∥∥∥
Lq′,σ(C)

≤M2|s| ‖f‖Y2 ‖ϕ‖B−s
q′,r′,σ

(C) ,

where
σ(·) = γ1−q(·).

Thus (Tmf) (ϕ) for ϕ ∈ S defines a linear map from S into E2 which is continuous
by well known inclusion

S (E2) ⊂ Y2 ⊂ S′ (E2) .

By Remark 4.1, for each j, k ∈ N0

ϕ̌j ∗ Tmψk (ϕ̌k ∗ f) = Tmψk (ϕ̌j ∗ ϕ̌k ∗ f) = ϕ̌k ∗ Tmψk (ϕ̌j ∗ f) .

Since the support of ϕk intersects the support of ϕj only for |k − j| ≤ 1, applying
Remark 4.1 further gives

ϕ̌k ∗ Tmf =
k+1∑
j=k−1

ϕ̌k ∗ Tmψj (ϕ̌j ∗ f) =
k+1∑
j=k−1

ϕ̌j ∗ Tmψj (ϕ̌k ∗ f) (5.4)

=
k+1∑
j=k−1

Tmϕjψj (ϕ̌k ∗ f) = Tmψk (ϕ̌k ∗ f) .

Hence, ϕ̌k ∗ Tmf ∈ X2 and

‖ϕ̌k ∗ Tmf‖X2
≤ 3CA ‖ϕ̌k ∗ f‖X1

,

from which and in view of (5.2) it follows that range of Tm is contained in Y1 and
that norm of Tm as an operator from Y1 to Y2 is bounded by a constant depending
on the items claimed. Furthermore, Tm extends T0; indeed, if f ∈ S(E1) then

F (Tmf) =
∞∑
k=1

F [Tmψk (ϕ̌k ∗ f)] =
∞∑
k=1

mψkϕkf̂

=
∞∑
k=1

mϕkf̂ = F (T0f) .

It remains to show only that Tm satisfies (4.7). Since [m(−.)]∗ : Rn → L(Y ∗2 ;Y ∗1 )
also satisfies condition (5.1), the Fourier multiplier operator Tm∗(−.), defined by
(4.6), extends to Tm∗(−.) ∈ L (Y ∗2 ;Y ∗1 ). It suffices to show that T ∗m restricted to Y ∗2
is Tm∗(−.). Hence, fix g ∈ Y ∗2 , f ∈ Bs (E1) and by using (5.4) and (2.3) we have

〈T ∗mg, f〉Y1 =
∑

n,k∈N0

〈ϕ̌n ∗ g, ϕ̌k ∗ Tmf〉Lq,γ(E2)

=
∑

n,k∈N0

〈ϕ̌n ∗ g, Tmψk (ϕ̌k ∗ f)〉Lq,γ(E2). (5.5)
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and
〈Tm∗(−.)g, f〉Y1 =

∑
n,k∈N0

〈ϕ̌n ∗ Tm∗(−.)g, ϕ̌k ∗ f〉Lq,γ(E1)

=
∑

n,k∈N0

〈Tm∗(−.)ψn(.) (ϕ̌n ∗ g) , ϕ̌k ∗ f〉Lq,γ(E1). (5.6)

Fix K0 ⊂ N0 and choose a radial ψ ∈ S with compact support such that ψ is 1

on
K0+1⋃
k=1

supp ϕk. If n, k ∈ {0, 1, ...,K0}, then by Remark 4.1 we get

Tmψk (ϕ̌k ∗ f) = Tmψψk (ϕ̌k ∗ f) = Tmψ (ϕ̌k ∗ f) (5.7)

and

Tm∗(−.)ψn(·) (ϕ̌n ∗ f) = Tm∗(−.)ψ(·)ψn(·) (ϕ̌n ∗ f) = Tm∗(−.)ψn(.) (ϕ̌n ∗ f) . (5.8)

since mψ and m∗(−.)ψn(·) satisfy the assumptions of Theorem 4.1. Hence, by (5.5)−
(5.8) and by Remark 4.1 we have

〈T ∗mg, f〉 = 〈Tm∗(−.)g, f〉.

The next lemma gives a convenient way to verify the assumption of Theorem 4.8
in terms of derivatives.

By reasoning as Lemma 4.10 and Corollary 4.11 in [11] we obtain
Lemma 5.1. Let n

p < l ∈ N and σ ∈ [p,∞]. If m ∈ C l (Rn;L (E1, E2)) and

there exists a positive constant A so that

‖Dαm‖Lσ(Rn;L(E1,E2))
≤ A (5.9)

for each k ∈ N, α ∈ Nn0 with |α| ≤ l−1. Then m satisfies condition (5.1) of Theorem
5.1.

Corollary 5.1. Let q, r ∈ [1,∞] and s ∈ R. If m ∈ C l (Rn;L (E1, E2)) and there
exists a positive constant A so that

sup
x∈Rn

(1 + |x|)|α| ‖Dαm‖Lσ(Rn;L(E1,E2))
≤ A (5.10)

for each k ∈ N, α ∈ Nn0 with |α| ≤ l and mk(·) = m
(
2k−1.

)
. Then m is a Fourier

multiplier from Y1 to Y2 provided one of the following conditions hold:
(a) E1 and E2 are arbitrary Banach spaces and l = n+ 1;
(b) E1 and E2 are uniformly convex Banach spaces and l = n;

(c) E1 and E2 have Fourier type p and l =
[
n
p

]
+ 1.

6 Embedding theorems in Besov-Lions type spaces

In this section embedding theorems in abstract Besov spaces in terms of interpolation
of Banach spaces are derived. Note, that embedding of function spaces were studied
e.g. in [1, 2, 4], [12]. Embedding in abstract function spaces in terms of interpolation
were studied e.g in [21-27]. From [23] we have

Lemma 6.1. Let A be a positive operator in a Banach space E, b be a nonneg-
ative real number and r = (r1, r2, ..., rn) where rk ∈ {0, b}. Let t = (t1, t2, ..., tn), tk
are positive parameters, 0 < tk ≤ T <∞, α = (α1, α2, ..., αn) and l = (l1, l2, ..., ln),
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where lk are positive and αk are nonnegative integers such that κ = |(α+ r) : l| ≤ 1.
For 0 < h ≤ h0 <∞ and, 0 ≤ µ ≤ 1− κ the operator-function

Ψt(ξ) =
n∏
k=1

t
αk+rk
lk

k ξr (iξ)αA1−κ−µh−µ [A+ ψ (t, ξ)]−1

is bounded operator in E uniformly with respect to ξ ∈ Rn, h > 0 and t, i.e there is
a constant Cµ such that

‖Ψt,h,µ(ξ)‖L(E) ≤ Cµ
for all ξ ∈ Rn and h > 0, where,

ψ = ψ (t, ξ) =
n∑
k=1

tk |ξk|lk + h−1.

Let

α = (α1, α2, ..., αn) , l = (l1, l2, ..., ln) , κ =

n∑
k=1

αk
lk

,

Y = Bs
p,θ,γ (Rn;E) , Bl,s (Rn) = Bl,s

p,θ,γ (Rn;E (A) , E) .

Let l = (l1, l2, ..., ln), where lk are positive integers. Let

ν (l) = max
k,,j∈{1,2,...,n}

[
1

lk
− 1

lj

]
, η = η (t) =

n∏
k=1

t
αk
lk
k .

Theorem 6.1. Suppose that the following conditions hold:
(1) γ ∈ Ap for p ∈ [1,∞], E is a Banach spaces with weighted Fourier type γ and

σ ∈ (1, 2];
(2) t = (t1, t2, ..., tn), 0 < tk ≤ T <∞, 1 < p ≤ q <∞, θ ∈ [1,∞];
(3) lk are positive and αk are nonnegative integers such that 0 < κ + ν (l) ≤ 1,

and let 0 ≤ µ ≤ 1− κ − ν (l);
(4) A is a ϕ-positive operator in E.
Then an embedding

DαBl,s
p,θ,γ (Rn;E (A) , E) ⊂ Bs

p,θ,γ

(
Rn;E

(
A1−κ−µ))

is continuous and there exists a constant Cµ > 0, depending only on µ, such that
the following uniform estimate holds

η (t) ‖Dαu‖Bsp,θ,γ(Rn;E(A1−κ−µ)) ≤ Cµ
[
hµ ‖u‖Bl,s(Rn) + h−(1−µ) ‖u‖Y

]
(6.1)

for all u ∈ Bl,s (Rn) and 0 < h ≤ h0 <∞.
Proof. We have

‖Dαu‖Bsp,θ,γ(Rn;E(A1−κ−µ)) =
∥∥A1−κ−µDαu

∥∥
Y

(6.2)

for all u such that
‖Dαu‖Bspöθ,γ(Rn;E(A1−κ−µ)) <∞.

On the other hand by using the relation (6.2) we have

A1−α−µDαu = F−1FA1−κ−µDαu = F−1A1−κ−µFDαu
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= F−1A1−κ−µ (iξ)α Fu = F−1 (iξ)αA1−κ−µFu. (6.3)

Hence denoting Fu by û, we get from the relations (6.2) and (6.3)

‖Dαu‖Bsp,θ,γ(Rn;E(A1−κ−µ)) v
∥∥F−1 (iξ)αA1−κ−µû

∥∥
Y
.

Similarly, from definition of for all u ∈ Y we have

‖u‖Bl,s(Rn) = ‖u‖Bsp,θ,γ(Rn;E(A)) +

n∑
k=1

∥∥∥tkDlk
k u
∥∥∥
Y

=
∥∥F−1û∥∥

Bsp,θ,γ(Rn;E(A))
+

n∑
k=1

∥∥∥tkF−1 [(iξk)lk û]∥∥∥
Y

v
∥∥F−1Aû∥∥

Y
+

n∑
k=1

∥∥∥tkF−1 [(iξk)lk û]∥∥∥
Y
.

Thus proving the inequality (6.1) for some constants Cµ is equivalent to proving

η
∥∥F−1 (iξ)αA1−κ−µû

∥∥
Bl,s(Rn)

≤ Cµ

[
hµ

(∥∥F−1Aû∥∥
Y

+
n∑
k=1

∥∥∥tkF−1 [(iξk)lk û]∥∥∥
Y

)
+ h−(1−µ)

∥∥F−pû∥∥
Y

)

]
.

Thus the inequality (6.1) will be followed if we prove the following inequality

η
∥∥F−1 [(iξ)αA1−κ−µû

]∥∥
Y
≤ Cµ

∥∥F−1 [hµ(A+ ψ (t, ξ)] û
∥∥
Y

(6.4)

for a suitable Cµ > 0 and for all u ∈ Y .
Let us express the left hand side of (6.3) as follows

η
∥∥F−1 [(iξ)αA1−κ−µû

]∥∥
Y

(6.5)

= η
∥∥∥F−1 (iξ)αA1−κ−µ [hµ(A+ ψ]−1 [hµ (A+ ψ)]

∥∥∥
Y
.

(Since A is a positive operator in E and −ψ (t, ξ) ∈ S (ϕ) so it is possible). It is clear
that the inequality (6.4) will be followed immediately from (6.5) if we can prove that
the operator-function

Ψt = Ψt,h,µ = η (t) (iξ)αA1−κ−µ [hµ (A+ ψ)]−1

is a multiplier in M s,γ
p,θ,γ(E), which is uniformly with respect to h and t. In order to

prove that Ψt ∈ M s,γ
p,θ,γ(E) it suffices to show that there exists a constant Mµ > 0

with

|ξ|k
∥∥∥DβΨt (ξ)

∥∥∥
L(E)

≤ C, k = 0, 1, ..., |β| (6.6)

for all
β = (β1, β2, ..., βn) , βk ∈ {0, 1} , ξk 6= 0.

To see this, we apply Lemma 6.1 and get a constant Mµ > 0 depending only on µ
such that

‖Ψt(ξ)‖L(E) ≤Mµ
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for all ξ ∈ Rn. This shows that the inequality (7.6) is satisfied for β = (0, ..., 0). We
next consider (6.6) for β = (β1, ...βn) where βk = 1 and βk = 0 for j 6= k. By using
the condition κ + ν (l) ≤ 1 and well known inequality

yα1
1 yα2

2 ...yαnn ≤ C

[
1 +

n∑
k=1

ylkk

]
, for yk ≥ 0,

we have
|ξ| |ξk| ‖DkΨt(ξ)‖L(E) ≤Mµ, k = 1, 2...n.

Repeating the above process we obtain the estimate (7.6). Thus the operator-
function Ψt,h,µ(ξ) is a uniform collection of multiplier with respect to h and t i.e

Ψt,h,µ ∈ Φh ⊂M s,γ
p,θ,γ (E) .

This completes the proof of the Theorem 6.1. It is possible to state Theorem 6.1 in
a more general setting. For this, we use the conception of extension operator.

Let
Y = Bs

p,θ,γ (Ω;E) , Bl,s (Ω) = Bl,s
p,θ,γ (Ω;E (A) , E) .

Condition 6.1. Let γ ∈ Aν for ν ∈ [1,∞]. Assume that E is a Banach spaces
with weighted Fourier type γ and σ ∈ [1, 2]. Suppose A is a ϕ-positive operator in
Banach spaces E. Let a region Ω ⊂ Rn be such that there exists a bounded linear
extension operator B from Bl,s (Ω) to Bl,s ( Rn) for p, θ ∈ [1,∞] .

Remark 6.1. If Ω ⊂ Rn is a region satisfying a strong l-horn condition (see
[4], § 18) E = C, A = I, then there exists a bounded linear extension operator from
Bs
p,θ (Ω) = Bs

p,θ (Ω;C,C) to

Bs
p,θ (Rn) = Bs

p,θ (Rn;C,C) .

Theorem 6.2. Suppose that the all conditions of the Theorem 6.1 and the
Condition 6.1 are hold. Then the embedding

DαBl,s (Ω) ⊂ Bs
q,θ,γ

(
Ω;E

(
A1−κ−µ))

is continuous and there exists a constant Cµ depending only on µ such that

η ‖Dαu‖Bsq,θ,γ(Ω;E(A1−κ−µ)) ≤ Cµ
[
hµ ‖u‖Bl,s(Ω) + h−(1−µ) ‖u‖Y

]
(6.7)

for all u ∈ Bl,s (Ω) and 0 < h ≤ h0 <∞.
Proof. It suffices to prove the estimate (7.7) . Let P be a bounded linear ex-

tension operator from Bs
q,θ,γ (Ω;E) to Bs

q,θ,γ (Rn;E) and also from to Bl,s (Ω) to

Bl,s (Rn). Let PΩ a restriction operator from Rn to Ω. Then for any u ∈ Y we have

‖Dαu‖Bsq,θ,γ(Ω;E(A1−κ−µ))

= ‖DαPΩPu‖Bsq,θ,γ(Ω;E(A1−κ−µ)) ≤ C ‖D
αPu‖Bsq,θ,γ(Rn;E(A1−κ−µ))

≤ Cµ
[
hµ ‖Pu‖Bl,s( Rn) + h−(1−µ) ‖Pu‖Bsp,θ,γ(Rn;E)

]
≤ Cµ

[
hµ ‖u‖Bl,s(Ω) + h−(1−µ) ‖u‖Y

]
.
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Result 6.1. Let the all conditions of Theorem 6.2 hold. Then for all u ∈ Y0 we have
the following multiplicative estimate

‖Dαu‖Bsq,θ,γ(Ω;E(A1−κ−µ)) ≤ Cµ ‖u‖
1−µ
Bl,sp (Ω)

‖u‖µY . (6.8)

Indeed setting h = ‖u‖Y . ‖u‖
−1
Bl,s(Ω) in (6.7) we obtain (6.8) .

Result 6.2. If l1 = l2 = . . . = ln = m, then we obtain the continuity of
embedding operators in the isotropic class

Bm,s
p,θ,γ (Ω;E (A)E) .

For E = C, A = I we obtain the embedding of weighted Besov type spaces

DαBl,s
p,θ,γ (Ω) ⊂ Bs

q,θ,γ (Ω) .

7 B-separable abstract differential equation on Rn

Let us consider the equation (1.1) .
Condition 7.1. Let

(a) K(ξ) =
∑
|α:l|=1

aα (iξ1)
α1 (iξ2)

α2 ... (iξn)αn ∈ S(ϕ), ϕ <
π

2
;

(b) There exists a positive constat M0 so that

|K(ξ)| ≥M0

n∑
k=1

|ξk|lk for all ξ ∈ Rn, ξ 6= 0.

Consider the following degenerate abstract differential equation

Lu =
∑
|α:l|=1

aαD
[α]u+Au+

∑
|α:l|<1

AαD
[α]u = f, (7.1)

where A, Aα(x) are linear operators in a Banach space E, ak are complex-valued
functions and

D[i]
xk

=

(
γ (xk)

∂

∂xk

)i
, D[α] = D

[α1]
1 D

[α2]
2 ...D[αn]

n .

Here, B
[l],s
q,θ,γ (Ω;E0, E) denote a E-valued Sobolev-Besov weighted space of func-

tions u ∈ Bs
q,θ (Rn;E) that have weak derivatives D

[lk]
k u ∈ Bs

q,θ (Rn;E) with the
norm

‖u‖
B

[l,],s
q,θ (Rn;E0,E)

= ‖u‖Bsq,θ(Rn;E0)
+

n∑
k=1

∥∥∥D[lk]
k u

∥∥∥
Bsq,θ(Rn;E)

<∞.

Remark 7.1. Under the substitution

τk =

∫ xk

0
γ−1 (y) dy (7.2)
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the spaces Bs
p,θ,γ (Rn;E), B

[l],s
p,θ,γ (Rn;E (A) , E) are mapped isomorphically onto the

weighted spaces Bs
p,θ,γ̃ (Rn;E), Bl,s

p,θ,γ̃ (Rn;E (A) , E), respectively, where

γ =

n∏
k=1

γ (xk) , γ̃ = γ̃ (τ) =

n∏
k=1

γ (xk (τk)) .

Moreover, under the substitution (7.2) the degenerate problem (7.1) is mapped to
the nondegenerate problem (1.1) considered in the weighted space Bs

p,θ,γ̃ (Rn;E) .
Let

Y = Bs
q,θ,γ (Rn;E) , Y0 = Bl,s

q,θ,γ (Rn;E (A) , E) .

Theorem 7.1. Suppose that the following conditions hold:
(1) Condition 7.1 is hold, s > 0, 1 ≤ q, θ ≤ ∞ and 0 < µ < 1− |α : l| ;
(2) γ ∈ Aq for q ∈ [1,∞]. E is a Banach spaces with weighted Fourier type γ

and p ∈ [1, 2];
(4) A is a ϕ-positive operator in E and

Aα(x)A−(1−|α:l|−µ) ∈ L∞ (Rn;L(E)) .

Then for all f ∈ Y and for sufficiently large |λ|, λ ∈ S (ϕ) equation (1.1) has a
unique solution u(x) ∈ Y0 and∑

|α:l|=1

‖Dαu‖Y + ‖Au‖Y ≤ C ‖f‖Y . (7.3)

Proof. Firstly, we will consider the leading part of (1.1) i.e. consider the differential-
operator equation

(L0 + λ)u =
∑
|α:l|=1

Dαu+Au+ λu = f. (7.4)

Then we apply the Fourier transform to equation (7.4) with respect to x = (x1, ..., xn)
and obtain

K(ξ) û(ξ) + (A+ λ) û(ξ) = f̂(ξ). (7.5)

Since K(ξ) ∈ S(ϕ) for all ξ ∈ Rn therefore, ω = ω(λ, ξ) = λ+K(ξ) ∈ S(ϕ) for all
ξ ∈ Rn, i.e. operator A+ ω is invertible in E. Hence (7.5) implies that the solution
of equation (7.4) can be represented in the form

u(x) = F−1 (A+ ω)−1 f̂ . (7.6)

It is clear to see that the operator- function ϕλ (ξ) = [A+ ω]−1 is a multiplier in Y
uniformly with respect to λ. Actually, by definition of the positive operator, for all
ξ ∈ Rn and λ ≥ 0 we get

‖ϕλ(ξ)‖L(E) =
∥∥∥(A+ ω)−1

∥∥∥ ≤M (1 + |ω|)−1 ≤M0.

Moreover, since Dkϕλ(ξ) = αkaαξ
α (A+ ω)−2 ξ−1k , then by using the resolvent prop-

erties of positive operator A we have

‖ξkDkϕλ‖L(E) ≤ |αkaα| ξ
α
∥∥∥(A+ ωI)−2

∥∥∥ ≤M. (7.7)
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Using the estimate (7.7) we show the uniform estimate

|ξ|β
∥∥∥Dβ

ξ ϕλ(ξ)
∥∥∥
L(E)

≤ C (7.8)

for
β = β1, ..., βn), βi ∈ {0, 1} , ξ = (ξ1, ..., ξn) , ξi 6= 0.

In a similar way we can prove that the operator-functions ϕαλ(ξ) = ξαϕλ,t, k =
1, 2, .., n and ϕ0λ = Aϕλ satisfiy the estimates

(1 + |ξ|)|β|
∥∥∥Dβ

ξ ϕα,λ(ξ)
∥∥∥
L(E)

≤ C, (1 + |ξ|)|β|
∥∥∥Dβ

ξ ϕ0,λ(ξ)
∥∥∥
L(E)

≤ C. (7.9)

Then in view of (7.8) and (7.9) we obtain that operator-functions ϕλ, ϕαλ, ϕ0,λ are
multipliers in Y . By (7.9) and in view of

‖Dαu‖Y =
∥∥F−1ξαû∥∥

Y
=
∥∥∥F−1ξα (A+ ω)−1 f̂

∥∥∥
Y
,

‖Au‖Y =
∥∥F−1Aû∥∥

Y
=
∥∥∥F−1 [A (A+ ω)−1

]
f̂
∥∥∥
Y
.

we obtain that there exists a unique solution of equation (7.4) for all f ∈ Y and
the uniform estimate holds∑

|α:l|=1

‖Dαu‖ Y + ‖Au‖ Y ≤ C ‖f‖ Y . (7.10)

We consider the differential operator G0 generated by problem (7.4), that is

D (G0) = Y0, G0u =
∑
|α:l|=1

Dαu+Au.

The estimate (7.10) implies that the operator G0 + λ has a bounded inverse from
Y into Y0 for all λ ≥ 0. Let G denote the differential operator in Y generated by
problem (1.1) . Namely,

D (G) = Y0, Gu = G0u+ L1u, L1u =
∑
|α:l|<1

Aα (x)Dαu. (7.11)

In view of (4) condition, by virtue of Theorem 6.1, for all u ∈ Y we have

‖L1u‖Y ≤
∑
|α:l|<1

‖Aα(x)Dαu‖Y ≤
∑
|α:l|<1

∥∥∥A1−|α:l|−µDαu
∥∥∥
Y

(7.12)

≤ C

hµ
 ∑
|α:l|=1

‖Dαu‖Y + ‖Au‖Y

+ h−(1−µ) ‖u‖Y

 .
Then from estimates (7.10) and (7.12) for u ∈ Y0 we obtain

‖L1u‖Y ≤ C
[
hµ ‖(G0 + λ)u‖Y + h−(1−µ) ‖u‖Y

]
. (7.13)

Since ‖u‖Y = 1
λ ‖(G0 + λ)u−G0u‖Y for all u ∈ Y0 we get

‖u‖
Y
≤ 1

|λ|

[
‖(G0 + λ)u‖

Y
+ ‖G0tu‖Y

]
, (7.14)
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‖G0u‖Y ≤ C

∑
|α|=l

‖Dαu‖Bsp,θ,γ + ‖Au‖Bsp,θ,γ

 .
From estimates (7.12)− (7.14) for all u ∈ Y0 we obtain

‖L1u‖Y ≤ Ch
µ ‖(G0 + λ)u‖

Y
+ C1 |λ|−1 h−(1−µ) ‖(G0 + λ)u‖

Y
. (7.15)

Then by choosing h and λ such that Chµ < 1, C1 |λ|−1 h−(1−µ) < 1 from (7.15) we
obtain the uniform estimate ∥∥∥L1 (G0 + λ)−1

∥∥∥
L(E)

< 1. (7.16)

Using the relation (7.11), estimates (7.10) and (7.16) and the perturbation theory
of linear operators we obtain that the differential operator G+ λ is invertible from
Y into Y0. Hence, inequality (7.3) is valid and this complete the proof.

Result 7.1. The Theorem 8.1 implies that G has a resolvent operator (G+ λ)−1

for |arg λ| ≤ ϕ and the following uniform estimate holds∑
|α:l|≤1

|λ|1−|α:l|
∥∥∥Dα (G+λ)−1

∥∥∥
L(Y )

+
∥∥∥A (G+ λ)−1

∥∥∥
L(Y )

≤ C.

Let

Y = Bs
q,θ (Rn;E) , Y0 = B

[l],s
q,θ,γ (Rn;E (A) , E) .

Let Q denote the operator in Bs
q,θ (Rn, E) generated by problem (7.1). Theorem

7.1 and Remark 7.1 imply
Result 7.2. Let all conditions of Theorem 7.1 hold. Then for all f ∈ Y , λ ∈ S (ϕ)

and for sufficiently large |λ|, the equation (7.1) has a unique solution u ∈ Y0 and
the coercive uniform estimate holds∑

|α:l|≤1

|λ|1−|α:l|
∥∥∥D[α] (Q+λ)−1

∥∥∥
L(Y )

+
∥∥∥A (Q+ λ)−1

∥∥∥
L(Y )

≤ C.

Remark 7.2. The Result 7.2 implies that G is a positive operator in Y . Then
by virtue of [28, §1.14.5] the operator G is a generator of an analytic semigroup in
Y for ϕ ∈

(
π
2 , π

)
.
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