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Abstract. The operator-valued Fourier multiplier theorems in E-valued weighted Lebesgue
and Besov spaces are studied. These results permit us to show embedding theorems in
weighted Besov-Lions type spaces lefiz,v (£2; Ey, E), where Ey, E are two Banach spaces
and Ey C E. The most regular class of interpolation space E,, between Ey and E are
found such that the mixed differential operator D% is bounded from B]l,’fm (£2; Ey, E) to
B} 0y (£2; E,) and Ehrling-Nirenberg-Gagliardo type sharp estimates are established. By
using these results the B? _ —separability properties of degenerate differential operators

) P4,y
are studied.
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1 Introduction

Fourier multipliers in vector-valued function spaces has been studied e.g. in [12], [17],
[28], [31]. Operator-valued Fourier multipliers in abstract function spaces have been
investigated in [1], [8 — 11], [13]. Mikhlin type Fourier multipliers in scalar weighted
spaces have been studied e.g. in [14] and [30]. Moreover, operator-valued Fourier
multipliers in weighted abstract L, spaces were investigated e.g. in [2], [7], [13],
[16]. Regularity properties of abstract differential equations have been studied e.g.
in [1], [3], [9], [21 — 26], [30]. A comprehensive introduction to DOEs and historical
references may be found in [1] and [30].
In the paper operator-valued multiplier theorems in E'—valued Besov space

X=5B,,,R"E)

are shown. Then we consider the F—valued anisotropic Sobolev-Besov spaces

Y = BY _(02,Ey, E),

P4y
here Ey, E are two Banach spaces, Ey is continuously and densely embedded into
E, and v = 7(z) is a weighted function from A,, p € (1,00) class. We prove the
boundedness and compactness of embedding operators in these spaces. This re-
sult generalized and improved the results [4, § 9, 27, § 1.7] for scalar Sobolev space,
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the result [15] for one dimensional Sobolev-Lions spaces and the results [22, 23] for
Hilbert-space valued class. Finally, we consider anisotropic abstract elliptic equation

Lu= Y aD%u+Au+ » AuD% =, (1.1)

|a:l]=1 lol]<1

where a,, are complex numbers, A, A,(z) are linear operators in a Banach space
E. Here, | = (l1,l2,...,1n), o = (a1,0q9,...,an), lk, o are integer numbers and

nOé
ol = ¥ 4
k=1

We sa}7 that the problem (1.1) is X —separable, if there exists a unique solution
u € Y of the problem (1.1) for all f € X and there exists a positive constant C
independent of f such that the following coercive estimate holds

> ID%llx + [Aullx < Clflix- (1.2)
le:l|<1

The estimate (1.2) implies that if f € X and w is a solution of (1.1), then all
terms of the equation (1.1) belong to X (i.e. all terms are separable in X).

The paper is organized as follows. In Section 2 the necessary tools from Banach
space theory and some background materials are given. In Sections 3-5 the mul-
tiplier theorems in vector-valued weighted Lebesgue and Besov spaces are proved.
In Section 6 by using these multiplier theorems, embedding theorems in weighted
abstract Besov spaces are shown. Finally, in Section 7 the separability properties of
problem (1.1) is established.

2 Notations and background

Let E be a Banach space and v = y(z), = (21, x9, ..., ,,) be a positive measurable
function on the measurable subset 2 C R™. Let L, (2; E) denote the space of
strongly measurable E—valued functions that are defined on (2 with the norm

1l = 17 o = (/ 1 @A >dw) <p<os,

1L (2:m) = ess sup [ f (@) ]| g (@), p = .
zes?

For y(x) = 1, the space L, (£2; E') will be denoted by L, = L, ({2; E) .
The weight v is said to be satisfy an A, condition [18], i.e., v € A4y, 1 <p < o0
if there is a positive constant C' such that

()l o)

for all rectangles ) C R™.
The Banach space F is called a UMD-space and written as £ € UMD if only if
the Hilbert operator

(H) () = lim T ,,

e—0 lz—y|>e r—y
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is bounded in the space L, (R, E), p € (1,00) (see e.g. [6]). UMD spaces include e.g.
Ly, 1, spaces and Lorentz spaces Ly,q, p, ¢ € (1,00). Let C be the set of complex
numbers and

So=1{& £€C, |argf| <p}uU{0},0<p <.

Let E7 and E5 be two Banach spaces. We denote that the space of linear bounded
operators from E; to Ey by L(FE, Es). For By = Ey = E it will be denoted by
L(E). A linear operator A is said to be positive in E, with bound M if D (A) is
dense on E and

|aven|, , sma+ien

with £ € Sy, ¢ € [0, 7), where M is a positive constant and I is an identity operator
in . Sometimes instead of A 4 £I will be written A + £ and it is denoted by A¢. It
is known [28, §1.15.1] there exist fractional powers A%f the positive operator A.

Definition 2.1. A positive operator A is said to be R—positive in a Banach
space E if there exists ¢ € [0, 7) such that the set

{©@+enT:ces,|

is R—bounded (see e.g. [9]).
We denote the space of compact operators in F by oo (FE). Let E (Ao) denote
the space D (Ae) with the graphical norm defined as

1

HuHE(Ae) = <Hqu + HAequ>p , 1<p<oo, —c0<0<o0.

By (E1, E2)y,, will be denoted interpolation spaces obtained from {E7, Ex} by the
K —method [28, §1.3.1], where 6§ € (0,1), p € [0,1]. We denote by D (R"; E) the
space of E—valued C'°°— function with compact support, equipped with the usual
inductive limit topology and S(E) = S (R"™; E') denote the E—valued Schwartz space
of rapidly decreasing, smooth functions. For £ = C we will denoted their D (R™) and
S = S (R™), respectively. D' (R™; E) = L (D (R"™), E) denote the space of E—valued
distributions and S'(F) = S’ (R™; E) is a space of linear continued mapping from
S (R™) into E. The Fourier transform for v € S’ (R™; E) is defined by

F(u)(p) =u(F(p), € S(R").

Let v be such that S (R"; E) is dense in L, -, (R"; E7). A function ¥ € CO (R™ L (Ey, Ey))
is called a multiplier from L, , (R™; E1) to Lq~ (R™; E3) if there exists a positive con-
stant C' such that

HFﬁlgp(f)F“HLm(Rn;Ez) <C H“”Lm(Rn;El)

for all w € S (R"; Ey).

In a similar way, we can define the multiplier from By . (R™; Ey) to By, (R™; E»).

We denote the set of all multipliers from Bj . (R™; E1) to By, ., (R™; Ea) by My~ (E1, Es).
For By = Ey = E we denote M, (E1, Es) by Mpg~(E).

Definition 2.2. Let v € A, for ¢ € [1, 00]. Assume that E is a Banach space and
p € [1,2]. Suppose that there exists a positive constant Cy = Co (p, 7, E) so that

||F“||pr,(Rn;E) < Co ||FUHLPW(]Rn;E) (2.1)



for % + ﬁ =1,() = 'y_ﬁ(-) and each u € S (R"; E). Then F is called weighted
Fourier type v and p. It is called Fourier type p € [1,2] if v (x) = 1(see e.g [19])..
Remark 2.1. The estimate (2.1) shows that each Banach space E has weighted
Fourier type 7 and 1. By Bourgain [6] has shown that each B—convex Banach
space (thus, in particular, each uniformly convex Banach space) has some non-trivial
Fourier type p € [1,2], i.e. UM D spaces are Fourier type for some p € [1,2].

In order to define abstract Besov spaces we consider the dyadic-like subsets
{Jetico s {Ik}ieo of R™ and partition of unity {¢x}p, defined e.g. in [28, § 2.3.2].
Remark 2.2. Note the following useful properties are satisfied:

_ o
supp pr C Ix for each k € Ng; > pr(s) = 1 for each s € R™; I, supp ¢ = 0

k=0
if |m — k| > 1; pr—1(5) + ¢k (5) + ¢r+1(s) = 1 for each s € supp ¢y and k € Np.
Among the many equivalent descriptions of Besov spaces, the most useful one
for us is given in terms of the so called Littlewood-Paley decomposition. This means
that we consider f € S'(F) as a distributional sum f = " fi analytic functions fj

k
whose Fourier transforms have support in dyadic-like I and then define the Besov
norm in terms of the fj’s.
Definition 2.3. Let v € A;, 1 < 7, ¢ < oo and s € R. Let [,(F) denotes
E—valued sequence space [28, § 1.18].
The Besov space Y* = By . | (R"; E) is the space of all f € S" (R"; E) for which

o0

105y, gy = | {2 @0 )} (2.2)

k=01ll,.(Lq,~(R™;E))

S r
[E 2hsr @ * fIIZM(Rn;E)} <oo,if 1 <7r < oo,
ksuI\II) kz 2 H@k * f’qu(Rn;E)] < 00, if r = oo.

eNo Lk=0

B, (R"; E)-together with the norm in (2.1) is a Banach space. égﬂw (R™ E) is

the closure of S (R"; E) in By, . (R"; E) with the induced norm. For £ = C and
v(z) = 1 the space By, ., (R"; E) states to be the usual Besov spasce (see e.g. [4],
[13]).

Let {2 be a domain in R". Here, By , . (£2; ) denotes the space of restrictions to

$2 of all functions in B® = By, . (R"; E) with the norm given by

||U||B;,M(Q;E) = gengQ:u HgHBé,M(R”;E) :

Let | = (l1,l2,...,1y), I are positive integers, s € R and 1 < ¢, r < oc.
Here, Bé’i7 (£2; E) denote a E-valued Sobolev-Besov weighted space of functions

u€ B, (£2; E) that have weak derivatives Dé’vu = ;ZZku € By, (2; E) with the

norm

< 0
B; 0y ()

n
o l
el ey = Wl o+ 22 [
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Let Ejy be continuously and densely belongs into E. Bé"; N (£2; Ey, E) denotes the

space By, (2, Eo) N Bf]’f@’7 (£2; E) with the norm

n
— — Ui
lull e = ullge o = elng, omn+ 22 | DR, 0 <o
k=1 0,077
Let (E(X); E*(X™)) be one of the pairs. There is an embedding of E*(X*) C
[E(X)]* as a norming subspace for E(X). This embedding is given by the duality
map

(e EX(X*) x B(X) = C,

where

n n

@ 1, x) = / (9 (1), f (1)) xdt = / g (t) f (1) dt

in weighted Lebesgue space setting with &' = L, and

<g7 f>Bs

9,77

)= D ABn* g Bm* )0 (2.3)
n,meENg

in Besov space setting with E' = By . (X). One can check that this definition of

duality is independent of the choice of the {¢g}—.

3 The Fourier transform in weighted Besov spaces

Let
Xy = Loy (R E) s By, = By (E) = By, (R E).
By applying the Hausdorff-Young inequality we get the following estimates for the

Fourier transform on Besov spaces

Theorem 3.1. Assume that v € A,. Let E be a Banach space with weighted
Fourier type v and p € (1, 2]. Let 1 < ¢ < p/ andsZn(%—%) and 1 < r < oo.
Then there exists constant C, depending only on Cj (p,~, E) so that if f € B

q?/’"77
then
o~ oo
(7o)
m=0

where Cj (p, 7, F) is a positive constant defined in the Definition 2.1 and 7/ = ’y_zjlj.
An immediate corollary of Theorem 3.1 follows by choosing for ¢ = r = 1 and
r = q = p’ we obtain respectively
Corollary 3.1. Assume that v € A,. Let I be a Banach space with Fourier
type v and p € (1, 2]. Then the Fourier transform F' defines the following bounded
operator

<C . 3.1
v SO, (3.1)

n

F:B

= Ly (RS E), F:B) = Ly (R E). (3.2)

p

The norms of the above maps F' are bounded by a constant depending only on
Co(n, E).

Theorem 3.1 and Corollary 3.1 remain valid if F is replaced with F~1.



Proof of Theorem 3.1. Let f € By ... Then, for each k € Ny, since @« f € X 5
and F has weighted Fourier type v and p,

(Pkf:F(Sbk*f) GXp’,’y"
Thus by Remark 2.2,

m+1
fxs, = ( Z Ok - f) XJm € Xq~ for each m € No.

(3.3)
k=m—1

Moreover, by Definition 2.2 we get

—IIF (@ * Nlx, , < Collon*fllx,,
ie.
m+1 m—+1
> e, <00 3 2gre S, (3.4
k=m—1 P k=m—1

In view of (3.4), it suffices to show that there exists the positive constant C; so
that the following holds

[P

a4,y

m+1

k=m—1

We consider the case when ¢ # p’. Choose 1 < o < p, that % = [% + 2580, 2 < s.
By the generalized Holder’s inequality for each m € Ng,

<

o]

X Hgokfom

(3.6)
ayy j— Loy (ImiE)

1 o1 11N\
( +!|> P70 ;( ZI\)
Lp/,,Y/(Jm;E)

1 I\ o m+1
(Z") Xow|  SCp ) 28
Lo k=m—1

where Cs is a positive constant defined by
L+
4

m+1

+

<2

=m—

Lo(Jm)

S [fa
-1

J ok
Lp/’,y/(Jm;E) v

)
Ly (Jm;E)

Cy = <

()

1
< 4" [Sup 2_(m_1)"/ ’y;(s)ds} °.
TI’LGNO m

In view of v € A,, we have

sup Q(ml)"/ fy%(s)ds < 0.
meENy '




For ¢ = p’ and for each m € N we get

m+1 R
< Y |lenfr|
1

=m—

[P

[Hie Lp/,»y/(Jm§E)

< (3.8)

=m—

So, from (3.6)-(3.8) we obtain ( )

Remark 3.1. By using the embedding W57 (R™ E) C By, ., fors < j € Nwe get

that the statement of Theorem 3.1 remains valid if By, . is replaced by Wi + (R E).
Also, it follows from Corollary 3.1 that if E has weighted Fourier type for v € A,,
vell, oo] and j > 7 then the Fourier transform F' defines bounded operator:

Wi (R E) = Xy 4.

Furthermore, if E has weighted Fourier type for v € A,, v € [1,00] and j > 5
then there is a constant C so that

for each f € Wi, (R™ E).

<olfly |2 ||Daf|rXM (3.9)

la|=7

4 Fourier multipliers on weighted Lebesgue spaces

Let m : R" — L(E1, Ez) be a bounded measurable function. In this section, we
identify conditions on m, generalizing the classical Mikhlin condition so that the
multiplication operator induced by m, i.e. the operator: v — T}, = F'mFu is
bounded from L (R"; Ey) to Ly~ (R™; E5). We will first give rather general criteria
for Fourier multipliers in terms of the weighted Besov norm of the multiplier function;
later we derive from these results analogues of the classical Mikhlin and Héormander
conditions. To simplify the statements of our results, we let

M, = inf I = .
pry (M) ér>10 {Hm(m )HBPP’L,Y(R’%L(ELEQ))}
Let

Xy =Xq(Ex) =Lgy (R E), k=1,2,

X1 (L) = L1 (Rn; L (El, EQ)) , Y = B;il.fy (Rn, L (El,EQ)) .

First we give a multiplier result from X; to X5 in the spirit of Steklin’s theorem.
Theorem 4.1. Assume that v € A, for ¢ € [1,00]. Let £y, E3 be Banach spaces
with weighted Fourier type v and p € p € (1, 2]. Suppose that

TeB

1y (Rn;L(XlaXQ)) :
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Then there exists a constant C' depending only on Cy; (p, 7, E1) and Cos (p,, E2),
so that if m € Y, then m is a Fourier multiplier from X; to X, and

”TmHL(Xl,X2) < CMpy (m)
for each ¢ € [1, o0].
Let E* denotes the dual space of E and A*denotes the conjugate of the operator

A.
The proof of Theorem 4.1 uses the following lemma.

Lemma 4.1. Assume that v € A, for ¢ € [1,00] and k € X7 (L). Suppose that
there exists constants C; so that for each x € E; and z* € EJ

[ Wkeale, ds < Mallls, . [ (s)a

prds M| (41)

Then the convolution operator K : X7 — X5 defined by

(Kf)(t) = - k(t—s)f(s)ds for t € R" (4.2)

satisfies that

1 1

Proof. Since k € X; (L) it is well-known that (4.2) defines a bounded operator
on X;. Indeed, for f € X; N X (E1) we have

/nmwﬂﬂw@wzfnm&mw&wswm@wmwm (4.3)
Rn Rn

for each t € R™ and fs(t) = f(t—s). From (4.3) by applying the Minkowski’s
inequality for integral with weight [20, § A.1] we get

IKFOl, < [ 16 Ol ds < [ 1Elsim, o £l 4

= [1*llx, oy sl x, -
Now, for ¢ = 1 we have from (4.1)

5oy < [ ([ 166 0, ) 2 00at
< Mo [ 1 @, 7 Ode = Mo 1l s,

Hence,
1 2, (1)) = Mo (4.4)

If ¢ = oo, then for each X (E1), * € E and t € R" by using (4.1) we get

(=%, (K f) (£)) | S/ (K" (t = s) 2", f(s)) | (s)ds

R



< /Rn " (t —s) UU*HE{ Hf(3)||E1 v(s)ds < My Hx*HEf ”f”Xl(El) .

Thus,
HKHL(XI(EI)) < M. (4.5)

— m
Let X (E1) denotes the closure in X (£7) norm of the simple functions > xpx4,,
k=1
where z3, € Eq, vol Ay < oo and m € N. Then one can check that K maps X« (E1)
into X (E1). Indeed, for f = x4, we have

Kf(t)—/tAk(s)xds%Ofort%oo

and K f is a continuous function from R™ to Es. Now, the Riesz-Thorin theorem (cf.
[5, Thm 5.1.2]) yields the claim for 1 < p < co.

Proof of Theorem 4.1. First assume in addition that m € S (L (E1, E2)).
Hence, m € S (L (E4, E2)). Fix x € E;. For an appropriate choice of a > 0, we can

apply Corollary 3.1 to the function t — m (at) z in B”, . (R"; ) and use that

1y

F~l'm(a.)z](s) = a " (2) x

to get
Im()zllx, &) = HF_lm(a')"”H)cl(El)

< Ciflm(a) zlly ||zl g, < 2C1 My (2] g, ,

for some constant C'; which depends on Cy (p,~, E2) .
By the additional assumption on m we get

m*(-) € S (L (B3, BY)), and F~'m*(-) = [m()]" € S (L (E3, EY)).

Let z* € E3. Similarly, by applying Corollary 3.1 to an appropriate function

t — [m(at)]* z* in Bpg,l.'y

(R"; EY)
and using the fact that M, , (m) = M, (m*), one has

O] Ly, ) < 202 My (m) [l

E3

for some constant Cy which depends Cy (p, v, EY). By Lemma 4.1, the convolution
operator

(T f) (1) = A m(t—s) f(s)ds
satisfies
HTmHB(Xl,XQ) < CMpy (m),

where C' = 2max {C}, C2}. Furthermore, since m € Ly (R™; L (E1, E2)), then T,
satisfies the following

Tpf = Ftm()f(-) for all f € S(R™; Ey), (4.6)

also
Tm € C(O’ (X1>Xik)70(X27X§))¢ (47)
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where o (X}, X;) denote the interpolation spaces of Xy, X}.

For the general case, let m € Y. It is known that S (R™; L (E, E2)) is dense in Y’
when v € A,, v € [1,00]. Now, let we choose a sequence {my}>° C S (R™; L (E1, E»))
that converges to m in the Y—norm and obtain operators T,, € L (X1, X3), where

T f = F7lmn()f (), f € Xa.

It is clear to see that, the properties (4.6) and (4.7) pass from T}, to T,. One
also has that

Fix a > 0 such that m(a.) € Y. Then Ig, o Tpyq) = Tin © Ig,, where Iz :
Ly~ (R™Z) = Ly~ (R™; Z) is the isometry

T (f) () = as f (at).
Thus,
”TmHL(X1,X2) = HTm(a')HL(Xl,XQ) < c HmHY’

ie.
HTmHL(X17X2) S CMP"Y (m) :

The following remark collects some basic facts about the Fourier multiplier op-
erators 1;, given in Theorem 4.1 that will be used in the proof of Theorem 4.2.
Remark 4.1. Let f € X; and let {2 be a closed subset of R™. Then the following
are valid: R
a) Viewing f and T,,f as distributions, if supp f C (2 then supp F (T, f) C £2;
b) Ty +my = Ty + Tmz'AIf p €S, then ¢ x Ty f =Ty (P f) = Tom (f);
c) If p € S'is 1 on supp f, then T, (f) =T (f);
d) Ty, restricted to Ly (R™; E3) is Tppe(— -

(
(
(
(

5 Fourier multipliers on weighted Besov spaces

Let m : R® — L(E, E2) be a bounded measurable function. In this section we
identify conditions on m, generalizing the classical Mikhlin condition so that the
multiplication operator induced by m, i.e. the operator: u — T}, = F~'mFu is
bounded from B* (F;) to B® (F3). By applying this Theorem 4.1 to the blocks of
the Littlewood-Paley decomposition of Besov spaces we will now get the main result
of this section. Let

Yy, (By) = B® (By) = BS,, (R Ey), k= 1,2.

Theorem 5.1. Assume that v € A, for ¢ € [1,00]. Let Ej, Es be a Banach
spaces with weighted Fourier type v and p € (1, 2]. Then there is a constant C
depending only on Cy; (p, v, E1) and Coz (p, 7y, E2), so that if

prm € B?

o1, (R L(X1, Xo)) and My, (ppm) < A for each k € Ny (5.1)

then m is a Fourier multiplier from Y; to Y2 and ”Tm||B(Y1,Y2) < CA for each s € R
and ¢, r € [1,00].
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Proof. By properties of {¢} we have

Tonf = Fimf = Z F7 [(r—1 + @k + @rr1) mF [(@r = f)]]
keNp

- Z T(%—1+<Pk+tpk+1)m (Pr*f), (5.2)
keNg

where T, is the Fourier multiplier operator on X; given by Theorem 4.1. From
Theorem 4.1 implies that m;, induces a Fourier multiplier operator 15, ,, with

1Tl L x, x0) € OMpy (prm) < CA
for some constant C' depending only on Cy 1 (p, v, E1) and Cp2 (p,7, E2) . Let

Y = Pr—1+ Ok + Pky1-

Note that 1;(s) = 1 when s € supp @g. Then my induces the Fourier multiplier
operator T}, ,, with

Ty, = Ty + Ty, + Ty € B (X1, X2)

and
HTmﬂ/Jk”B(XhXQ) < 3CA.

Define Tp: S(E1) — S'(E1) by
Tof = F~'m(-)Ff(-).
If f € S(Ey), then @p, « Tof = Ty, (@1 * f) for each k € Ny since
F [Ty, (1% )] () = m()u()F [(2k * f) ()]
= ok(Im() () = er(VF (Tof) = F [(@r* To f) ()]
So, by definition of the Besov norm

1Toflly, <3CA[Toflly, -

Thus Ty extends to a bounded linear operator from Bégﬂnﬁ (R™; Ey) into

B, (R" ).

If ¢, 7 < oo then all that would remain is to verify the weak continuity condition
(4.7). However, we continue with the proof in order to also cover the case ¢ = oo
or 7 = oo. We shall show that the operator T}, : Y7 — Y5 defined by

Tonf = fr fie = Ty, (@1 f) € Xa (5.3)
k=1

is indeed a (norm) continuous operator. Fix f € Y;. First, we show that the formal
series (5.3) defines an element in S’(Esy). Towards this, fix ¢ € S. From Remark 4.1
implies that supp fr C Ig. Thus

Fr (@) = (@) = fr W (=) @) = fr (W % 0)
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and so by using Hélder inequality with weight v € A, as in (3.7) we get

Z 7% ()l g, < Z 171l x,

T (¢k*¢)H

Ly(C)

< Mz2ks 16k £l x,
k_

< M2 flly, il e, ().

where

7() =210,
Thus (T, f) (¢) for ¢ € S defines a linear map from S into E which is continuous
by well known inclusion

S(E2) CYaC S (E2).
By Remark 4.1, for each j, k € Ny
@5 * Tingy (P * ) = Doy, (@5 % Gk % f) = Gk * Tinyy, (5 % f) -

Since the support of ¢y, intersects the support of ¢; only for |k — j| < 1, applying
Remark 4.1 further gives

k+1 k+1
GrxTof = O Grx Ty, (@55 f) = D> @ixToy, (Bexf)  (54)
j=k—1 j=k—1
k+1
= Z ngojw] (Sok * f) mwk (ka * f)
j=k—1

Hence, ¢ *x T, f € X2 and
1k * T fll x, < 3CA| k= flx, ;

from which and in view of (5.2) it follows that range of T, is contained in Y; and
that norm of T;, as an operator from Y] to Ys is bounded by a constant depending
on the items claimed. Furthermore, T,,, extends Tp; indeed, if f € S(F;) then

F(Tnf) =Y F [T (@1 % )] = Y mibonf

1 k=1

M8

e
Il

= Zm«pkf F(Tof) .

It remains to show only that Tm satisfies (4.7). Since [m(—.)]* : R™ — L(Y5;Y7)
also satisfies condition (5.1), the Fourier multiplier operator T,-(_ ), defined by
(4.6), extends to Tp,«(—) € L (Y5';Y7"). It suffices to show that T}, restricted to Y3
is Ty« (—)- Hence, fix g € Y5, f € B®(E1) and by using (5.4) and (2.3) we have

<T7>7k7,gv f)Yl = Z <¢TL *g, @k * Tmf>Lq,-Y(E2)
n,k€Ng

= > (B0 9 Ty (B % £)) Ly (o) (5.5)
n,k€Ng
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and
(T (-9 Py = D (B * Tone (239, Br * iy (B1)
n,kENg
= > (T yun) Bn % 9) B % Py (51 (5.6)

n,k€Ng

Fix Ko C Ny and choose a radial ¥ € S with compact support such that ¢ is 1
Ko+1

on |J supp ¢i. If n, k€ {0,1,..., Ko}, then by Remark 4.1 we get
k=1

Loy, @k * f) = Tingpupy, (1 % f) = Tongg (@1 * f) (5.7)

and
T (=) () (P * ) = Toe () (Yon () (P ¥ f) = Tone(— Yy () (@ % f) - (5.8)

since mip and m*(—.)v,(+) satisfy the assumptions of Theorem 4.1. Hence, by (5.5)—
(5.8) and by Remark 4.1 we have

The next lemma gives a convenient way to verify the assumption of Theorem 4.8
in terms of derivatives.

By reasoning as Lemma 4.10 and Corollary 4.11 in [11] we obtain

Lemma 5.1. Let 2 <l € Nand o € [p,oc]. If m € C!'(R"; L (Ey, F»)) and

there exists a positive constant A so that
DI, gm0y < A (5.9)

for each k € N, a € Nij with |o| <1 —1. Then m satisfies condition (5.1) of Theorem
5.1.

Corollary 5.1. Let ¢, r € [1,00] and s € R. If m € C' (R"; L (E, E2)) and there
exists a positive constant A so that

sup (1+ ) 1D ml| s 1,y < A (5.10)
x n

for each k € N, a € Nj with |a| <1 and mg(-) = m (2¥71.). Then m is a Fourier
multiplier from Y7 to Yo provided one of the following conditions hold:

(a) Eq and FEj are arbitrary Banach spaces and [ = n + 1;

(b) Ey and Es are uniformly convex Banach spaces and | = n;

(¢) E1 and Fy have Fourier type p and | = [%} +1.

6 Embedding theorems in Besov-Lions type spaces

In this section embedding theorems in abstract Besov spaces in terms of interpolation
of Banach spaces are derived. Note, that embedding of function spaces were studied
e.g. in [1, 2, 4], [12]. Embedding in abstract function spaces in terms of interpolation
were studied e.g in [21-27]. From [23] we have

Lemma 6.1. Let A be a positive operator in a Banach space E, b be a nonneg-
ative real number and r = (r1,72,...,7,) where ry € {0,b}. Let ¢t = (t1,t2, ..., tn), tg
are positive parameters, 0 < tp < T < 00, @ = (a1, a9, ...,an) and | = (Iy, 12, ..., 1),



14

where [j; are positive and oy, are nonnegative integers such that » = |[(a+r) : [| < 1.
For 0 < h < hg <ooand, 0 < p<1-—3 the operator-function

ap+rE

Htk FE )T AT A+ (£9))

is bounded operator in £ umformly with respect to & € R, h > 0 and ¢, i.e there is
a constant C), such that
1)l ) < C

for all £ € R™ and h > 0, where,

Y= (tE) =D trl&l™ +h7h

k=1
Let
n o
o = (041,042,...,04”), | = (ll,lg,...,ln), = T,
k
k=1
Y =B}, (R E), B* (R") = BPM (R™ E(A),E).

Let I = (I1,19,...,1,), where [} are positive integers. Let

1—1] n=nlt Ht

max
knje{1,2,..n} |l 1j

v(l)=

Theorem 6.1. Suppose that the following conditions hold:
(1) v € A, for p € [1,00], E is a Banach spaces with weighted Fourier type v and
€ (1, 2];

(2) t = (t1,t2,costn), 0 <t <T <00, 1 <p<qg<o0,0€]l o

(3) Iy are positive and «y, are nonnegative integers such that 0 < >+ v (1) <1,
and let 0<pu<1-—x—v(l);

(4) A is a p-positive operator in E.

Then an embedding

DaBp, 0, (R” E(A) 7_E) C B;,Q,v (Rn,E (Al_%_:“‘))

is continuous and there exists a constant C,, > 0, depending only on p, such that
the following uniform estimate holds

D) 1Dl s, ity < G [ [l ey + 50 Jully ] (61)

for all u € B4 (R™) and 0 < h < hg < 0.
Proof. We have

| D* UHB* 0.0 (R E(AL=%=1)) = HAl “ MDauHY (6.2)

for all u such that
|1 D* UHBS 0. (R E(AL=7=u)) < OO

On the other hand by using the relation (6.2) we have

AlmOTE Dy = FIFAYT# DY = FTY AR E D



= F LAl 1 (66 Fu = F~1 (i6)® AV 1 Fu. (6.3)
Hence denoting Fu by u, we get from the relations (6.2) and (6.3)

T N e [~ (ig)* ATkl

Similarly, from definition of for all u € Y we have

3

8

!
HuHBl»S(R”) = HUHB;M(Rn;E(A)) + ’tkak“
k=1

= |74l

11, 1~
Bs, (RvE(A) T > Ht’“F H|" “} Hy
” k=1 B

- ||F AT, + zn: Hth—l [(ifk)l’“ a} ‘Y.
k=1

Thus proving the inequality (6.1) for some constants C), is equivalent to proving

77 HF_l (Zg)a Al_”_HaH Bl,s(Rn)

—1 g5 —1 [fse ko —(1- i~
<a, [h“ <HF Adl, +; [ [CNE Hy> + 00 || Fg)
Thus the inequality (6.1) will be followed if we prove the following inequality

n||F~H[(6)* A ]|y < Cul[FH (A + ¢ (1,9l (6.4)

for a suitable C), > 0 and for all u € Y.
Let us express the left hand side of (6.3) as follows

P [ 4, 5
= |[F e A A+ e (A )]
(Since A is a positive operator in E and —1) (¢,£) € S (¢) so it is possible). It is clear

that the inequality (6.4) will be followed immediately from (6.5) if we can prove that
the operator-function

Wy = Wy =11 () () A7 [ (A + )]
is a multiplier in M ;’g ,(E), which is uniformly with respect to i and ¢. In order to
prove that ¥ € M;’g W(E) it suffices to show that there exists a constant M, > 0
with
k|l ps H —
D", <C,k=0,1,.. 6.6
¥ |pPw @), , < € k=018 (6.6)

for all
ﬁ = (517/827 aﬁn) ) ﬁk € {07 1}a Ek 7é 0.
To see this, we apply Lemma 6.1 and get a constant M, > 0 depending only on p

such that
12Ol ) < M,
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for all £ € R™. This shows that the inequality (7.6) is satisfied for 5 = (0,...,0). We
next consider (6.6) for 5 = (51, ...0,) where SBr =1 and S = 0 for j # k. By using
the condition s + v (I) < 1 and well known inequality

iy, a2

Yy tyytypt < C

n
1 +Zy§f] , for yi >0,
k=1

we have
€] [&k] HDkWt(f)HL(E) <M, k=12.n.

Repeating the above process we obtain the estimate (7.6). Thus the operator-
function ¥, 3, (&) is a uniform collection of multiplier with respect to h and t i.e

th’“ € P, C M;:g’,y (E) .

This completes the proof of the Theorem 6.1. It is possible to state Theorem 6.1 in
a more general setting. For this, we use the conception of extension operator.
Let
l l: .
Y =By, (E), B (2) =By (2, E(A),E).

T~ Tpby

Condition 6.1. Let v € A, for v € [1,00]. Assume that E is a Banach spaces
with weighted Fourier type v and o € [1,2]. Suppose A is a @-positive operator in
Banach spaces E. Let a region (2 C R™ be such that there exists a bounded linear
extension operator B from B"* (£2) to B4 ( R") for p, 6 € [1,00].

Remark 6.1. If {2 C R" is a region satisfying a strong [-horn condition (see
[4], § 18) E = C, A = I, then there exists a bounded linear extension operator from
B, (2) = B (£2;,C,C) to

po (R") =By (R"C,C).

Theorem 6.2. Suppose that the all conditions of the Theorem 6.1 and the
Condition 6.1 are hold. Then the embedding

DBY () c By, (2, E (A'77H))

is continuous and there exists a constant €, depending only on p such that
nID gy, (@mar—wsy < Cu [W* [ullpragay + B~ lully | (67)
9,9,y
for all uw € B (2) and 0 < h < hg < c0.

Proof. It suffices to prove the estimate (7.7). Let P be a bounded linear ex-

tension operator from Bj,_ ({2, E) to By, (R"; E) and also from to B (12) to

BYs (R™). Let Py a restriction operator from R™ to 2. Then for any v € Y we have
«
1D UHBQGW(Q;E(AP%*“))

= ||DQPQPUHB;M(Q;E(Alf%w)) <C ”DapuHB;M(RH;E(Alww))

< Cy [h“ 1Pull s ey + pmn) HPUHBE,G,V(RWE)}

< O [ [l gy + =0 fully |
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Result 6.1. Let the all conditions of Theorem 6.2 hold. Then for all u € Y we have
the following multiplicative estimate

« 1—
1D u|’B;79W(Q;E(A1*%*M)) <Cy HUHBé,l;(Q) [Jully - (6.8)

Indeed setting h = ||ul|y . HuHB}’S(Q) in (6.7) we obtain (6.8) .

Result 6.2. If |; = [, = ... = [, = m, then we obtain the continuity of
embedding operators in the isotropic class

B;:fé; (2;E(A)E).
For F = C, A = I we obtain the embedding of weighted Besov type spaces

DeBhs

b (2) C By, (2).

q,9,y

7 B-separable abstract differential equation on R"

Let us consider the equation (1.1).
Condition 7.1. Let

(@) K(&) = > aa (i)™ (&)™ ... (i) € S(p), ¢ < 7;

|a:l|=1

b | 3

(b) There exists a positive constat My so that

[K(€)] > My Y [&]™ for all € € R, € #0.
k=1

Consider the following degenerate abstract differential equation

Lu= Y aoDPlu+Au+ Y AuDPu=f, (7.1)
la:l|=1 lol]<1
where A, A,(z) are linear operators in a Banach space F, a; are complex-valued
functions and

s <7 (@) aa> . Dlel = p{Ipel plev.
Tk

Here, B([]l]ésﬁ/ (2; Ey, E) denote a E-valued Sobolev-Besov weighted space of func-

tions u € By, (R"; E) that have weak derivatives D,[Clk]u € B;,(R"; E) with the
norm

n
R — s n. D[lk] ‘ <
HUHB([;Z,}];‘ (R";Eo,E) ”uHBq,e(R o) +; H B B: ,(R";E)

Remark 7.1. Under the substitution

TE = /Oxk v (y)dy (7.2)
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s n. gy glls
the spaces B, , _ (R"; E), Bp 0

weighted spaces B, , - (R"; E), Bp 05

y=1]r@), 7=50) =] @ ()
k=1 k=1

Moreover, under the substitution (7.2) the degenerate problem (7.1) is mapped to
the nondegenerate problem (1.1) considered in the weighted space B, , - (R"; E).

Let

(R™; E(A), E) are mapped isomorphically onto the
(R™; E(A), E), respectively, where

Y =By, (R E), Yy =By (R E(A),E).

Theorem 7.1. Suppose that the following conditions hold:

(1) Condition 7.1 ishold, s >0,1< ¢, 0 <occand 0 < pu<1—|a:l|;

(2) v € Ay for ¢ € [1,00]. E is a Banach spaces with weighted Fourier type
and p € [1,2];

(4) A is a p-positive operator in F and

Ag(z) A== e 1 (R™ L(E)).

Then for all f € Y and for sufficiently large |A|, A € S (¢) equation (1.1) has a
unique solution u(z) € Yy and

> ID%lly + [[Aully < Ciflly- (7.3)
|a:l|=1

Proof. Firstly, we will consider the leading part of (1.1) i.e. consider the differential-
operator equation

(Lo+MNu= Z D%+ Au+ Au = f. (7.4)
|a:l|=1

Then we apply the Fourier transform to equation (7.4) with respect to z = (x1, ..., )

and obtain
K(€) () + (A + N a(e) = f(9). (7.5)

Since K (§) € S(p) for all £ € R™ therefore, w = w(A, &) = A+ K(§) € S(p) for all
£ € R", i.e. operator A+ w is invertible in E Hence (7.5) implies that the solution
of equation (7.4) can be represented in the form

~

w(z)=F Y (A+w) ' f. (7.6)
It is clear to see that the operator- function ¢y (§) = [A + w]_l is a multiplier in Y
uniformly with respect to A. Actually, by definition of the positive operator, for all
E€R" and A > 0 we get

lex©lle) = |(A+w) 7| < MO +1w) ™ < Mo

Moreover, since Dipx(§) = aran®* (A + w)_2 §k_1, then by using the resolvent prop-
erties of positive operator A we have

€k Dkl L) < lowaal € || (A +wD) 2| < M. (7.7)
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Using the estimate (7.7) we show the uniform estimate

| Déer)], ,, < © (7.8)

for
B = Bla -"aﬁn)a Bl € {071}’ 6 = (gla "'agn)a 51 7é 0.

In a similar way we can prove that the operator-functions ¢, (§) = £%prt, k =
1,2,..,n and gy = Ay, satisfiy the estimates

A+ |Deear@, , <€ 1+l Dieore)], , <o (79)

Then in view of (7.8) and (7.9) we obtain that operator-functions ¢y, @ax, o\ are
multipliers in Y. By (7.9) and in view of

ID%ully = [l = ||~ (a+w) 7 7|

lAully = [~ Adll, = ||F~ [a(4+w)] 7 -

we obtain that there exists a unique solution of equation (7.4) for all f € Y and
the uniform estimate holds

Y D%l y + [Aull y < C ISl y - (7.10)
|a:l]=1

We consider the differential operator G generated by problem (7.4), that is

D (Gy) = Yo, Gou = Z D%y + Au.
locl]=1

The estimate (7.10) implies that the operator Gy + A has a bounded inverse from
Y into Yy for all A > 0. Let G denote the differential operator in Y generated by
problem (1.1). Namely,

D(G) =Yy, Gu=Gou+ Lyu, Liu= Z Ag (z) D*u. (7.11)
locl|<1

In view of (4) condition, by virtue of Theorem 6.1, for all u € Y we have

Liu Ay (z) D% Al-lasll=n pay,
ILaully < > | y <
locl|<1 locl]<1

‘Y (7.12)

<C|h D2 IID%ully + [l Aully | + A0 flully
locl|=1

Then from estimates (7.10) and (7.12) for u € Yy we obtain
[Lrully < € [ [(Go + Mully + 50 ully] (713)
Since |Jully = % [[(Go + ) u — GouHY for all u € Yy we get

lull, < = [IGo+ Nl + 1 Goral, ] (7.14)

YED
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«
Goull, <€ | Y0 1Dl + lAulp:

o=t

From estimates (7.12) — (7.14) for all u € Y, we obtain
[ Liully < CR* |[(Go + N ull, +C1 AR [(Go + ) ull, . (7.15)

Then by choosing h and X such that Ch* < 1, Cy [A|"' h=("#) < 1 from (7.15) we
obtain the uniform estimate

-1
HL1 (Go+ ) HL(E) <1 (7.16)
Using the relation (7.11), estimates (7.10) and (7.16) and the perturbation theory
of linear operators we obtain that the differential operator G + X is invertible from
Y into Y. Hence, inequality (7.3) is valid and this complete the proof.

Result 7.1. The Theorem 8.1 implies that G has a resolvent operator (G + ) ™!
for |arg A| < ¢ and the following uniform estimate holds

Sl HD“ (G+>\)_1HL(Y) + HA G+ A)_lHL(Y) <cC.
last] <1

Let

s n l],s n
Y =By (R E), Yo = By’ (R E(A),E).

Let @ denote the operator in By , (R™, E) generated by problem (7.1). Theorem

7.1 and Remark 7.1 imply
Result 7.2. Let all conditions of Theorem 7.1 hold. Then for all f € Y, A € S (p)

and for sufficiently large |A|, the equation (7.1) has a unique solution v € Yy and
the coercive uniform estimate holds

£ A o @ ] 26
jet|<1

Remark 7.2. The Result 7.2 implies that G is a positive operator in Y. Then
by virtue of [28, §1.14.5] the operator G is a generator of an analytic semigroup in
Y for p € (5,7).
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