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Abstract. In this paper we prove the boundedness of the (p, p)-admissible multi-sublinear
singular integral operators T;,, from product generalized local Morrey space LM,EK ‘30}1 X... X

LM;fL“,g,m to LM;fo"} with 1/p =1/p1+...+1/py. In all cases the conditions for the bound-
edness of T,,, are given in terms of Zygmund-type integral inequalities on (¢1,...,¢Ym, ¢),
which do not require any assumption on monotonicity of ¢1,..., @, in r.
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1 Introduction

Multilinear Calderén-Zygmund theory is a natural generalization of the linear
case. The initial work on the class of multilinear Calderén-Zygmund operators was
done by Coifman and Meyer in [5] and was later systematically studied by Grafakos
and Torres in [10,11].

The classical Morrey spaces, introduced by Morrey [25] in 1938, have been studied
intensively by various authors and together with Lebesgue spaces play an important
role in the theory of partial differential equations. Although such spaces allow to
describe local properties of functions better than Lebesgue spaces, they have some
unpleasant issues. It is well known that Morrey spaces are non separable and that
the usual classes of nice functions are not dense in such spaces. Moreover, various
Morrey spaces are defined in the process of study. Guliyev, Mizuhara and Nakai [12,
23,26] introduced generalized Morrey spaces My, ,(R") (see, also [13,14,21,27]). In
[14] is defined the generalized Morrey spaces M, , with normalized norm

1fllm, = sup Oso(m’r)_l\B(x,r)l_l/” 112 (B )

zeR™ r>

where the function ¢ is a positive measurable function on R™ x (0, 00). Here and
everywhere in the sequel B(z,r) is the ball in R™ of radius r centered at x and
|B(x,r)| = v,r™ is its Lebesgue measure, where v, is the volume of the unit ball in
R™.
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2 (p, p)-admissible multi-sublinear singular integral operators in ...

For z € R™ and r > 0, we denote by B(x,r) the open ball centered at x of radius
r, and by cB(a?, r) denote its complement. Let |B(x,r)| be the Lebesgue measure of

the ball B(x,r). We denote by ? the m-tuple (f1, f2,. > fm), ¥ = (1, ..., yn) and
dy = dy; - dyn.
Let 7 € Lé‘;c(R”) X oo X Lé‘;i (R™). The multi-sublinear maximal operator M,

is defined by
Mm? _SupH|BCCT|/ ‘f’l y’l |dyl

In [11] Grafakos and Torres studied the multilinear Calderén-Zygmund operator
which can be written for z ¢ ML suppf; as

Km(7)(1:) = /( e Kz, g1, ym) f1(y1) - - frn(ym) dyrdyz . . . dym,

where K(x,y1,...,Ym) is the kernel function defined of the diagonal z = y; =
- ym = in (R")"™ satisfying

mn

|K(y0ayl7"'aym > ( Z |yk _yl|> )
k,l=0

o 1 -
and whenever 2|y; yj| <3 OE}CELX ly; — Ykl

| €

cily; — yj

m mn-+e’
(5l —ul)

k,1=0

|K(y077yja7ym)_K(y0,7y§aaym)’ <

for some € > 0 and all 0 < j < m. Grafakos and Torres [11] proved that the operator

Km(7) is bounded from L, (R") x...x L, (R"™) to L,(R™) for p; > 1(i = 1,...,m)
and 1/p =1/p1+...4+1/pm, and bounded from L; (R") x...x L1(R") to L1 (R").

It is well known that multi-sublinear maximal operator and multilinear Calderén-
Zygmund operators play an important role in harmonic analysis (see [4,8,9,11,24]).
Let T}, be a multi-sublinear operator.

Definition 1 ((p, p)-admissible multi-sublinear singular integral operator). Let multi-
sublinear operator T, will be called (p, p)-admissible multi-sublinear singular integral
operator, if:

1) T, satisfies the size condition of the form

Xy (2) | T (leCB<z,zr>’ Y meCB(z,Zr)> (=)

fl(yl) ce fm(ymﬂ
<C / ‘ d 1
= Ooten ) (°Bz2r)" 1z =41, 2 = ym) ™" ’ W

for x € R® and r > 0;
2) Ty, is bounded from product Ly (R™) x ... x L, (R™) to L,(R™).
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Definition 2 (weak (p, p)-admissible multi-sublinear singular integral operator). Let
multi-sublinear operator T,, will be called the weak (p,p)-admissible multi-sublinear
singular integral operator, if:

1) T,,, satisfies the size condition (1).

2) Ty, is bounded from product Ly, (R™) x ... x L, (R") to the weak W L,(R™).

In this study, we prove the boundedness of the (p, p)-admissible multi-sublinear

singular integral operators 1, from product generalized local Morrey space LMIQ{IZ, ?0}1 X

X DMEPE to LME™Y i 1 < piy.. pm < 00 and 1/py + -+ 1/pm = 1/p.
Also we prove the boundedness of the weak (p,p)-admissible multi-sublinear sin-

gular integral operators T,, from the space LM];{i fp}l X ... X LM];{,%%M to the weak

space WLM};{pr}, if 1 <pi,....,pm <00, 1/p1+---+1/py = 1/p and at least one
exponent p; equals one.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A & B and say that A and
B are equivalent.

2 Preliminaries

For x € R™ and r > 0, we denote by B(x,r) the open ball centered at x of radius r, by
| B(x,r)| the Lebesgue measure of the ball B(z, ), and by EB(a:, r) its complement.

Morrey spaces M, x = M, »(R"™) introduced by C. Morrey [25] in 1938, they are
defined by the norm

_A
1,y = sup 2l fllL, B
’ Tz€R™, r>
where 0 < A <n, 1 <p<oo.
We also denote by WM, x = WM, ,(R") the weak Morrey space of all functions

f € WLP(R™) for which

A
Ifllwag,, = sup 7 2l fllwe, () < oo,
A zeRn, 10

where WL, denotes the weak L,-space. These spaces play an important role in the
study of local properties of the solutions of partial differential equations, together
with weighted Lebesgue spaces, see [7], [22].

We define the generalized local Morrey spaces as follows.

Definition 3 Let p(x,r) be a positive measurable function on R™ x (0,00) and 1 <
p < 00. We denote by My, , the generalized Morrey space, the space of all functions

fe L;,OC(]R") with finite quasinorm
1
1fllaz,, = xe&gg»s@(xw)’l 1B(, )| 7 | £l 1, (B

Also by WM, , = WM, ,(R") we denote the weak generalized Morrey space of all
functions f € WLLOC(R”) for which

_1
I fllwag,, = sup ol r) Bz, r)| "7 || fllwe, (B < oo
zeR™,r>0
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According to this definition, we recover the Morrey space M, x and weak Morrey
A=n

space WM, y under the choice ¢(z,r) =1 7 :

Mp\ = Mp,p A—n WMp\= WMy, Ao -
p(z,r)=r P p(a,r)=r P

Definition 4 Let o(x,r) be a positive measurable function on R™ x (0,00) and 1 <
p < co. We denote by LM, , = LM, ,(R") the generalized local Morrey space, the

space of all functions f € L}JOC(R") with finite quasinorm
_1
1flLage = Sup 0(0,7) 71 1B, )7 | fll,(B0.s)-
T

Also by WLM, , = WLM, ,(R") we denote the weak generalized Morrey space of
all functions f € WL;QOC(]R") for which

_1
I fllwen,,, = Slilgw(oﬂ’)*l 1B, ") * | fllwr,B0r) < oo

Definition 5 Let p(x,r) be a positive measurable function on R™ x (0,00) and 1 <
p < oo. For any fixed xo € R™ we denote by LM];{pr} = LM,;{f;?}(R”) the generalized
local Morrey space, the space of all functions f € L;,OC(]R”) with finite quasinorm

11 pggeer = 170 + ),

Also by WLMéfOO} = WLM;‘?}(R”) we denote the weak generalized Morrey space
of all functions f € WL;)OC(R”) for which

1y pagtzor = 10+l Lag,,, < oo

According to this definition, we recover the local Morrey space LM ];{9;0} and weak
A—n
local Morrey space WLMgf\O} under the choice ¢(zg,r) =71 7 :
{zo} _ {zo} _
LM, )" = LMI;{fPO} A=n WLM, " = WLM;}{pr} A=n .

plwo,r)=r" 7 plwor)=r 7

Wiener [28,29] looked for a way to describe the behavior of a function at the
infinity. The conditions he considered are related to appropriate weighted L, spaces.
Beurling [3] extended this idea and defined a pair of dual Banach spaces A, and
By, where 1/q¢ +1/¢’ = 1. To be precise, A, is a Banach algebra with respect to
the convolution, expressed as a union of certain weighted L, spaces; the space B is
expressed as the intersection of the corresponding weighted L, spaces. Feichtinger
[6] observed that the space B, can be described by

_kn
1fllg, =sup2™ o | fXkllL, @) (2)
k>0
where xo is the characteristic function of the unit ball {z € R™ : |z| < 1}, xj is the

characteristic function of the annulus {z € R" : 2¥=1 < || < 2%} k =1,2,.... By
duality, the space A4(R"™), called Beurling algebra now, can be described by

X _kn
1F1La, = Y2 o L xwllzy ey (3)
k=0
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Let B,(R") and A,(R") be the homogeneous versions of B,(R") and A,(R™) by
taking k£ € Z in (2) and (3) instead of k > 0 there.

If A <0or A>n, then LM];{?O}(R”) = 6, where O is the set of all functions

equivalent to 0 on R™. Note that LM, o(R") = L,(R") and LM, ,,(R") = B,(R").

pru = LMp,p WBP# =WLMp,

P(0r)=rem’ p(0r)=rhn

Alvarez, Guzman-Partida and Lakey [2] in order to study the relationship be-
tween central BMO spaces and Morrey spaces, they introduced A-central bounded
mean oscillation spaces and central Morrey spaces Bp,u(R”) = LMy pinpu(R™),
p€[=3,00. If p < =% or u > 0, then B, ,(R") = O. Note that Bp’_%(R") = L,(R")
and B, o(R") = B,(R"). Also define the weak central Morrey spaces WBP,#(R”) =
WLMP,nJrnpu (Rn) :

The following statements, containing results obtained in [23], [26] was proved in
[12,14] (see also [1,13,20]).

Theorem A. [12,13] Let zp € R", 1 < p < o0 and (¢1,p2) satisfy the condition

o0 dt
/ ©1(zo, 1) " < C pa(zo,T), (4)

where C' does not depend on xg and r. Then the Calderdn-Zygmund operator K = K1

is bounded from LM;,f,f’l} to LMZ;{prQ} for p > 1 and from LMi{7:fp°1} to WLMI{ZZ}.
The following statements, containing results in Theorem A was proved in [1], see
also [15,20].

Theorem B. Let 29 € R", 1 < p < 0o and (¢1,p) satisfy the condition

< T 7 < C (P($07 T)a (5)
tp

TN f =
/oo ess Inf 1 (2o, 5)s7
.

where C' does not depend on xo and r. Let the operator K is bounded from LMéfpol}

) ot o oA

3 (p, p)-admissible multi-sublinear singular integral operators in the

product spaces LM;:”,‘ZO}I X oo X LM;fl‘fs}om

In this section, we prove the boundedness of the (p, p)-admissible multi-sublinear sin-
gular integral operators T}, from product generalized local Morrey space LMI;{II, 20}1 X

. X LMéi?g];m to LMépr}, if 1 <p1,...,pm <ocand 1/p; + -+ 1/py = 1/p.
Also we prove the boundedness of the weak (p,p)-admissible multi-sublinear sin-
gular integral operators T, from the space LMéfi 2,}1 X oo X LMé,i?E;m to the weak

space WLMé,fpo}, if 1 <pi,....,pm <00, 1/p1+ -+ 1/py = 1/p and at least one
exponent p; equals one.

We will use the following statements on the boundedness of the weighted Hardy
operators

Hyg(r) == /OO g(t)w(t)dt, 0 <t < oo

where w is a fixed function non-negative and measurable on (0, c0).
The following theorem was proved in [16,17].
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Theorem 1 [16,17] Let vy, vy and w be positive almost everywhere and measurable
functions on (0,00). The inequality

ess sup va(t)Hyg(t) < Cess sup vy (t)g(t) (6)
t>0 >0

holds for some C' > 0 for all non-negative and non-decreasing g on (0,00) if and
only if
o0
d
B :=ess Supvg(t)/ _wis)ds < 0
t

>0 ess sup v1(7)
S<T<O0

Moreover, the value C = B is the best constant for (6).
Remark 1 In (6) it is assumed that 0- oo = 0.

The following Guliyev local estimates are valid (see [14,18]).

Lemma 1 Let xg € R", m>2, 1 <p1,...,pm < oo with 1/p=1/p1+ ...+ 1/pm.
If T,,, be a (p,p)-admissible multi-sublinear singular integral operators, then for
D1, .-+, Pm > 1 the inequality

. dt
”Tm(7)HLp(B($Oﬂ")) S-’T‘p/2 HHfZHLP B(zo,t) t T—’z 7 (7)

holds for any B(xo,r) and for all ? € LZ’f(R") X ... X Lé‘;f (R™).
If T,,, be a weak (p,p)-admissible multi-sublinear singular integral operators and
at least one exponent p; equals one, then the inequality

n _n dt
(Pl o 75 [ HuszL oy 52 €

~—

holds for any B(xo,r) and for all 7 € Lloc (R™) x ... x L;f,‘:s (R™).

Proof. Let pi,...,pm € (1,00), 1/p = >}~ 1/py. For arbitrary x € R", set B =
B(xz,r) for the ball centered at x with a radius r, 2B = B(x,2r). We represent

= (f1,--., fm) as
fJ:fJO_‘_f]OO7 fjozf]XQBv fJOOZfJXC@B)a J=1...,m (9)

Then we write

Hfz(yz):H fo yz +foo(yz)) - Z flﬂl(yl)"'fr%n<ym)
i=1 i=1 ﬁl,...,ﬁme{0,00}
=[[Rw)+ > A £ (ym),
7,:1 Bl,...,,Bm

i

where each term in ) | contains at least one §; # 0. Since T}, is an m-linear operator,
then we split Tm(?) as follows:

T < [T B+ | 0 Tuls? s £ ),
B1yeesBm
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/

where £1, ..., Bm € {0,00} and each term in ) contains at least one [3; # 0. Then,

)

<NTom(f2, ..., O
Lp(B(m))_H (fi Tl L, (B¢

’

+H S Ta(P ,ﬁm)H

< Jo ¢ JBBm
ﬂ B LP(B(:E?T)) o Z
L1seeey m

Thus,

J°=>|Tm7‘HLp oy < 1T 7D)

M, gy
<HHf°HLp(Rn NHHszLp Bla.20)

On the other hand, we have
HMMmeHIHM%wiwm
i=1 i r
. dt
gw\/IHm% 5ot s

" 1 -1 dt
sﬂwmélﬂm%wwmmnm
i=1 Toi=1

t
1[5 _1dt
<18 [ Ty, e 1Bl - (10)
2r i=1

Thus

7 5 1B ) memxmmmnm7 (1)

For the other terms, let us first deal with the case when gy =--- = ,Bm = 0.

When |z — y;| < r, |z — yi| > 2r, we have 2|z —yi| < |z — yl| < | — y;|, and

therefore,

|z —y1| + ...+ |z — ym|)™

/ H | fi(yi)] '
’L
CB (z 2r) i |:E —Yi ‘n

T (£, -, F2)(2)] 5/("3( , )m( F1(1) - Fon(ym)] o

o8] 8] |f’L .%
I S it = gy L1 ot o e

— yi|?

fz yz
ammn/ H‘ "
B(;t 2T ’

$_yz|n
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By Fubini’s theorem we have

| fi(yi)] / / dt
Yi = i\Yi d i
/CB x2r H |J,‘ -y ’n (CB(:J:, 7“) m H ‘f y ‘ Yi il 7571—5—1

=1

dt ”
~ fiyi dyiS/ / fi(yi)ldyi—.
/zr H /|r wi)ldgi gy < [ H o i)

Applying Holder’s inequality, we get
|fi(y:) -L dt
H E l—gj B Yi S H 1 fillL,, (B 1B, )] s

/CBwr) ey

_1dt
< [T e B0 (12)
T oi=1

Moreover, for all p; € [1,00), i =1,...,m the inequality

HTm(ffo7 ey frono)HLp(B(xJ))

1 [0
< |B(a, )| / T 150, (5o 1B, )
T oi=1

_ L dt
e (13)

is valid.

We now consider the cases when exactly [ of the ;’s are oo for some 1 <1 < m.
We only give the arguments for one of these cases. The rest are similar and can
easily be obtained from the arguments below by permuting the indices. To this end
we may assume that 81 = ... = §; = oo and fj41 = ... = B = 0. Recall the fact

that |z — y;| = |z — yi| for z € B(z,r), y; € cB(x,Zr) and 1 <14 <[. We have

‘Tm(ffov .- '7floo7flq&-17 ce 7f791)(z)‘

~ (EB(I,QT‘))Z (B(x,Zr))m_l (|IL‘ - yl‘ T+t |‘T - ymDmn
</ Lfi(yr) - fuly)| dyr - .- dy,
~J(C@en) (=l + .+ —u)m

x /(B( 2 ))m—l | f1e1(Wit1) - - fn(Ym) | Y1 - - - dym

| fi(ys)] /
/EB(L'QT) H \x—yzln H | fi(yi) | dy-

i=l+1

By Fubini’s theorem we have
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|fi(yi)] /
i\Yi d i
/(GB(x 2T))l,n| y2|n H B(z,2r) |f v ’ v

=Il+1
l
%/ H (i) yz/ n+1 H / | fi (i) |dys
x2r =1 |z—yi| i=l+1 B(z,2r)
oo !

%/ H | fi(yi)ldyi — n+1 H / | fi(ys)|dy;

2r 2r<|z—y;|<t imit1 ¥ Blx,2r)

| fiyi)ldy / | fiyi)ldy
/r i 1/B(mt o Zthrlz];i[-l B "

Applying Hélder’s inequality, we get

‘fz Yi
/QBH|JU—y|” H/mr | fi(yi)|dy:

i=l+1

o dt
<[ HufzuLp (5 1B 017 o

/ anuLm oy 1B 077 (14)

From (14) we get
”T (ffov,flooaflqi—lv)f?n)HLp z,r))

Afilwa)l /
<B i zdz
[B(,m) H/BWT P w11 [ Il

i= l+1Bm2r
< L dt
|B(x,r) . H 1|z, Bty | Bz, )] P T

We now proof the second part. For any ball B = B(x,r) C R", decompose

fi=f2+ 7, where f? = fixen, 2B = B(x,2r), i =1,...,m. Then for any given
A > 0, we can write

({ € Bla.r) [ Tu(F)w)] > A))?
< ({y€ Bla,r) : [Tu(£0,. ... ) )| > A/2m}) v

+Z({y€B($’T) : |Tm( 1817-~7 ?nm)(y)’ >)\/2m} %: _|_ZJ517 Bm

!

where each term in ) contains at least one 3; # 0. We have

= HTm(JFg)HWLp(B(z,r)) < HTm(ﬁ)HWLP(R")

m

ST, @ = TT1illL,, (B@arn)-
i=1 =1
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We have the following estimate:

_1dt
HTm( . fﬁm)”LP (z,r) S < [B(w,7) / H”fHLp B(z,t)) |B(x,t)| »i e

Then

Zl?””"ﬁm = Z T (£ - I WL ()

<SS NT (- F e By
< RK 5 dt
|B(z,7) HufHLp (B | Bz D)7 7.

Now we give the boundedness of multi-sublinear singular integral operators in
product generalized local Morrey spaces.

Theorem 2 Let g € R", m >2,1<py,...,pm <ocwithl/p=1/p1+...+1/pn
and (p1,...,pm,p) satisfies the condition

n

t<s<

oo ess inf [T ¢;(zo, s)s?
— it S (o) (15)

tPH

where the implicit constant does not depend on r.

If T,, be a (p,p)-admissible multi-sublinear singular integral operators, then the
operator Th, is bounded from product space L]W];{1 ?p}l SoX LMéi?;m to LM;TDO} for
pi>1,1=1,.

If T be a weak (p, p)-admissible multi-sublinear singular integral operators, then
the operator T, is bounded from product space L]\@{fffp}1 X.. ‘XLMéri?Q};m to WLMngO}
forpi>1,i=1,...,m, min{p,...,pn}t =1

Proof. Let 1 < py,...,pm < oo and ? € LMgﬁ?p]; X ..o % LMI}{fffim. By Theorem 1

and Lemma 1 with va(r) = ¢(z0, 7)1, v1(r) = [T%; wi(zo,7) "1 ?i, we have

dt
T (Pl gt S 5P (0, 7)™ / ananp(B(zO,t)tm

r>0 t

r>0

m
< SUPH% 20,7) " | fill Ly, (B@ory = | [ Fill gt -
i=1 R

When p; > 1,4 = 1,...,m, min{py,...,pn} = 1, the proof is similar and we
omit the details here.

From Theorem 2 we get the following corollary about boundedness of multi-sublinear
maximal operator and multilinear singular integral operators on product local gen-
eralized Morrey space.

Corollary 1 Letxg € R", m>2, 1 <py,...,pm <oowithl/p=1/p1+...+1/pm
and (@1, ... ,%9m,p) satisfies the condition (15). Then the operators M,, and K,
are bounded from product space LMI;{ﬁfo}l X .. X LM;:S%M to LM;}‘ZO} for pi > 1,
i =1,...,m, and from product space LMéifp}l X ... X I'J]\Jp{ffg}om to WLMp{pr} for
pi>1,i=1,...,m, min{p1,...,pm} = 1.
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From Theorem 2 we get the following corollary about boundedness of (p,p)-
admissible multi-sublinear singular integral operators on product generalized Morrey
space.

Corollary 2 Let m > 2, 1 < p1,...,pm < o0 with 1/p = 1/p1 + ...+ 1/py, and
(1, -+, 9m,p) satisfies the condition

oo ess inf [T pi(x, s)sp% dt
Ja L <o) (16)
T te
where the implicit constant does not depend on x and r.

If T,,, be a (p,p)-admissible multi-sublinear singular integral operators, then the
operator Tp, is bounded from product space My, o, X ... XMy, o to My, forp; > 1,
1=1,...,m.

If T,,, be a weak (p, p)-admissible multi-sublinear singular integral operators, then
the operator Ty, is bounded from product space My, o, X ... x My, o to WM, , for
pi>1,i=1,...,m, min{py,...,pm} = 1.

From Corollary 2 we get the following corollary proven in [18] (see also [19]) about
boundedness of multi-sublinear maximal operator and multilinear singular integral
operators on product generalized Morrey space.

Corollary 3 Let m > 2, 1 < p1,...,pm < oo with 1/p = 1/p1 + ...+ 1/py, and
(¢1,--.,0m,p) satisfies the condition (16). Then the operators My, and K,, are
bounded from product space Mp, o, X ... X My, .. to M, forp; >1,i=1,...,m,
and from product space My, o, % ... X My o to WM, , forp; >1,i=1,...,m,

min{py,...,pm}t = 1.
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