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Abstract. This paper focuses on the problem of exponential stability of certain classes of dynamic per-
turbed systems on time scales using time scale versions of some Gronwall type inequalities. We prove
under certain conditions on the nonlinear perturbations that the resulting perturbed nonlinear initial
value problem still acquir uniformly exponentially stable, if the associated time-varying linear system
has already owned this property. Furthermore, an example is given to illustrate the applicability of the
obtained results.
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1 Introduction

The theory of time scales, which has recently received a lot of attention, was introduced
by Hilger [17] in his Ph. D. thesis in 1988 in order to unify continuous and discrete anal-
ysis. A great deal of work has been done since 1988, unifying the theory of differential
equations and the theory of difference equations by establishing the corresponding results
in time scale setting. A time scale T is an arbitrary nonempty closed subset of the set of
real numbers R. During the last decades, time scale methods have rapidly been developed,
and have received a lot of attention by several authors, not only to unify continuous and
discrete processes, but also help reveal diversities in the corresponding results. The analysis
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of nonlinear perturbations of linear systems is not only important for its own sake but also
has a broad range of applications.

One of the analytic methods of the perturbation theory was referred to integral inequal-
ities to quest some type of stability. Latterly, there have been several papers [2,3,5,8–12,
14–16,19–22], studying various types of stability of dynamical time scale systems.

In this paper we investigate uniform exponential stability for nonlinear perturbed sys-
tems on time scales by using the Gronwall- Bellman-Bihari type integral inequality.

The paper is organized as follows: in Section 2, provides a brief review of the time scale
theory and integral inequalities which play an important role in our analysis. In Section 3,
contains the statements and proofs of our main results.Section 4 shows the applicability of
the theoretical results by numerical example.

First, we will briey mention some basic definitions and results of time scale calculus for
reader’s convenience, as they are detailed in the books of M. Bohner and A. Peterson [6,7].

2 Preliminaries

2.1 Time scale calculus
In what follows, R denotes the set of real numbers, R+ = [0,∞) is the given subset of

R and T is an arbitrary time scale. The forward and backward jump operators σ, ρ : T→ T
are defined by σ(t) := inf {s ∈ T : s > t}, ρ(t) = : sup {s ∈ T : s < t}. If σ(t) > t,
we say that t is right-scattered, while if ρ(t) < t; we say that t is left-scattered. Also, if
t < supT and σ(t) = t; then t is called right-dense, and if t > inf T and ρ(t) = t, then t
is called left-dense. A function f : T→ R is called rd-continuous provided it is continuous
at right-dense points in T and left-sided limits exists( finite) at left-dense points in T and
denotes by Crd = Crd(T) = Crd(T,R). The set Tk which is derived from the time scale
T as follows: If T has a left-scattered maximum m, then Tk = T − {m}, otherwise, Tk
= T. The graininess function µ : T→ [0,∞) is defined by µ(t) := σ(t) − t. A function
f : T → R is called regressive if 1 + µ (t) p (t) 6= 0 for all t ∈ Tk. < = R(T,R) denotes
the set of all regressive and rd-continuous functions, we define the set of all positively
regressive functions by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T} .
Also we define the interval [a, b] means the set {t ∈ T : a ≤ t ≤ b} for the points a < b

in T. If b = +∞, we denote T+
a = [a,+∞[ .

Definition 2.1 If p ∈ R(T,R), then we define the generalized exponential function ep (t, t0)
by

ep (t, t0) = exp

(∫ t

t0

ξµ(τ)(p (τ))∆τ

)
for t, t0 ∈ T,

where ξh(z) is the cylinder transformation given by

ξh (z) =
1

h
log (1 + zh) , if h 6= 0,

ξ0 (z) = z, if h = 0,

Corollary 2.1 [6] Let p ∈ < and t, t0, s ∈ T, then
(i) e0 (t, t0) ≡ 1 and ep (t, t) ≡ 1,
(ii) ep (σ (t) , t0) = (1 + µ (t) p (t)) ep (t, t0),
(iii) ep (t, t0) ep (t0, s) = ep (t, s),
(iv) ep (t, t0) = 1

ep(t0,t)
,

(v) If p ∈ <+ then ep (t, t0) > 0 for all t ∈ T.
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Definition 2.2 A function w : R+ → R+ belong to the class Ĥ if

(H1) w(u) is nondecreasing and continuous for u ≥ 0 and positive for u > 0,
(H2) there exists a continuous function φ on R+ with w(αu) ≤ φ(α)w(u) for α > 0, u ≥ 0.

Definition 2.3 [13] A function w : R+ → R+ is said to belong to class F, if it satisfies the
following conditions

w(x) > 0 is nondecreasing and continuous for x ≥ 0,

1

a
w(x) ≤ w

(x
a

)
for a > 0.

Lemma 2.1 [2] Suppose that y, f, g, h,m ∈ Crd (T,R+) . If

y(t) ≤ f(t) + g(t)

∫ t

a
{h(s)y(s) +m(s)}∆s for all t ∈ T+

a ,

then

y(t) ≤ f(t) + g(t)

∫ t

a
{h(s)f(s) +m(s)} exp

[∫ t

σ(s)
h(τ)g(τ)∆τ

]
∆s for all t ∈ T+

a .

Lemma 2.2 [1] Suppose that g is continuous and nondecreasing, p is rd-continuous and
nonnegative, and y is rd-continuous. Let w be the solution of

w∆ = p(t)g(w(t)), w(t0) = β

and suppose there is a bijective function G with (G ◦ w)∆ = p. Then

y(t) ≤ β +

∫ t

t0

p(τ)g(y(τ))∆τ for all t ∈ T

implies

y(t) ≤ G−1
[
G (β) +

∫ t

t0

p (τ)∆τ

]
for all t ∈ T.

2.2 Stability definitions
For our purpose, we will assume that the time scale T is unbounded above, i.e.,

supT = +∞. Let t0 ∈ T and t ∈ T+
t0

. Let us consider time scale dynamic equations of
the form

x∆(t) = f(t, x(t)),
x(t0) = x0.

(2.1)

where x : T+
t0
→ Rn is the state vector and f : T+

t0
× Rn → Rn is a rd-continuous vector-

valued function. It is assumed that the conditions for the existence of a unique solution of
system (2.1) are satisfied. For the existence, uniqueness and extensibility of its solutions,
one can refer to [6]. Designate any solution of (2.1) with the initial state (t0, x0) by x(t) =
x(t, t0,x0). The Euclidean norm of an n × 1 vector x(t) is defined to be a real-valued
function of t and is denoted by ‖x(t)‖ =

√
x(t)Tx(t).

Definition 2.4 [7] A mapping A : T → Mn(R) is called regressive if for each t ∈ Tk the
n× n matrix In + µ(t)A is invertible, where In is the identity matrix.

The class of all regressive and rd-continuous functions A from T to Mn(R) is denoted
by CrdR(T,Mn(R)).
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Definition 2.5 [18] Let t0 ∈ T. The unique matix-valued solution of the IVP

X∆ = A(t)X X(t0) = In, (2.2)

where A ∈ CrdR(T,Mn(R)), is called the matix eponential function and it denoted by
φA(t, t0).

Accordingly, the matrix function φA(t, t0) possesses the following two properties:

φ∆A(t, t0) = A(t)φA(t, t0),

φA(t0, t0) = In.

This matrix function is referred to as the state transition matrix, and our assumption in
the nature of A(t) turns out that the state transition matrix exists and is unique.

Theorem 2.1 [6] Suppose A,B ∈ CrdR(T;Mn(R)) are matrix-valued functions on T,
then

(i) φA(t, r)φA(r, s) = φA(t, s) for all r, s, t ∈ T,
(ii) φA(σ(t), s) = (I + µ(t)A(t))φA(t, s),
(iii) If T = R and A is constant, then φA(t, s) = eA(t, s) = eA(t−s) ,

(iv)If T = hZ, with h > 0, and A is constant, then φA(t, s) = (I + hA)
(t−s)
h .

Definition 2.6 [12] The system of dynamic equations (2.1) is said to be uniformly expo-
nentially stable if there exist constants γ ≥ 1 (independent of t0) , λ > 0 (−λ ∈ <+) such
that

‖x(t)‖ ≤ γ‖x0‖e−λ(t, t0).

Definition 2.7 [9] The system of dynamic equations (2.1) is said to be h-stable if there
exist a nonincreasing bounded rd-continuous function h : T+

t0
→ R , a constant γ ≥ 1 such

that, any solution x(t) = x (t, t0, x0) of equation (2.1) satisfies

‖x(t)‖ ≤ γ‖x0‖h(t) (h (t0))−1 for all t ∈ T+
t0
,

(here (h(t))−1 = 1
h(t)).

Now, we give the following characterization in terms of the transition matrix for system
(2.2).

Theorem 2.2 [12] The system of dynamic equations (2.2) is uniformly exponentially stable
with respect to t ∈ T+

t0
if and only if there exist constants λ > 0 (−λ ∈ <+) and γ ≥ 1

such that
||φA(t, t0)|| ≤ γe−λ(t, t0) for all t ∈ T+

t0
.

Theorem 2.3 [9] The system of dynamic equations (2.2) is h-stable if there exist a non-
increasing bounded rd-continuous function h : T+

t0
→ R, a constant γ ≥ 1 such that

||φA(t, t0)|| ≤ γ‖x0‖h(t) (h (t0))−1 for all t ∈ T+
t0
.

The notion of h-stability was introduced by Pinto [22] which is an extension of the
notions of exponential stability and uniform stability. For the various definitions of stability,
we refer to [12].
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3 Main Results

In this study, we consider, a particular class of systems ( 2.1), i.e the system

x∆(t) = A(t)x+ F (t, x(t)),
x(t0) = x0,

(3.1)

where x0, x ∈ Rn, F (t, 0) = 0, t0 ∈ T, and F : T+
t0
× Rn → Rn is an rd-continuous

function. F represents the disturbance of the time-varying linear system :

x∆(t) = A(t)x,
x(t0) = x0, x0 6= 0.

(3.2)

Theorem 3.1 [2] Consider the regressive time-varying perturbed system of the form (3.1).
Then, every solution can be written in the form

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(s))F (s, x(s))∆s, t ∈ T+
t0
. (3.3)

Theorem 3.2 Suppose that the linear system (3.2) is uniformly exponentially stable with
positive constants λ and γ and

F (t, x) ≤ g(t)w(‖x‖), t ∈ T+
t0
, (3.4)

where g is a positive and rd-continuous,and w ∈ Ĥ with corresponding multiplier function
Φ. Let r be the solution of

r∆(t) = p(t)w(r(t)), r(t0) = γ

and assume that there is a bijective function W satisfying

(W ◦ r)∆ = p with
∫ ∞
t0

p(s)∆s <∞

for all t0 ∈ T, where p(t) =
γe−λ(t0,σ(t))
‖x0‖ g(t)w

(
‖x0‖

γe−λ(t0,t)

)
. Then the perturbed system

(3.1) is uniformly exponentially stable.

Proof. For any t0 and x0 = x(t0) and from (3.3), the solution of the perturbed system (3.1)
is given by :

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(s))F (s, x(s))∆s.

By taking the norms of both sides and taking into account the fact that (3.2) is uniformly
exponentially stable, we obtain

‖x(t)‖ ≤ ‖ΦA(t, t0)‖ ‖x0‖+
∫ t

t0

‖ΦA(t, σ(s))‖ ‖F (s, (x(s))‖∆s

≤ γe−λ(t, t0) ‖x0‖+ e−λ(t, t0)

∫ t

t0

γe−λ(t0, σ(s))g(s)w(‖x(s)‖)∆s

≤ e−λ(t, t0)
[
γ ‖x0‖+

∫ t

t0

γe−λ(t0, σ(s))g(s)w(‖x(s‖)∆s
]
,

e−λ(t0, t) ‖x(t)‖
‖x0‖

≤ γ + γ

∫ t

t0

e−λ(t0, σ(s))

‖x0‖
g(s)w

(
‖x0‖

e−λ(t0, s)

e−λ(t0, s) ‖x(s‖
‖x0‖

)
∆s.
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Letting u(t) = e−λ(t0,t)‖x(t)‖
‖x0‖ , then the above inequality becomes

u(t) ≤ γ +

∫ t

t0

γe−λ(t0, σ(s))

‖x0‖
g(s)w

(
‖x0‖

e−λ(t0, s)
u(s)

)
∆s.

Since w ∈ Ĥ , then we have

u(t) ≤ γ +

∫ t

t0

γe−λ(t0, σ(s))

‖x0‖
g(s)φ

(
‖x0‖

e−λ(t0, s)

)
w(u(s))∆s,

then the above inequality can be expressed as

u(t) ≤ γ +

∫ t

t0

p(s)w(u(s))∆s,

where

p(t) =
γe−λ(t0, σ(t))

‖x0‖
g(t)φ

(
‖x0‖

e−λ(t0, t)

)
.

Applying Lemma 2.2, we get

u(t) ≤W−1
[
W (γ) +

∫ t

t0

p(s)∆s

]
≤W−1

[
W (γ) +

∫ ∞
t0

p(s)∆s

]
for all t ∈ T+

t0
.

Then, we have
‖x(t)‖ ≤ de−λ(t, t0) ‖x0‖ .

where

d =W−1
[
W (γ) +

∫ ∞
t0

p(s)∆s

]
.

It is easy to prove that d ≥ 1.
Then the perturbed system (3.1) is uniformly exponentially stable.

Remark 3.1 In [9, Theorem 2.10] , the authors proved the h-stability of the system (3.1).

Theorem 3.3 Assume that there exist d, k ∈ Crd(T,R+) that satisfy the following condi-
tions:

(B1) ‖F (t, x)‖ ≤ η (d(t) ‖x‖+ k(t)) and η : R+ → R+ is a differentiable increasing
function on ]0,+∞[ with continuous nonincreasing first derivative η′on ]0,∞[ ,

(B2) Suppose that the linear system (3.2) is uniformly exponentially stable with growth con-
stants λ and γ,

(B3)
∫ +∞
t0

η′(k(s))d(s)
1−λµ(s) ∆s ≤ d̃ < +∞,

∫ +∞
t0

η(k(s))e−λ(t0, σ(s))∆s ≤ k̃ < +∞.

Then the perturbed system (3.1) is uniformly exponentially stable.
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Proof. Let t0 ∈ T, x0 ∈ Rn and t ∈ T+
t0

. For any t0 and x0 = x(t0) and from (3.3), the
solution of the perturbed system (3.1) is given by :

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(s))F (s, x(s))∆s.

Taking into account the fact that (3.2) is uniformly exponentially stable, we obtain

‖x(t)‖ ≤ γe−λ(t, t0) ‖x0‖+ γe−λ(t, t0)

∫ t

t0

e−λ(t0, σ(s))η (d(s) ‖x‖+ k(s))∆s. (3.5)

Applying the mean value Theorem for the function η, then for every x1 ≥ y1 > 0, there
exists c ∈ ]y1, x1[ such taht

η(x1)− η(y1) = η′(c)(x1 − y1) ≤ η′(y1)(x1 − y1)

which gives:
η (d(s) ‖x‖+ k(s)) ≤ η′(k(s))× d(s) ‖x‖+ η(k(s)). (3.6)

From (3.5) and (3.6), we get

‖x(t)‖ ≤ γe−λ(t, t0) ‖x0‖+γe−λ(t, t0)
∫ t

t0

e−λ(t0, σ(s))
[
η′(k(s))× d(s) ‖x(s)‖+ η(k(s)

]
∆s.

Applying Lemma 2.1 to the above inequality, we obtain

‖x(t)‖ ≤ γe−λ(t, t0)
[
‖x0‖+ (

∫ t
t0
(e−λ(t0, σ(s))η

′(k(s))d(s)γe−λ(s, t0) ‖x0‖+ e−λ(t0, σ(s))η(k(s))

× exp
(∫ t

σ(s) e−λ(t0, σ(τ))η
′(k(τ))× d(τ)γe−λ(τ, t0)∆τ

)
∆s
]
.

(3.7)
According to the hypothesis (B3) and from (3.7) , we extract the estimate

‖x(t)‖ ≤ γ
(
1 + γd̃ exp

(
γd̃
))

e−λ(t, t0) ‖x0‖+ γk̃ exp
(
γd̃
)
e−λ(t, t0),

= γe−λ(t, t0) ‖x0‖

1 + γd̃ exp
(
γd̃
)
+
k̃ exp

(
γd̃
)

‖x0‖

 .
Then the perturbed system (3.1) is uniformly exponentially stable.

Theorem 3.4 Suppose that (3.2) is uniformly exponentially stable with positive constants
λ and γ, and

F (t, x) ≤ g(t)w(‖x‖), t ∈ T+
t0
,

where g is a positive and rd-continuous function and w ∈ F. Let r be the solution of

r∆(t) = p1(t)w(r(t)), r(t0) = γ,

and assume that there is a bijective function W satisfying

(W ◦ r)∆ = p1 with
∫ ∞
t0

p1(s)∆s <∞

for all t0 ∈ T, where p1(t) =
γg(t)

1−λµ(t) . Then the perturbed system (3.1) is uniformly expo-
nentially stable.
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Proof. Let t0 ∈ T, x0 ∈ Rn and t ∈ T+
t0

. For any t0 and x0 = x(t0) and from (3.3), the
solution of the perturbed system (3.1) is given by :

x(t) = ΦA(t, t0)x(t0) +

∫ t

t0

ΦA(t, σ(s))F (s, x(s))∆s.

Then, by taking into account the fact that w ∈ F, we have

‖x(t)‖ = ‖ΦA(t, t0)‖ ‖x0‖+
∫ t

t0

‖ΦA(t, σ(s))‖ ‖F (s, (x(s))‖∆s

≤ γe−λ(t, t0) ‖x0‖+ e−λ(t, t0)

∫ t

t0

γe−λ(t0, σ(s))g(s)w(‖x(s)‖)∆s

≤ γe−λ(t, t0) ‖x0‖+ e−λ(t, t0)

∫ t

t0

γe−λ(t0, σ(s))g(s) ‖x0‖
w(‖x(s)‖)
‖x0‖

∆s

≤ γe−λ(t, t0) ‖x0‖+ e−λ(t, t0)

∫ t

t0

γe−λ(t0, σ(s))g(s) ‖x0‖ e−λ(s, t0)w
(

‖x(s)‖
‖x0‖ e−λ(s, t0)

)
∆s

≤ e−λ(t, t0) ‖x0‖
[
γ + γ

∫ t

t0

e−λ(t0, σ(s))g(s)e−λ(s, t0)w

(
‖x(s)‖

‖x0‖ e−λ(s, t0)

)
∆s

]
.

Set u(t) = ‖x(t)‖e−λ(t0,t)
‖x0‖ , then we get

u(t) ≤ γ +

∫ t

t0

γg(s)

1− λµ(s)
w (u(s))∆s.

The last inequality can be reformulated as

u(t) ≤ γ +

∫ t

t0

p1(s)w (u(s))∆s,

where

p1(t) =
γg(t)

1− λµ(t)
.

Applying Lemma 2.2 to the above inequality, we obtain

u(t) ≤W−1
[
W (γ) +

∫ t

t0

p1(s)∆s

]
≤W−1

[
W (γ) +

∫ ∞
t0

p1(s)∆s

]
.

Then, we have

‖x(t)‖ ≤ d ‖x0‖ e−λ(t, t0),

d =W−1
[
W (γ) +

∫ ∞
t0

p1(s)∆s

]
.

Then the perturbed system (3.1) is uniformly exponentially stable.
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4 Numerical examples

Let T be a mixed continuous-discrete time scale and t0 = 0. The discrete part has
non-uniform step size. The graininess function is bounded as follows: ∀t ∈ T+

0

0 ≤ µ(t) < µmax =
1

2
.

Consider the following time-varying system:

x∆1 (t) = −x1(t) + 1
2 ln(

1
(t+1)(σ(t)+1) |x1(t)|+

k(t)|x2(t)|√
x21(t)+x

2
2(t)+1

+ 1),

x∆2 (t) = −x2(t) +
√
3
2 ln( 1

(t+1)(σ(t)+1) |x2(t)|+
k(t)|x1(t)|√
x21(t)+x

2
2(t)+1

+ 1),

x(0) = (x1,0 , x2,0),

(4.1)

where x(t) = (x1(t), x2(t))
T ∈ R2, k ∈ Crd(T,R+) and k(t) = t+σ(t)+2

(t+1)2(σ(t)+1)2
e−λ(σ(t), 0).

System (4.1) can be written as system (3.1):

x∆(t) =

(
−1 0
0 −1

)
×
(
x1(t)
x2(t)

)
+

 1
2 ln(

1
(t+1)(σ(t)+1) |x1(t)|+

k(t)|x2(t)|√
x21(t)+x

2
2(t)+1

+ 1)
√
3
2 ln( 1

(t+1)(σ(t)+1) |x2(t)|+
k(t)|x1(t)|√
x21(t)+x

2
2(t)+1

+ 1)


(4.2)

where A =

(
−1 0
0 −1

)
∈ CrdR(T,Mn(R)), µ 6= 1, F (t, 0) = 0 and

ΦA(t, 0) =

(
e−1(t, 0) 0

0 e−1(t, 0)

)
, t ∈ T+

0 , (4.3)

and
‖ΦA(t, t0)‖ =

√
2e−1(t, 0). (4.4)

The perturbation satisfies condition (B1) of Theorem 3.3 with n(x) = ln(x + 1) is a
differentiable increasing function on]0,∞[ with continuous nonincreasing first derivative.

‖f(t, x)‖ ≤ ln(
1

(t+ 1)(σ(t) + 1)
‖x‖+ k(t) + 1) = n(d(t) ‖x‖+ k(t)), (4.5)

It is clear that assumption (B2) of Theorem 3.3 is satisfied with (λ, γ) =
(
1,
√
2
)
.

Moreover, one can verify that hypothesis (B3) of Theorem 3.3 is verified, since∫ +∞
0

η′(k(s))d(s)
1−λµ(s) ∆s =

∫ +∞
0

1
(1−µ(s))(1+k(s))

1
(s+1)(σ(s)+1)∆s,

≤
∫ +∞
0

1
(1−µ(s))

1
(s+1)(s+σ(s))∆s,

≤ 2
∫ +∞
0

1
(s+1)(σ(s)+1)∆s = 2 = d̃ < +∞.

(4.6)

And∫ +∞

0
η(k(s))e−λ(0, σ(s))∆s =

∫ +∞

0
ln(k(s) + 1)e−λ(0, σ(s))∆s

≤
∫ +∞

0
k(s)e−λ(0, σ(s))∆s =

∫ +∞

0

s+ σ(s) + 2

(s+ 1)2(σ(s) + 1)2
∆s

=

∫ +∞

0
(
−1

(s+ 1)2
)∆∆s = 1 = k̃ < +∞.
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From Theorem 3.3, one can conclude that system (4.1) is uniformly exponentially stable.

Acknowledgement. The authors are grateful to the referees for their valuable sugges-
tions.
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