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Abstract. In three-dimensional domain a Benney–Luke type partial differential equation of the even or-
der with integral form conditions, spectral parameter and small positive parameters in mixed derivatives
is considered. The solution of this partial differential equation is studied in the class of regular functions.
The Fourier method of separation of variables (Fourier series method) and the method of successive
approximation in combination with the method of compressing mapping are used. Using the method of
Fourier series, we obtain countable system of ordinary differential equations. So, the nonlocal boundary
value problem is integrated as an ordinary differential equation. When we define the arbitrary integration
constants there are possible five cases with respect to the spectral parameter. The problem is reduced
to solving countable system of linear algebraic equations. Using the given additional condition, we ob-
tained the nonlinear countable system of functional equation with respect to redefinition function. Using
the Cauchy-Schwarz inequality and the Bessel inequality, we proved the absolute and uniform conver-
gence of the obtained Fourier series.

Keywords. Benney–Luke type differential equation, regular solutions, Fourier series method, integral
conditions, inverse problem, nonlinear functional equation.
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1 Formulation of the problem

The theory of direct boundary and inverse boundary value problems is currently one of the
most important sections of the theory of differential equations. Studies of many problems
of gas dynamics, theory of elasticity, theory of plates and shells are described by high-order
partial differential equations. Partial differential equations of Boussinesq type and Benney–
Luke type have a lot of applications in different branches of sciences (see, for example, [5],
[6,17]). Therefore, a large number of works are devoted to the study of inverse problems
for differential and integro-differential equations (see, for example, [2,7,11,13–16,18,23,
24]). In cases where the boundary of the flow domain of a physical process is unavailable
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for measurements, nonlocal conditions in integral form can serve as additional information
sufficient for unique solvability of the problem [8]. Therefore, in recent years, research
on the study of direct and inverse nonlocal boundary value problems for differential and
integro-differential equations with integral conditions has been intensified (see, for example,
[1,3,4,9,10,12,19–23]).

In this paper, we study the regular solvability of a nonlocal inverse boundary value prob-
lem for a Benney–Luke type differential equation with spectral parameter and small positive
parameters. In studying one-valued solvability and constructing solutions, the presence of
spectral parameter plays an important role.

In three-dimensional domain Ω = {(t, x, y) | 0 < t < T, 0 < x, y < l} a partial
differential equation of the following form is considered

D [U ] = α (t

[
β (x, y)− f

(
x, y,

∫ l

0

∫ l

0
Θ (ξ, η, β(ξ, η)) d ξ d η

)]
, (1.1)

where T and l are given positive real numbers, ω is positive spectral parameter,

D [U ] =

[
∂ 2

∂ t 2
− ∂ 2

∂ t 2

(
ε1

∂ 2k

∂ x 2k
− ε2

∂ 4k

∂ x 4k
+ ε1

∂ 2k

∂ y 2k
− ε2

∂ 4k

∂ y 4k

)

−ω 2

(
∂ 2k

∂ x 2k
− ∂ 4k

∂ x 4k
+

∂ 2k

∂ y 2k
− ∂ 4k

∂ y 4k

)]
U (t, x, y),

ε1, ε2 are positive small parameters, k is given positive integer,α (t ) ∈ C (ΩT ), f (x, y, β)
∈ C 4k

x, y(Ωl × Ωl × R), Θ (x, y, β) ∈ C (Ωl × Ωl × R), ΩT ≡ [0; T ], Ω l ≡ [0; l],
β (x, y) ∈ C (Ωl×Ωl) is redefinition function. We assume that for given functions are true
the following boundary conditions

β (0, y) = β (l, y) = β (x, 0) = β (x, l) = 0,

f (0, y, ·) = f (l, y, ·) = f (x, 0, ·) = f (x, l, ·) = 0.

Problem Statement. We find a pair of functions {U (t, x, y); β (x, y)}, first of which
satisfies differential equation (1.1), following nonlocal conditions on the integral form

U (T, x, y) +

∫ T

0
U (t, x, y) d t = ϕ1(x, y), 0 ≤ x, y ≤ l, (1.2)

Ut (T, x, y) +

∫ T

0
Ut (t, x, y) t d t = ϕ2 (x, y), 0 ≤ x, y ≤ l, (1.3)

zero boundary value conditions for 0 ≤ t ≤ T

U (t, 0, y) = U (t, l, y) = U (t, x, 0) = U (t, x, l)

=
∂ 2

∂ x2
U (t, 0, y) =

∂ 2

∂ x2
U (t, l, y) =

∂ 2

∂ x2
U (t, x, 0) =

∂ 2

∂ x2
U (t, x, l)

=
∂ 2

∂y2
U (t, 0, y) =

∂ 2

∂y2
U (t, l, y) =

∂ 2

∂y2
U (t, x, 0) =

∂ 2

∂y2
U (t, x, l) = . . .

=
∂4k−2

∂x4k−2
U (t, 0, y) =

∂4k−2

∂x4k−2
U (t, l, y) =

∂4k−2

∂x4k−2
U (t, x, 0) =

∂4k−2

∂x4k−2
U(t, x, l)

=
∂ 4k−2

∂y 4k−2U(t, 0, y) =
∂ 4k−2

∂ y 4k−2U(t, l, y)
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=
∂ 4k−2

∂y 4k−2U(t, x, 0) =
∂ 4k−2

∂y 4k−2U(t, x, l) = 0, (1.4)

class of functions

U (t, x, y) ∈ C (Ω) ∩ C 2, 4k, 4k
t, x, y (Ω) ∩ C 2+4k+0

t, x, y (Ω) ∩ C 2+0+4k
t, x, y (Ω) (1.5)

and additional condition

U (t0, x, y) = ψ (x, y), 0 < t0 < T, 0 ≤ x, y ≤ l, (1.6)

where ϕi(x, y), ψ (x, y) are given smooth functions and

ϕi(0, y) = ϕi(l, y) = ϕi(x, 0) = ϕi (x, l) = 0,

ψ (0, y) = ψ (l, y) = ψ (x, 0) = ψ (x, l) = 0,

C 2+4k+0
t, x, y (Ω) is the class of continuous functions ∂ 2+4k U (t, x, y)

∂ t 2∂ x 4k on Ω, while C 2+0+4k
t, x, y (Ω)

is the class of continuous functions ∂ 2+4k U (t, x, y)
∂ t 2∂ y 4k on Ω, Ω = {(t, x, y) | 0 ≤ t ≤ T, 0 ≤

x, y ≤ l}, by ∂ 4k−2

∂y 4k−2U (t, x, l) we understand ∂ 4k−2

∂y 4k−2U (t, x, y)
∣∣∣
y=l

.

2 Expansion of the solution of the problem in a Fourier series for regular values of
spectral parameter

Nontrivial solutions of the direct problem (1.1)–(1.5) are sought as a Fourier series

U (t, x, y) =

∞∑
n,m=1

un ,m (t)ϑn,m (x, y), (2.1)

where

un,m (t) =

∫ l

0

∫ l

0
U (t, x, y)ϑn,m (x, y) d x d y, (2.2)

ϑn,m (x, y) =
2

l
sin

π n

l
x sin

πm

l
y, n, m = 1, 2, . . . .

We also suppose that the following functions are expand to Fourier series

β(x, y) =
∞∑

n,m=1

βn,mϑn,m (x, y), f(x, y, ·) =
∞∑

n,m=1

fn,m (·)ϑn,m (x, y), (2.3)

where
βn,m =

∫ l
0

∫ l
0 β (x, y)ϑn,m (x, y) d x d y,

fn,m (·) =
∫ l
0

∫ l
0 f (x, y, ·)ϑn,m (x, y) d x d y.

(2.4)

Substituting Fourier series (2.1) and (2.3) into partial differential equation (1.1), we
obtain a countable system of ordinary differential equations of second order

u′′n,m (t) + λ 2k
n,m ω

2 un,m (t) =
α (t)

1 + µ 2k
n,m

(
ε1 + ε2µ 2k

n,m

) (βn,m − fn,m (·)) , (2.5)

where

λ 2k
n,m =

µ 2k
n,m

(
1 + µ 2k

n,m

)
1 + µ 2k

n,m

(
ε1 + ε2µ 2k

n,m

) , µ kn,m =
(π
l

)k √
n 2k +m 2k.
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The second order countable system of differential equations (2.5) is solved by the vari-
ation method of arbitrary constants

un,m (t) = A 1n,m cos
(
λ kn,mω t

)
+A 2n,m sin

(
λ kn,mω t

)
+ γn,m (t), (2.6)

where γn,m (t) = 1
λ k

n,m ω
[βn,m − fn,m (·)] hn,m (t), A 1, n,m and A 2, n,m are arbitrary

constants,

hn,m (t) =
1

1 + µ 2k
n,m

(
ε1 + ε2µ 2k

n,m

) ∫ t

0
sin
(
λ kn,mω (t− s)

)
α (s) ds.

Using Fourier coefficients (2.2), the integral conditions (1.2) and (1.3) are written in the
following form

un,m (T )+

∫ T

0
un,m (t) d t =

∫ l

0

∫ l

0

[
(U (T, x, y)+

∫ T

0
U (t, x, y) d t

]
ϑn,m(x, y) d x d y

=

∫ l

0

∫ l

0
ϕ1(x, y)ϑn,m (x, y) d x d y = ϕ 1n,m, (2.7)

u′n,m (T ) +

∫ T

0
u′n,m (t) t d t

=

∫ l

0

∫ l

0

[
Ut (T, x, y) +

∫ T

0
Ut (t, x, y) t d t

]
ϑn,m (x, y) d x d y

=

∫ l

0

∫ l

0
ϕ2 (x, y)ϑn,m (x, y) d x d y = ϕ 2n,m. (2.8)

To find the unknown coefficients A 1n,m and A 2n,m in (2.6), we use conditions (2.7)
and (2.8) and obtain the system{

A 1n,m σ 1n,m (ω) +A 2n,m σ 2n,m (ω) = ϕ 01n,m,
A 1n,m σ 3n,m (ω) +A 2n,m σ 4n,m (ω) = ϕ 02n,m,

(2.9)

where

σ 1n,m (ω) =
λ kn,mω cos

(
2λ kn,mω T

)
+ sin

(
2λ kn,mω T

)
λ kn,mω

,

σ 2n,m (ω) =
− cos

(
2λ kn,mω T

)
+ λ kn,mω sin

(
2λ kn,mω T

)
+ 1

λ kn,mω
,

σ3n,m(ω) =
−λ kn,mω T cos

(
2λ kn,mω T

)
− λ kn,mω T +

[
1 +

(
λ kn,mω

)2]
sin
(
2λ kn,mω T

)
(
λ kn,mω

)2 ,

σ 4n,m (ω) =

[
1 +

(
λ kn,mω

) 2 ]
cos

(
2λ kn,mω T

)
+ λ kn,mω T sin

(
2λ kn,mω T

)
− 1(

λ kn,mω
)2 ,

ϕ 01n,m = ϕ 1n,m −
[
γn,m (T ) +

∫ T

0
γn,m (t) d t

]
,

ϕ 02n,m = ϕ 2n,m −
[
γ′n,m (T ) +

∫ T

0
γ′n,m (t) t d t

]
.
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To uniquely determine A 1n,m and A 2n,m from system (2.9), we calculate the values
of the spectral parameter ω presented in the coefficients σ i n,m (ω), i = 1, 4. The coef-
ficients σ i n,m (ω), i = 1, 4 can go to zero for some values of the parameter ω from the
positive semi-axis (0; ∞). The set of all values of the spectral parameter ω, consisting of
positive solutions of trigonometric equations σ i n,m (ω) = 0, we denote by Λ i, i = 1, 4.
We take into account, that Λ i ∩ Λ j = ∅, i, j = 1 , 4, i 6= j. Also we introduce the

denotation Λ 5 = (0; ∞) \
(⋃4

j=1 Λ j

)
. It is possible there five cases: 1) σ 1n,m (ω) = 0;

2) σ 2n,m (ω) = 0; 3) σ 3n,m (ω) = 0; 4) σ 4n,m (ω) = 0; 5) σ j n,m (ω) 6= 0 , j = 1 , 4.
Solve the system of algebraic equations (2.9). Then from presentation (2.6) we derived

that
un,m (t) = ϕ 1n,mBj n,m (t) + ϕ 2n,mCj n,m (t)

+
1

λ kn,m ω
(βn,m − fn,m (·)) E j n,m (t), ω ∈ Λ j , j = 1, 5, (2.10)

where Fourier coefficients βn,m and fn,m (·) are defined by the presentations (2.4),

E j n,m (t) = hn,m (t)−B j n,m (t)

[∫ T

0
hn,m (t) d t+ hn,m (T )

]

−C j n,m (t)

[∫ T

0
h′n,m (t) t d t+ h′n,m (T )

]
,

B 1n,m (t) =
sin
(
λ kn ,mω t

)
σ 2n,m (ω)

−σ 4n,m (ω)

σ 2n,m (ω)

cos
(
λ kn,mω t

)
σ 3n,m (ω)

, C 1n,m (t) =
cos

(
λ kn ,mω t

)
σ 3n,m (ω)

,

B 2n,m (t) =
cos

(
λ kn,mω t

)
σ 1n,m (ω)

−σ 3n,m (ω)

σ 1n,m (ω)

sin
(
λ kn,mω t

)
σ 4n,m (ω)

, C 2n,m (t) =
sin
(
λ kn,mω t

)
σ 4n,m (ω)

,

B 3n,m (t) =
cos

(
λ kn,mω t

)
σ 1n,m (ω)

, C 3n,m (t) =
sin
(
λ kn,mω t

)
σ 4n,m (ω)

−σ 2n,m (ω)

σ 1n,m (ω)

cos
(
λ kn,mω t

)
σ 4n,m (ω)

,

B 4n,m (t) =
sin
(
λ kn,mω t

)
σ 2, n,m (ω)

, C 4n,m (t) =
cos

(
λ kn,mω t

)
σ 3n,m (ω)

−σ 1n,m (ω)

σ 2n,m (ω)

sin
(
λ kn,mω t

)
σ 3n,m (ω)

,

B 5n,m (t) =
1

σ 5n,m (ω)

[
σ 4n,m (ω) cos

(
λ kn,mω t

)
− σ 3n,m (ω) sin

(
λ kn,mω t

) ]
,

C 5n,m (t) =
1

σ 5n,m (ω)

[
−σ 2n,m (ω) cos

(
λ kn,mω t

)
+ σ 1n,m (ω) sin

(
λ kn,mω t

)]
,

σ5n,m (ω) = σ 1n,m (ω)σ 4n,m (ω)− σ 2n,m (ω)σ 3n,m (ω) 6= 0, ω ∈ Λ 5.

Substituting the presentation of Fourier coefficients (2.10) of main unknown function
into Fourier series (2.1), for regular values of parameter ω ∈ Λ j

(
j = 1, 5

)
we obtain

U (t, x, y) =
∞∑

n,m=1

ϑn,m (x, y)

×
[
ϕ1n,mBj n,m(t) + ϕ2n,mCj n,m(t) +

1

λ kn,mω
(βn,m − fn,m(·)) E j n,m(t)

]
. (2.11)

Fourier series (2.11) is a formal solution of the direct problem (1.1)–(1.5).
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3 Redefinition function

Using the additional condition (1.6) and taking into account (2.3) and (2.4), for regular
values of parameter ω ∈ Λ j

(
j = 1, 5

)
we obtain from Fourier series (2.11) following

nonlinear countable system for Fourier coefficients of redefinition function

βn,m = = j (βn,m) ≡ ψn,m τ1 j n,m + ϕ 1n,m τ2 j n,m + ϕ 2n,m τ3 j n,m

+

∫ l

0

∫ l

0
f

(
x, y,

∫ l

0

∫ l

0
Θ
(
ξ, η,

∞∑
n,m=1

βn,mϑn,m(ξ, η)
)
dξdη

)
ϑn,m(x, y)dxdy, (3.1)

where E j n,m (t0) 6= 0, j = 1, 5,

τ1 j n,m =
λ kn,m ω

E j n,m (t0)
, τ2 j n,m = −τ1 j n,mBj n,m (t0), τ3 j n,m = −τ1 j n,mCj n,m (t0),

ψn,m =

∫ l

0

∫ l

0
ψ (x, y)ϑn,m (x, y) d x d y. (3.2)

The unique solvability of countable system (3.1). We use the concepts of the following
well-known Banach spaces. Hilbert coordinate space `2 of number sequences {ϕn,m}∞n,m=1

with norm

‖ϕ ‖ ` 2 =

√√√√ ∞∑
n,m=1

|ϕn,m | 2 <∞.

The space L 2 (Ω
2
l ) of square-summable functions on the domain Ω 2

l = Ω l × Ω l with
norm

‖ϑ (x, y) ‖L 2(Ω 2
l )

=

√∫ l

0

∫ l

0
|ϑ (x, y) |2 d x d y <∞.

Conditions of smoothness. Let for functions

ϕi(x, y), ψ(x, y) ∈ C 4k (Ω2
l ), f (x, y, ·) ∈ C 4k

x, y

(
Ω2
l × R

)
, i = 1, 2

in the domain Ω2
l there exist piecewise continuous 4k + 1 order derivatives.

Then by integrating in parts the functions (2.4) and (3.2) 4k+1 times over every variable
x, y, we obtain following relations [23]

|ϕi n,m | =
(
l

π

)8k+2

∣∣∣ϕ(8k+2)
i n,m

∣∣∣
n 4k+1m 4k+1

, |ψn,m | =
(
l

π

)8k+2

∣∣∣ψ(8k+2)
n,m

∣∣∣
n 4k+1m 4k+1

, (3.3)

∞∑
n,m=1

[
ϕ

(8k+2)
i n,m

] 2
≤
(
2

l

) 2 ∫ l

0

∫ l

0

[
∂ 8k+2ϕi(x, y)

∂ x4k+1 ∂ y4k+1

] 2

d x d y, i = 1, 2, (3.4)

∞∑
n,m=1

[
ψ (8k+2)
n,m

] 2
≤
(
2

l

) 2 ∫ l

0

∫ l

0

[
∂ 8k+2ψ(x, y)

∂ x4k+1 ∂ y4k+1

] 2

d x d y, (3.5)

where

ϕ
(8k+2)
i n,m =

∫ l

0

∫ l

0

∂ 8k+2ϕi(x, y)

∂ x4k+1 ∂ y4k+1
ϑn,m(x, y) d x d y, i = 1, 2,
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ψ (8k+2)
n,m =

∫ l

0

∫ l

0

∂ 8k+2ψ(x, y)

∂ x4k+1 ∂ y4k+1
ϑn,m(x, y) d x d y.

We obtain also that

| fn,m(·) | =
(
l

π

)8k+2

∣∣∣ f (8k+2)
n,m (x, y, ·)

∣∣∣
n 4k+1m 4k+1

, (3.6)

∞∑
n,m=1

[
f (8k+2)
n,m (·)

] 2
≤
(
2

l

) 2 ∫ l

0

∫ l

0

[
∂ 8k+2f(x, y, ·)
∂ x4k+1∂ y4k+1

] 2

d x d y, (3.7)

where

f (8k+2)
n,m (·) =

∫ l

0

∫ l

0

∂ 8k+2f(x, y, ·)
∂ x4k+1 ∂ y4k+1

ϑn,m(x, y) d x d y.

For regular values of parameter ω ∈ Λ j

(
j = 1, 5

)
we prove that there holds

Theorem 3.1 Suppose that the conditions of smoothness and following conditions are ful-
filled:

1) χ 1 = max
n,m

{| τ1 j n,m | ; | τ2 j n,m | ; | τ3 j n,m |} <∞;

2) χ 2 = ‖ f (x, y, ·) ‖L 2(Ω 2
l )
<∞;

3) | f (x, y, γ1)− f (x, y, γ2) | ≤M 0(x, y) | γ1 − γ2 |;
4) |Θ(ξ, η, β 1)−Θ(ξ, η, β 2)| ≤ Θ0(ξ, η) |β1 − β2| , 0 < ‖Θ0(ξ, η)‖L2(Ω2

l )
<∞;

5) ρ < 1, where

ρ = γ 3

(2
l

) 2
‖Θ 0 (x, y) ‖L 2(Ω 2

l )
, γ3 = γ2

(2
l

) 2
∥∥∥∥ ∂ 8k+2M 0(x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
,

γ2 = C 1

(2
l

) 2
(
l

π

)8k+2

, C 1 =

√√√√ ∞∑
n,m=1

1

n 8k+2m 8k+2
<∞.

Then the countable system (3.1) is uniquely solvable in the space ` 2 for regular spectral
values from the numerical set ω ∈ Λ j for each j = 1, 5 and all possible n and m.

Proof. We use the method of compressing mappings in the Hilbert coordinate space `2.
Successive approximations are defined as follows:{

β 0
n,m = ψn,m τ1 j n,m + ϕ 1n,m τ2 j n,m + ϕ 2n,m τ3 j n,m,

β i+1
n,m = = j

(
β in,m

)
, i = 0, 1, 2, . . ., j = 1, 5.

(3.8)

We use formulas (3.3)–(3.7). According to the first condition of theorem and formula (3.3),
we have∣∣β 0

n,m

∣∣ ≤ |ψn,m | · |τ1 j n,m |+ |ϕ 1n,m | · | τ2 j n,m |+ |ϕ 2n,m | · | τ3 j n,m |

≤ χ1

( l
π

)8k+2


∣∣∣ψ(8k+2)

n,m

∣∣∣
n 4k+1m 4k+1

+

∣∣∣ϕ(8k+2)
1n,m

∣∣∣
n 4k+1m 4k+1

+

∣∣∣ϕ(8k+2)
1n,m

∣∣∣
n 4k+1m 4k+1

 .
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Hence by the aid of the Cauchy–Schwartz inequality and the Bessel inequalities (3.4), (3.5)
for the zero approximation of the coefficients of redefinition function we obtain from suc-
cessive approximations (3.8), that

∥∥β 0
∥∥
` 2
≤ χ1

( l
π

)8k+2
∞∑

n,m=1


∣∣∣ψ(8k+2)

n,m

∣∣∣
n 4k+1m 4k+1

+

∣∣∣ϕ(8k+2)
1n,m

∣∣∣
n 4k+1m 4k+1

+

∣∣∣ϕ(8k+2)
1n,m

∣∣∣
n 4k+1m 4k+1



≤ χ 1

( l
π

)8k+2

 ∞∑
n,m=1

∣∣∣ψ(8k+2)
n,m

∣∣∣
n4k+1m4k+1

+

∞∑
n,m=1

∣∣∣ϕ(8k+2)
1n,m

∣∣∣
n4k+1m4k+1

+

∞∑
n,m=1

∣∣∣ϕ(8k+2)
2n,m

∣∣∣
n4k+1m4k+1


≤ χ1

( l
π

)8k+2

√√√√ ∞∑
n,m=1

1

n8k+2m8k+2

[∥∥∥ψ(8k+2)
∥∥∥
`2
+
∥∥∥ϕ(8k+2)

1

∥∥∥
`2
+
∥∥∥ϕ(8k+2)

2

∥∥∥
`2

]

≤ γ 1

[∥∥∥∥ ∂ 8k+2ψ(x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ϕ 1 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

+

∥∥∥∥ ∂ 8k+2ϕ 2 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

]
<∞, (3.9)

where

γ 1 = χ 1C 1

(2
l

) 2( l
π

)8k+2
, C 1 =

√√√√ ∞∑
n,m=1

1

n 8k+2m 8k+2
<∞.

According to the first and second conditions of theorem and formulas (3.3), (3.6), us-
ing the Cauchy–Schwartz inequality and Bessel inequalities (3.4), (3.5), (3.7) for the first
difference of approximation (3.8) we obtain∥∥β 1 − β 0

∥∥
`2
≤

∞∑
n,m=1

∣∣∣∣∫ l

0

∫ l

0
f

(
x, y,

∫ l

0

∫ l

0
Θ
(
ξ, η,∆0

)
dξdη

)
ϑn,m(x, y)dxdy

∣∣∣∣
≤
(
l

π

)8k+2 ∞∑
n,m=1

∣∣∣ f (8k+2)
n,m (x, y, ·)

∣∣∣
n 4k+1m 4k+1

≤ γ2
∥∥∥∥ ∂ 8k+2f(x, y, ·)
∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
<∞, (3.10)

where

∆0 =

∞∑
n,m=1

β 0
n,mϑn,m (ξ, η), γ2 = C 1

(2
l

) 2( l
π

)8k+2
.

Analogously, by the third and fourth conditions of the theorem, using the Cauchy–
Schwartz inequality and Bessel inequality for an arbitrary difference of approximation (3.8)
we obtain∥∥β i+1 − β i

∥∥
` 2
≤ γ 2

∥∥∥∥ ∂ 8k+2

∂ x 4k+1∂ y4k+1

∣∣ f (x, y, V i
)
− f

(
x, y, V i−1) ∣∣ ∥∥∥∥

L 2(Ω 2
l )

≤ γ3

∣∣∣∣∣∣
∫ l

0

∫ l

0
Θ(ξ, η)

∞∑
n,m=1

∣∣βin,m − βi−1n,m

∣∣ ϑn,m (ξ, η) d ξ d η

∣∣∣∣∣∣
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≤ γ3
∞∑

n,m=1

∣∣βin,m − βi−1n,m

∣∣ ∣∣∣∣∫ l

0

∫ l

0
Θ(ξ, η)ϑn,m (ξ, η) d ξ d η

∣∣∣∣
≤ ρ

∥∥β i − β i−1 ∥∥
` 2
, (3.11)

where

ρ = γ 3

(2
l

) 2
‖Θ 0 (x, y) ‖L 2(Ω 2

l )
, γ3 = γ2

(2
l

) 2
∥∥∥∥ ∂ 8k+2M 0(x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
.

By the fifth condition of the theorem, ρ < 1. Therefore, it follows from estimate (3.11)
that the operator on the right-hand side of (3.1) is contracting. From the estimates (3.9)–
(3.11) implies that there exists a unique fixed point, which is a solution of countable system
(3.1) in the space `2. The Theorem 3.1 is proved.

Convergence Fourier series of redefinition function. Substituting representations (3.1)
into the Fourier series (2.3), we obtain

β (x, y) =

∞∑
n,m=1

ϑn,m (x, y)
[
ψn,m τ1 j n,m + ϕ 1n,m τ2 j n,m + ϕ 2n,m τ3 j n,m

+

∫ l

0

∫ l

0
f

(
x, y,

∫ l

0

∫ l

0
Θ
(
ξ, η,

∞∑
n,m=1

βn,mϑn,m(ξ, η)
)
dξdη

)
ϑn,m(x, y)dxdy

]
.

(3.12)

Theorem 3.2 Assume that the conditions of theorem 3.1 are fulfilled. Then for regular val-
ues of spectral parameter ω ∈ Λ j

(
j = 1, 5

)
the series (3.12) converge absolutely and

uniformly.

Proof. We use formulas (3.3)–(3.7) and estimates (3.9), (3.10). Using the Cauchy–Schwartz
inequality and Bessel inequalities for series (3.12), we obtain the following estimate

|β (x, y) | ≤
∞∑

n,m=1

|ϑn,m (x, y) | [|ψn,m τ1 j n,m + ϕ 1n,m τ2 j n,m + ϕ 2n,m τ3 j n,m |

+

∣∣∣∣∣∣
∫ l

0

∫ l

0
f

(
x, y,

∫ l

0

∫ l

0
Θ
(
ξ, η,

∞∑
n,m=1

βn,mϑn,m(ξ, η)
)
dξdη

)
ϑn,m(x, y)dxdy

∣∣∣∣∣∣


≤ γ 1
2

l

[∥∥∥∥ ∂ 8k+2ψ(x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ϕ 1 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

+

∥∥∥∥ ∂ 8k+2ϕ 2 (x, y)

∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )

]
+ γ2

2

l

∥∥∥∥ ∂ 8k+2f(x, y, ·)
∂ x4k+1∂ y4k+1

∥∥∥∥
L 2(Ω 2

l )
<∞. (3.13)

From estimate (3.13) implies the absolutely and uniformly convergence of Fourier series
(3.12). The Theorem 3.2 is proved.
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4 Main unknown function

We determined the redefinition functions as a Fourier series (3.12). So, redefinition function
is known. Using representations (3.1), Fourier series (2.11), the main unknown function we
can present as

U (t, x, y) =
∞∑

n,m=1

ϑn,m (x, y)

× [ϕ1n,mPj n,m(t) + ϕ2n,mQj n,m(t) + ψn,mSj n,m(t)] , (4.1)

where

Pj n,m (t) = Bj n,m (t)+
τ2 j n,m
λ kn,m ω

E j n,m (t), Qj n,m (t) = Cj n,m (t)+
τ3 j n,m
λ kn,m ω

E j n,m (t),

Sj n,m (t) =
τ3 j n,m
λ kn,m ω

E j n,m (t), j = 1, 5.

To establish the uniqueness of the function U (t, x, y) we suppose that there are two
functions U1 and U2 satisfying the given conditions (1.1)–(1.6). Then their difference U =
U1 − U2 is a solution of differential equation (1.1), satisfying conditions (1.2)–(1.6) with
functions

ϕ i(x, y) ≡ 0 (i = 1, 2), ψ (x, y) ≡ 0.

By virtue of relations (2.4) and (3.2) we have ϕ i n,m = ψn,m = 0 (i = 1, 2). Hence, we
obtain from formulas (2.2) and (4.1) in the domain Ω, that there holds the following zero
identity ∫ l

0

∫ l

0
U (t, x, y)ϑn,m (x, y) d x d y ≡ 0.

Hence, by virtue of the completeness of the systems of eigenfunctions{√
2

l
sin

π n

l
x

}
,

{√
2

l
sin

πm

l
y

}
inL 2

(
Ω 2
l

)
, we deduce thatU (t, x, y) ≡ 0 for all x ∈ Ω 2

l ≡ [0, l] 2 and t ∈ ΩT ≡ [0; T ].
Therefore, for regular values of spectral parameter ω the function U (t, x, y) is unique

solution of differential equation (1.1) with conditions (1.2)–(1.6), if this function exists in
the domain Ω.

Theorem 4.1 Let the conditions of the theorem 3.1 be fulfilled. Then for regular values of
spectral parameter ω ∈ Λ j

(
j = 1, 5

)
the series (4.1) converge. At the same time, their

term by term differentiation is possible.

Proof. By virtue of conditions of the theorem 3.1, the functions Pj n,m (t), Qj n,m (t) and
Sj n,m (t)

(
j = 1, 5

)
uniformly bounded on the segment ΩT . So, for any positive integers

n, m there exists finite constant C 2, that there takes place the following estimate

max
{
max
n,m

max
j=1,5

|Pjn,m(t)| ; max
n,m

max
j=1,5

|Qjn,m(t)| ; max
n,m

max
j=1,5

|Sjn,m(t)|
}
≤ C2. (4.2)

Using estimate (4.2), analogously to the estimate (3.13), for series (4.1) we obtain

|U(t, x, y)| ≤
∞∑

n,m=1

|ϑn,m(x, y)| |ϕ1n,mPj n,m(t) + ϕ2n,mQj n,m(t) + ψn,mSj n,m(t)|
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≤ γ4

[∥∥∥∥ ∂ 8k+2ϕ1(x, y)

∂x 4k+1∂y 4k+1

∥∥∥∥
L2(Ω 2

l )
+

∥∥∥∥ ∂ 8k+2ϕ2(x, y)

∂x 4k+1∂y 4k+1

∥∥∥∥
L2(Ω 2

l )

+

∥∥∥∥ ∂ 8k+2ψ(x, y)

∂x 4k+1∂y 4k+1

∥∥∥∥
L2(Ω 2

l )

]
<∞,

where γ 4 = C 1C 2

(
2
l

) 3(
l
π

)8k+2
.

Similarly, it is proved that the function U (t, x, y) belongs to the class of functions
(1.5). Due to the limitation of the volume of the article, we will not present this proof here.
A similar proof you can see in the work [23]. Theorem 4.1 is proved.

Remark 4.1 By virtue of limitation of the volume of this article, we will not include to this
paper the results on stability of the function U (t, x, y) on redefinition function β (x, y), on
given data functions ϕi (x, y) (i = 1, 2), ψ (x, y) and on parameters ω, ε1, ε2. Moreover,
we did not consider this inverse problem (1.1)–(1.6) for the case of irregular values of
spectral parameter ω.
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