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Abstract. In this paper we consider a eigenvalue problem for ordinary differential equations of fourth
order with a spectral parameter contained in two of boundary conditions. This problem describes the
bending vibrations of a homogeneous rod, in cross-sections of which the longitudinal force acts, at both
ends of which elastically fixed loads are concentrated. We investigate the location of eigenvalues on the
complex plane (the real axis) and study the structures of root subspaces of this problem.
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1 Introduction

Consider the homogeneous Euler-Bernoulli beam of length L, density ρ and cross-
sectional area F , at both ends of which loads with masses of m1 and m2 are concentrated.
These loads are elastically fixed to springs with stiffnesses κ1 and κ2, respectively, prevent-
ing the vertical displacement of the beam.

The free bending vibrations of a homogeneous rod of constant rigidity, in cross sections
of which the longitudinal force acts, are described by the equation [13, Ch. 8, § 5, formula
(84)]

EJ
∂4U(X, t)

∂X4
− ∂

∂X

(
Q(X)

∂U(X, t)

∂X

)
+ ρF

∂2U(X, t)

∂t2
= 0,

where U(X, t) is a flexure of the current point of axis of the rod, EJ is the flexural rigidity
of the rod, Q(X) is longitudinal force.

If both ends are fixed elastically and there are concentrated loads on these ends, then the
boundary conditions can be written in the following form [13, Ch. 8, § 5, p. 154]:

EJ
∂2U(0, t)

∂X2
= 0,
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EJ
∂3U(0, t)

∂X3
−Q(0)

∂U(0, t)

∂X
− c1U(0, t) = m1

∂2U(0, t)

∂t2
,

EJ
∂2U(L, t)

∂X2
= 0,

EJ
∂3U(L, t)

∂X3
−Q(L)

∂U(L, t)

∂X
+ c2U(L, t) = −m2

∂2U(L, t)

∂t2
.

Introducing the notation x = X
L , u = U

L we write these equations and the boundary
conditions in the following form

∂4u(x, t)

∂x4
− ∂

∂x

(
Q(x)

∂u(x, t)

∂x

)
+
ρFL4

EJ

∂2u(x, t)

∂t2
= 0,

∂2u(0, t)

∂x2
= 0,

∂3u(0, t)

∂x3
−Q(0)

∂u(0, t)

∂x
− k1L

3

EJ
u(0, t) =

m1L
3

EJ

∂2u(0, t)

∂t2
,

∂2u(1, t)

∂x2
= 0,

∂3u(1, t)

∂x3
−Q(1)

∂u(1, t)

∂x
+
k2L

3

EJ
u(1, t) = − m2L

3

EJ

∂2u(1, t)

∂t2
,

where Q(x) = L2

EJ Q(Lx).
By λ we denote ρFL4ω2/EJ . Then, by the change of variables u(x, t) = y(x) cosωt

[13, Ch. 11, § 2, formula (12)]), this problem reduces to the following spectral problem:

y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (0, 1), (1.1)

y′′(0) = 0, y′′(1) = 0, (1.2)
Ty(0)− (aλ+ b) y(0) = 0, (1.3)
Ty(1)− (cλ− d) y(1) = 0, (1.4)

where q(x) ≡ Q(x), Ty ≡ y′′′− qy′, a = − m1
ρFL , b = κ1L3

EJ , c = m2
ρFL and d = κ2L3

EJ . Hence
it follows that q(x) > 0, x ∈ [0, 1], a < 0, b > 0, c > 0 and d > 0. In addition, we
suppose that q(x) is an absolutely continuous function on [0, 1].

Problem (1.1)-(1.4) in the case b = d = 0 was considered in [8]. Should be noted that
in this case problem (1.1)-(1.4) describing bending vibrations of a homogeneous rod, in
cross-sections of which the longitudinal force acts, at both ends of which only the masses
are concentrated. In [7] we study the general characteristic of location of eigenvalues on
the real axis, find the multiplicities of all eigenvalues, investigate the oscillatory properties
of eigenfunctions to problem (1.1)-(1.4) with b = d = 0. Moreover, we establishe suf-
ficient conditions for the subsystems of root functions of this problem to form a basis in
Lp(0, 1), 1 < p < ∞. Similar results for equation (1.1) so for these, also under various
boundary conditions, were obtained in the papers [1, 3-8, 21]. In the recent papers [3], the
uniform convergence of the expansions of continuous functions in Fourier series in the sys-
tem of root functions of the spectral problem for equation (1.1) with boundary conditions
depending on the spectral parameter (these conditions given at the point x = 1) was also
studied. Similar results for the Sturm-Liouville problems with a spectral parameter in the
boundary conditions were demonstrated in [2, 11, 12, 14-19, 22, 23].

Should be noted that to study the basis properties in the space Lp, 1 < p < ∞ of the
system of root functions of problem (1.1)-(1.4), it is necessary to study the arrangement
of eigenvalues on the complex plane (on the real axis) and the structure of root subspaces.
The present paper is devoted precisely to the investigation of these spectral properties of
problem (1.1)-(1.4) for d > 0 and some b > 0.
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2 Operator interpretation of problem (1.1)-(1.4)

As is known the eigenvalue problem (1.1)-(1.4) is reduce to a spectral problem for the
linear operator L in a Hilbert space H = L2(0, 1)⊕ C2 with the inner product

(û, v̂) = ({y,m, n}, {v, s, t}) = (y, v)L2 + |a|−1ms̄ + | c|−1nt̄,

where (y, v)L2 =
1∫
0

y(x) v(x) dx, and L defined by

Lŷ = L{y,m, n} = {(Ty(x))′ , T y(0)− b y(0), T y(1) + d y(1)}

on
D(L) = {{y (x), m, n} : y ∈W 4

2 (0, 1), (Ty(x))′ ∈ L2(0, 1),

y′′(0) = y′′(1) = 0, m = ay(0), n = cy(1)}
It is obvious that problem (1.1)-(1.4) is equivalent to the problem

Lŷ = λŷ, ŷ ∈ D(L), (2.1)

i.e., the eigenvalues λk, k ∈ N, of problem (1.1)-(1.4) and (2.1) coincide together with
their multiplicities, and there exists one-to-one correspondence between the root functions
of these problems,

yk(x)↔ {yk(x), mk, nk}, mk = ayk(0), nk = cyk (1).

By conditions a < 0 and c > 0 the operator L is closed (nonself-adjoint) in H with
compact resolvent. In this case we define an operator J : H → H as follows:

J{y,m;n} = {y,−m,−n}.

It is easy to show that J is a unitary, symmetric operator on H and its spectrum consists of
two eigenvalues:− 1 with multiplicity two and + 1 with infinite multiplicity. Consequently,
this operator generates the Pontryagin space Π2 = L2(0, 1) ⊕ C2 equipped with inner
product (J-metric)[9]

[ŷ, v̂] = (ŷ, v̂)Π2 = ({y,m, n}, {v, s, t})Π2 = (y, v)L2 + a−1ms̄ − c−1nt̄,

Theorem 2.1 (see [8, Theorem 1]) L is J−self-adjoint operator in Π2.

Let λ be an eigenvalue of L with algebraic multiplicity ν, and let %(λ) to be equal to ν if
=(λ) 6= 0, and to the integer part of ν2 if =(λ) = 0.

Theorem 2.2 (see [24, Theorem 3]) The eigenvalues of the operator L are arranged sym-
metrically around the real axis, and

n∑
k=1

%(λk) ≤ 2

for any system {λk}nk=1 , n ≤ +∞, of eigenvalues with nonnegative imaginary parts.

By virtue of Theorem 2.2 the spectral problem (1.1)-(1.4) may have real multiple eigen-
values the sum of algebraic multiplicities of which does not exceed five, or non-real eigen-
values the sum of algebraic multiplicities whose imaginary parts are positive does not ex-
ceed two. But below in § 5 we will prove that in the case b < b0 (see § 3) problem (1.1)-(1.4)
have either one real multiple eigenvalue whose multiplicity does not exceed three or one pair
of complex conjugate non-real eigenvalues.
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3 Some auxiliary facts and assertions

Alongside the spectral problem (1.1)-(1.4) we will consider the following eigenvalue
problems : y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (0, 1),

y′′(0) = 0, y(0) cosβ + Ty(0) sinβ = 0,
y′′(1) = 0, y(1) cos δ − Ty(1) sin δ = 0.

(3.1)

and y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (0, 1),
y′′(0) = 0, T y(0)− (aλ+ b)y(0) = 0,
y′′(1) = 0, y(1) cos δ − Ty(1) sin δ = 0.

(3.2)

It follows [10, Theorem 5.4] and [20, Remark 3] that the eigenvalues of the spectral
problem (3.1) are real, simple and form an unboundedly increasing sequence {λk(β, δ)}∞k=1

such that λ1(β, δ) > 0 for β + δ < π and λ1
(
π
2 ,

π
2

)
= 0; the eigenfunction v(β,δ)k (x),

k ∈ N, corresponding to the eigenvalue λk(β, δ), has exactly k − 1 simple zeros in (0, 1).
Moreover, by [10, Property 1] for each k ∈ N the eigenvalues λk(β, δ) is a continuous,
strictly decreasing function of β and δ.

Let Dk = (λk(0, π/2), λk−1(0, π/2)), k ∈ N, where λ0(0, π/2) = −∞.
By making the change of variables t = 1 − x, we transform the problem (3.2) into the

eigenvalue problem 
v(4)(t)− (q̃(t)v′(t))′ = λv(t), t ∈ (0, 1),

v′′(0) = 0, v(0) cos β̃ + T̃ v(0) sin β̃ = 0,

v′′(1) = 0, T̃ v(1)− (ãλ− b̃) v(1) = 0,

(3.3)

where v(t) = y(1 − t), q̃(t) = q(1 − t), (T̃ v)(t) = v′′′(t) − q̃(t)v′(t), t ∈ [0, 1], β̃ = δ,
ã = − a > 0 and b̃ = b. The problem (3.3) in a more general setting was considered in [1],
where the spectral properties (except for the oscillatory properties of eigenfunctions) of this
problem were studied in detail.

By virtue of [20, Lemma 2] for each fixed β̃ ∈
[
0, π2

]
and each λ ∈ C there exits the

unique (to within constant factor) nontrivial solution v(x, β̃, λ) of problem

v(4)(t)− (q̃(t)v′(t))′ = λv(t), t ∈ (0, 1),

v′′(0) = 0, v(0) cos β̃ + T̃ v(0) sin β̃ = 0, v′′(1) = 0.
(3.4)

Remark 3.1 Without loss of generality, we can assume that the solution v(x, δ, λ) of prob-
lem (3.4) is an entire function of λ for each x ∈ [0, 1] and each δ ∈

[
0, π2

]
.

By virtue of [20, Remark 3] we have

b̃∗0 =
Tv(1, 0, 0)

v(1, 0, 0)
< 0 and

Tv(1, 0, 0)

v (1, π/2, 0)
= 0.

Then it follows from [1, Theorem 4.1] that the following result holds.

Theorem 3.1 The eigenvalues of problem (3.2) with b < b0, where b0 = − b̃∗0, and δ =
0 are real, simple and form an unboundedly increasing sequence {λk(0)}∞k=1 such that
λ1(0) < 0 and λk(0) > 0 for k ≥ 2. The eigenvalues of problem (3.2) with b < b0
and δ = π

2 form an infinite sequence {λk
(
π
2

)
}∞k=1 , accumulating only at +∞, and only

following cases are possible:
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(i) all eigenvalues are real; in this case, the interval D1 contains algebraically two
eigenvalues (either two simple eigenvalues or one double eigenvalue), and the interval Dk

for k ≥ 2 contains one simple eigenvalue;
(ii) all eigenvalues are real; in this case, the interval D1 contains no eigenvalues, and

there exists a natural number m0 ≥ 2 such that Dm0 contains algebraically three eigenval-
ues (either three simple eigenvalues, or one double eigenvalue and one simple eigenvalue,
or one triple eigenvalue), and the interval Dk for k ≥ 2, k 6= m0, contains one simple
eigenvalue;

(iii) this problem has one pair of non-real complex conjugate eigenvalues; in this case,
the interval D1 contains no eigenvalues, and the interval Dk for k ≥ 2 contains one simple
eigenvalue.

But in below in § 5 we show that the statement (ii) of Theorem 3.1 does not hold.

Theorem 3.2 The negative eigenvalues of spectral problem (3.2) is a continuous strictly
increasing function of δ, and the positive eigenvalues of the same problem are continuous
strictly decreasing functions of δ.

To prove this theorem, first the problem (3.2) is reduced to a spectral problem in the cor-
responding space with an indefinite metric, and then the max-min properties of eigenvalues
of [25, § 2] is applied.

Remark 3.2 By virtue of Theorems 3.1 and 3.2 we have the following relations:

λ1(0) < λ1 (π/2) ≤ λ2 (π/2) < λ2(0) < λ3 (π/2) < λ3(0) < λ4 (π/2) < . . . ,

if statement (i) of Theorem 3.1 holds (in this case either λ1 (π/2) , λ2 (π/2) < 0 or
λ1 (π/2) , λ2 (π/2) > 0)),

λ1(0) < 0 < λ2(0) < λ3 (π/2) < λ3(0) < λ4 (π/2) < λ4(0) < . . . ,

if statement (iii) of Theorem 3.1 holds.

4 The main properties of the initial-boundary value problem (1.1)-(1.3)

Theorem 4.1 Let b < b0. Then for each fixed λ ∈ C there exists a nontrivial solution
y(x, λ) of the problem (1.1)-(1.3) which is unique up to a constant factor.

Proof. Let ϕk(x, λ), k = 1, 4, be solutions of equation (1.1), normalized for x = 0 by the
Cauchy conditions

ϕ
(s−1)
k (0, λ) = δks, s = 1, 3, Tϕk(0, λ) = δk4, (4.1)

where δks is the Kronecker delta.
We will seek the function y(x, λ) in the following form:

y(x, λ) =
4∑

k=1

Ckϕk(x, λ), (4.2)

where Ck, k = 1, 2, 3, 4, are constants.
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It follows from (4.1), (4.2) and boundary conditions (1.2), (1.3) that C3 = 0, C4 =
(aλ+ b)C1 and

C1{ϕ′′1(1, λ) + (aλ+ b)ϕ′′4(1, λ)}+ C2 ϕ
′′
2(1, λ) = 0.

To complete the proof of this theorem it suffices to show that

|ϕ′′1(1, λ) + (aλ+ b)ϕ′′4(1, λ)|+ |ϕ′′2(1, λ)| > 0. (4.3)

If λ > 0, then it follows from [10, Lemma 2.1] that ϕ′′k(1, λ) > 0, k = 1, 2, 3, 4. Hence
(4.3) holds for λ > 0.

Let λ ∈ C\(0,+∞). If (4.3) is fails for such λ, then the functions ϕ1(x, λ) + (aλ +
b)ϕ4(x, λ) and ϕ2(x, λ) solve the problem (1.1)-(1.3). We now define the functions v(x, λ)
and w(x, λ) as follows:

v(x, λ) = ϕ2(1, λ) {ϕ1(x, λ) + (aλ+ b)ϕ4(x, λ)}

−{(ϕ1(1, λ) + (aλ+ b)ϕ4(1, λ)}ϕ2(x, λ),

w(x, λ) = Tϕ2(1, λ) {ϕ1(x, λ) + (aλ+ b)ϕ4(x, λ)}
−{(Tϕ1(1, λ) + (aλ+ b)Tϕ4(1, λ)}ϕ2(x, λ).

Since v(1, λ) = 0 and Tw(1, λ) = 0, the functions v(x, λ) and w(x, λ) are eigenfunctions
of the spectral problem (3.2) for δ = 0 and δ = π/2, respectively, corresponding to the same
eigenvalue λ, which contradicts Remark 3.3. This contradiction proves (4.3). The proof of
this theorem is complete.

Remark 4.1 By Theorem 4.1 we can represent the solution y(x, λ) of problem (1.1)-(1.3)
in the following form:

y(x, λ) = ϕ′′2(1, λ) {ϕ1(x, λ) + (aλ+ b)ϕ4(x, λ)}

−
{
ϕ′′1(1, λ) + (aλ+ b)ϕ′′4(1, λ)

}
ϕ2(x, λ).

Then it follows from the general theory of linear differential equations that y(x, λ) is an
entire function of λ for each fixed x ∈ [0, 1].

Remark 4.2 Set m(λ) = ay(0, λ), n(λ) = c y(1, λ). Note that, if λ is an eigenvalue of
problem (1.1)-(1.4), then it follows from Remark 3.3 that m(λ)n(λ) 6= 0.

Let Ak = (λk−1(0), λk(0)), n = 1, 2, . . . , where λ0(0) = −∞.
Obviously, the eigenvalues λk(0) and λk

(
π
2

)
of the spectral problem (3.2) for δ = 0

and δ = π
2 are zeros of entire functions y(1, λ) and Ty(1, λ), respectively. We note that the

function G(λ) = Ty(1,λ)
y(1,λ) is defined in

A ≡ (C\R) ∪

( ∞⋃
k=1

Ak

)
,

and, λk(0) and λk
(
π
2

)
, k ∈ N, are the zeros and poles of this function, respectively.

Lemma 4.1 One has the formula

dG(λ)

dλ
=

1

y2(1, λ)

{∫ l

0
y2(x, λ) dx+ ay2(0, λ)

}
, λ ∈ D. (4.4)
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The proof of this lemma is similar to that of [8, Lemma 3].

Lemma 4.2 The following relation holds:

lim
λ→−∞

G(λ) = −∞. (4.5)

The proof of this lemma is similar to that of [8, Lemma 4].

Lemma 4.3 Let b ∈ (0, b0). Then we have the following relations:
(i) G(λ0(0) + 0) = −∞ and G(λ1(0)− 0) = −∞;
(ii) G(λ1(0) + 0) = +∞ and G(λ2(0)− 0) = +∞;
(iii) G(λk(0) + 0) = −∞ and G(λk+1(0)− 0) = +∞ for k ≥ 2;
(iv) G(λ) < 0 in (λ1 (π/2) , λ2 (π/2)) in the case λ1 (π/2) , λ2 (π/2) ∈ R, and

λ1 (π/2) 6= λ2 (π/2),
G(λ1 (π/2)) = 0 in the case λ1 (π/2) = λ2 (π/2) ∈ R,
G(λ) > 0 in (λ1 (0) , λ2 (0)) in the case λ1 (π/2) , λ2 (π/2) ∈ C\R.

Proof. By virtue of (4.5) we have G(λ) < 0 in (−∞, λ1(0). Since λ1(0) is a simple pole of
the function G(λ) it follows that this function changes sign when passing the point λ1(0).
Then we get

G(λ) > 0 for λ ∈ (λ1(0), λ2(0)) in the case λ1 (π/2) , λ2 (π/2) ∈ C\R;
G(λ) > 0 for λ ∈ (λ1(0), λ1 (π/2)) ∪ (λ2 (π/2) , λ2(0))

and
G(λ) < 0 for λ ∈ (λ1 (π/2) , λ2 (π/2)) in the case λ1 (π/2) , λ2 (π/2) ∈ R.

Consequently, we have the following relations

lim
λ→λ1(0)−0

G(λ) = −∞, lim
λ→λ1(0)+0

G(λ) = +∞ and lim
λ→λ2(0)− 0

G(λ) = +∞.

Next, since λk(0), k ≥ 2, are simple poles of the function G(λ) and by Remark 3.2 the
interval Ak for k ≥ 3, k 6= m0, contain one simple zeros and Am0 contain algebraically
three zeros of this function it follows that

lim
λ→λk(0)+ 0

G(λ) = −∞, lim
λ→λk+1(0)− 0

G(λ) = +∞ for k ≥ 2.

The proof of this lemma is complete.

Lemma 4.4 One has the following representation

G(λ) =
∞∑
k=1

λ ck
µk(λ− µk)

, (4.6)

where ck = res
λ=λk(0)

G(λ), k ∈ N, and c1 > 0, ck < 0, k ≥ 2.

The proof of this lemma is similar to that of [3, Lemma 3.3] with the use of Theorems
3.1, 3.2, Lemmas 4.1-4.3 and Remarks 3.2, 4.2.

Remark 4.3 In view of (4.6) we have

G′′(λ) = 2

∞∑
k=1

ck
(λ− λk(0))3

, λ ∈ A. (4.7)

Since c1 > 0 and ck < 0 for k ≥ 2 it follows from (4.7) that G′′(λ) > 0 for λ ∈ A2 =
(λ1(0), λ2(0)), i.e. the function G(λ) is convex on A2.
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5 The location of eigenvalues in real axis and structures of root subspaces of problem
(1.1)-(1.4)

Below we need the following result.

Lemma 5.1 Let b < b0. Then the statement (ii) of Remark 3.2 does not hold.

Proof. If this statement holds, then we have:
G(λ) > 0 in (λ1(0), λ2(0));
G(λ) < 0 in (λm0−1(0), λm0−1 (π/2)) and G(λ) > 0 in λ ∈ (λm0+1 (π/2) , λm0(0))

in the case of Am0 contain three zeros of the function G(λ) (two of which are different);
G(λ) > 0 in (λm0−1 (π/2) , λm0 (π/2)) and G(λ) < 0 in (λm0 (π/2) , λm0+1 (π/2)),

in the case of λm0−1 (π/2) < λm0 (π/2) < λm0+1 (π/2),
G(λ) > 0 in (λm0−1 (π/2) , λm0 (π/2)) in the case of λm0−1 (π/2) < λm0 (π/2) =

λm0+1 (π/2);
G(λ) < 0 in (λm0 (π/2) , λm0+1 (π/2)) in the case of λm0−1 (π/2) = λm0 (π/2) <

λm0+1 (π/2).
Suppose that Am0 contain three different zeros of the function G(λ). Then by virtue of

above relations there exist the numbers c0 < 0 and d0 < 0 such that the line c0λ − d0
tangent to the graph of the function G(λ) at some points λ∗0 ∈ D2 and λ∗∗0 ∈ Dm0 . Then
λ∗0 and λ∗∗ are real double eigenvalues of the spectral problem (1.1)-(1.4) with c = c0 and
d = d0. In other hand as is known that (see [7, Theorem 4.1]) problem (1.1)-(1.4) with
c = c0 and d = d0 reduce to the eigenvalue problem for the linear self-adjoint operator
in the Pontryagin space Π1 = L2(0, 1) ⊕ C. Hence by [24, Theorem 3] this operator can
have only one real multiple eigenvalue. The obtained contradiction shows that the case
considered by us above is impossible.

The case when Am0 contain two different zeros of the function G(λ) is considered in a
similar way.

Now let Am0 contain one triple zero of the function G(λ). Then for ã < a and c̃ > c

sufficiently close to a and c, respectively, the function G̃(λ) corresponding to the initial
boundary-value problem (1.1)-(1.3) with (a, c) replaced by (ã, c̃) in the interval Am0 has
three different zeros. Repeating now the above reasoning, we come to a contradiction, and
consequently, the case considered by us above is also impossible. The proof of this lemma
is complete.

The following theorem is the main result of this paper.

Theorem 5.1 Let b < b0. Then one of the following statements holds.
(i) all eigenvalues of problem (1.1)-(1.4) are real and simple; in this case either A2 con-

tains two eigenvalues, and Ak, k = 1, 3, 4, . . . , contains one eigenvalue, or A2 contains
no eigenvalues, but there exists a positive integer m1 ≥ 3 such that Am1 contains three
eigenvalues, and Ak, k = 1, 3, . . . , k 6= m1, contains one eigenvalue;

(ii) all eigenvalues of problem (1.1)-(1.4) are simple and real, with the exception of one
pair of non-real complex conjugated eigenvalues;

(iii) all eigenvalues of problem (1.1)-(1.4) are real; in this case either A2 contains one
double eigenvalue, and Ak, k = 1, 3, 4, . . . , contains one eigenvalue, or A2 contains no
eigenvalues, and Am1 contains algebraically three eigenvalues (either one double eigen-
value and one simple eigenvalue, or one triple eigenvalue), andAk, k = 1, 3, . . . , k 6= m1,
contains one eigenvalue.

Proof. By Remark 4.2 it follows from (1.4) that the eigenvalues of problem (1.1)-(1.4) are
the roots of the equation

G(λ) = cλ− d. (5.1)
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Since c > 0 and the function G(λ) is convex in A2 there exists d̃c > 0 such that the line
cλ + dc tangent to the graph of the function G(λ) at some point of the interval A2. Then
for small fixed τ0 > 0 the line cλ+ dc, 0, where dc, 0 = dc + τ0, intersects the graph of the
function G(λ) at two points of the interval A2. By following the arguments in Lemmas 4.1
and 4.2 of [1] we make sure that Eq. (5.1) with d = − dc, 0 does not have non-real roots and
has a unique root in each interval Ak for k = 1, 3, 4, . . . .

It follows from Lemmas 4.3 and 5.1 that for each d > 0 there exist cd,1 > 0, cd,2 > 0
such that cd,1 < cd,2 and the line cλ − d for c ∈ (cd,1, cd,2) intersects the graph of the
function G(λ) at three points of the interval Am1 .

Let rk = λk
(
π
2

)
+ ε, where ε is a sufficiently small positive number, and let k0 (k0 >

m0 + 2) be the sufficiently large natural number such that

c rk0 − d > 0, |G(λ)− (cλ+ dc)| > |d+ dc|, λ ∈ ∂Brk0 , (5.2)

where Br = {λ ∈ C : |λ| < r} for r > 0.
Using (5.2) and following the corresponding arguments given in Theorem 4.1 of [1], we

obtain ∑
λn∈Brk0

ρ(λn) = k0,

and consequently, we have ∑
λn∈Brk

ρ(λn) = k for k ≥ k0. (5.3)

Now all the statements of this theorem implies from relation (5.3) in view of Lemma
4.3. The proof of this theorem is complete.
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Hölder class for two problems with a spectral parameter in the boundary condition, Differ.
Equ. 36(8), 1182-1188 (2000).

17. Kapustin, N.Yu., Moiseev, E.I.: On the basis property in the space Lp of systems of
eigenfunctions corresponding to two problems with spectral parameter in the boundary
condition, Differ. Equ. 36(10) 14981501 (2000).

18. Kapustin, N.Yu., Moiseev, E.I.: On the problem of the convergence of spectral expan-
sions for a classical problem with a spectral parameter in the boundary condition, Differ.
Equ. 37(2), 1677-1683 (2001).

19. Kerimov, N. B.: Basis properties in Lp of a Sturm-Liouville operator with spectral
parameter in the boundary conditions. Differ. Equ. 55(2), 149-158 (2019).

20. Kerimov, N.B., Aliyev, Z.S.: On oscillation properties of the eigenfunctions of a fourth
order differential operator, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 25(4), 63-
76 (2005).

21. Kerimov, N.B., Aliyev, Z.S.: On the basis property of the system of eigenfunctions
of a spectral problem with spectral parameter in a boundary condition, Diff. Equ. 43(7),
905-915 (2007).

22. Kerimov, N.B., Goktas, S., Maris, E.A.: Uniform convergence of the spectral expan-
sions in terms of root functions for a spectral problem. Electron. J. Differential Equations
2016(80), 1-14 (2016).

23. Kerimov, N.B., Poladov, R.G.: Basis properties of the system of eigenfunctions in the
Sturm-Liouville problem with a spectral parameter in the boundary conditions, Dokl.
Math. 85(1), 8-13 (2012).

24. Pontryagin, L.S.: Hermitian operators in a space with indefinite metric, Izv. Akad. Nauk
SSSR Ser. Mat. 8(6), 243-280 (1944).

25. Textorius, B.: Minimaxprinzipe zur Bestimmung der Eigenverte J-nichtnegativer Op-
eratoren, Math. Scand. 35(1) 105-114 (1974).


