
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 43 (1), 1-9 (2023).

Boundary value problem in an infinite strip for one characteristic
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Abstract. A complete asymptotic solution of the boundary value problem in an infinite strip is con-
structed for a one-characteristic third-order equation degenerating into an elliptic equation, and the
remainder is estimated.
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1 Introduction and problem statement

When studying some real phenomena with non-uniform transitions from one physical
characteristics to other ones, we have to research singularly perturbed boundary value prob-
lems such problems have attracted attention of many prominent scientist as A.N. Tikhonov,
L.S. Pontryagin, N.N.Bogolyubov, Yu. A. Mitropolsskii, V.Vazov, K. Friedrich, M.I. Vishik,
L.A. Lusternik, O.A. Oleinik, E.F. Mishenko, N.Kh. Rozov, A.M.Il’in and others. But a
great majority of the studied singularly perturbed partial differential equations were related
to one of three classic types in bounded domains. Non –classic singularly perturbed differ-
ential equations have been little studied. The study of singularly perturbed boundary value
problems for non-classic equations requires specific approaches from the author to their
solution.

M.I. Vishik and L.A. Lusternik in [1] have introduced the so-called one-characteristic
equations.

The equations of odd order 2k + 1 of the from

A1(A2ku) +B2ku = f (1.1)

were called by them one-characteristical equations if A1 is a first order operator, A2k is an
elliptic operator of orders 2k while B2k is any differential operator of order no more team
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2k. Obviously, only the characteristics of the first order operatorA1 will be real characteris-
tics of the equation (1.1) Mutual degenerations of one-characteristical and elliptic equations
were studied in the same paper.

Asymptotics of the solutions of boundary value problems in an infinite strip were con-
structed in [2], [3] for third order one-characteristical equation degenerating into a hyper-
bolic equation. Complete asymptotics in a small parameter of the solution of boundary value
problems in bounded and unbounded domains for a class of a singularly perturbed equations
of odd order were constructed in the papers [4]-[6].

In the papers [7], [8] boundary value problems are studied for singularly perturbed one-
characteristic equation degenerating into a parabolic and hyperbolic equation.

In the present paper, in the infinite strip Π = {(x, y)|0 ≤ x ≤ 1,−∞ < y < +∞} we
consider the following boundary value problem for a third order one-characteristic equation
degenerating,into an elliptic equation:

Lεu ≡ ε
∂

∂x
(∆u)−∆u+ au = f(x, y), (1.2)

u|x=0 = 0, u|x=1 = 0,
∂u

∂x

∣∣∣∣
x=1

= 0, (1.3)

lim
|y|→+∞

u = 0, (1.4)

where ε > 0 is a small parameter,∆ ≡ ∂2

∂x2
+ ∂2

∂y2
is a Laplace operator, a > 0 is a constant,

f(x, y) the given function .
Our goal is to construct complete asymptotics in a small parameter of the solution of

boundary value problem (1.2)-(1.4).
For that we carry out iterative processes.

2 Carrying out iterative processes

In the first iterative process, the approximate solution of the equation (1.2) is sought in the
from

W =W0 + εW1 + ...+ εnWn. (2.1)

Having substituted the expression (2.1) for W in equation (1.2) and regrouping the terms
with the same prowers with respect to ε, we obtain the following recurrently connected
equations to determine the functions Wi; i = 0, ..., n :

−∆W0 + aW0 = f(x, y), (2.2)

−∆Wk + aWk = −
∂

∂x
(∆Wk−1), k = 1, 2, ..., n. (2.3)

Obviously, it is impossible to use all three boundary conditions (1.3) for the equations
(2.2), (2.3). For these equations we will use first two conditions from (1.3). Boundary con-
ditions for equations (2.2), (2.3) at x = 1 will be written below.

With this choice of boundary conditions with respect to x for the equations (2.2), (2.3) on
the boundary Lε the third boundary condition from (1.3) will be lost. To compensate the lost
boundary condition, we should construct a boundary layer type function near the boundary
x = 1. This time, the first iterative process by means of which the functions Wi; k =
0, 1, ..., n will be constructed and iterative process that serves to construct boundary layer
functions near the boundary x = 1 will be embedded to each other. Therefore, for finding
boundary conditions at x = 1 for the equations (2.2), (2.3), at first we must write equations
whose solutions will be boundary layer functions near x = 1.
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The first iterative process is carried out on the basis of splitting or (1.2) of the operator
Lε, that will be called the first splitting of the operatorLε. For carrying out on-other iterative
process by means of which a boundary layer function will be constructed near the boundary
x = 1, in a new splitting of the operator Lε should be written near this boundary. In order
to write a new spliting near the boundary x = 1, we make substation of variables 1 − x =
εt, y = y. The new splitting of the operator Lε in new coordinates (t, y) is be of the from

Lε,1 ≡ ε2
{
−
(
∂3

∂t3
+
∂2

∂t2

)
+ ε2

(
− ∂3

∂t∂y2
− ∂2

∂y2
+ a

)}
.

We look for a boundary layer function V near the boundary x = 1 in the form

V = ε(V0 + εV1 + ...+ εnVn), (2.4)

as an approximate solution of the equation

Lε,1V = 0. (2.5)

Having substituted the expression for (2.4) V from to (2.5) and comparing the terms at the
same prowers with respect to ε, we have

∂3V0
∂t3

+
∂2V0
∂t2

= 0, (2.6)

∂3V1
∂t3

+
∂2V1
∂t2

= 0, (2.7)

∂3Vi
∂t3

+
∂2Vi
∂t2

=
∂3Vi−2
∂t∂y2

+
∂2Vi−2
∂y2

− aVi−2, i = 2, 3, ..., n. (2.8)

The iterative processes described above are inter connected with boundary conditions.
To reveal this relations we require that the sumW +V satisfy all boundary conditions (1.3).
Considering that due to the smoothing functions, the boundary layer functions Vj will equal
zero for x = 0, we obtain

W0|x=0 = 0, W0|x=1 = 0, (2.9)

Wk|x=0 = 0, Wk|x=1 = − Vk−1|t=0 , k = 1, 2, ..., n, (2.10)

∂Vi
∂t

∣∣∣∣
t=0

=
∂Wi

∂x

∣∣∣∣
x=1

, i = 0, 1, ..., n. (2.11)

We call the problem (2.2), (2.9) a degenerated problem corresponding to the problem
(1.2)-(1.4). We have the following lemma.

Lemma 1. Let the function f(x, y) in Π have continuous derivatives with respect to x
the (n+2)-th order, inclusively, and with respect to the variable y be infinitely differentiable,
and for any pair of non-negative numbers l, k satisfy the inequality of the form

sup
y
(1 + |y|l)

∣∣∣∣∂kf(x, y)∂xk1∂yk2

∣∣∣∣ = C
(1)
lk1,k2

< +∞, (2.12)

where C(1)
lk1,k2

> 0 is a constant, k = k1 + k2 moreover k1 ≤ n+ 2, k2 is arbitrary . Then
there exists a unique solution of the problem (2.2), (2.9) and the function W (x, y) satisfies
the condition

sup
y
(1 + |y|l)

∣∣∣∣∂kW0(x, y)

∂xk1∂yk2

∣∣∣∣ = C
(2)
lk1,k2

< +∞, (2.13)
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where C(2)
lk1,k2

> 0 is a constant, k = k1 + k2 moreover k1 ≤ n+ 3, k2 is arbitrary.
Proof. Using the Fourier transformation with respect to the variable y, we reduce the

problem (2.2),(2.9) to the problem

d2W̃0

dx2
− (a+ λ2)W̃0 = f̃ , (2.14)

W̃0

∣∣∣
x=0

= 0, W̃0

∣∣∣
x=1

= 0, (2.15)

where

W̃0(x, λ) =
1√
2π

+∞∫
−∞

e−iλyW0(x, y)dy,

f̃(x, λ) = − 1√
2π

+∞∫
−∞

e−iλyf(x, y)dy.

The solution of problem (2.14),(2.15) is written in the form

W̃0(x, λ) =

1∫
0

f̃(t, λ)G(x, t, λ)dt, (2.16)

where G(x, t, λ) is the Green function of this problem and has the following form

G(x, t, λ) =

{
1

2k(e−2k−1)
[
e−k(2−x+t) − e−k(2−x−t) − e−k(x+t) + e−k(x−t)

]
for t ≤ x,

1
2k(e−2k−1)

[
e−k(t−x) − e−k(x+t) − e−k(2−x−t) + e−k(2+x−t)

]
for t ≥ x,

where k(λ) =
√
a+ λ2.

Applying the inverse Fourier transformation to W̃0(x, λ), we obtain the solution of the
problem (2.2), (2.9) in the form

W0(x, λ) =
1√
2π

+∞∫
−∞

eiλyW̃0(x, λ)dλ.

Obviously, to prove the Lemma is suffices to show that the function W̃0(x, λ) and all its
derivatives with respect to x to the (n + 3)− th order, inclusively belong to the Schwarts
space of repialy decreasing functions as |λ| → +∞. Further, we will denote this space by
Sλ. Thus we have to prove the validity of the following inequality

sup
y
(1 + |λ|l)

∣∣∣∣∣∂kW̃0(x, λ)

∂xk1∂λk2

∣∣∣∣∣ = C
(3)
lk1,k2

< +∞, (2.17)

where C(3)
lk1,k2

> 0 is a constant, k = k1 + k2 where k1 ≤ n+ 3, k2 is arbitrary.
At first we consider the case k1 = 0. From the explicit expression of the Green function

G(x, t, λ) it follows that this function has any order bounded derivatives with respect to λ
i.e. ∣∣∣∣∂kG(x, t, λ)∂λk

∣∣∣∣ ≤Mk, k = 0, 1, ... . (2.18)
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From (2.16),(2.12) and (2.18) we obtain∣∣∣∣∣∂kW̃0

∂λk2

∣∣∣∣∣ =
∣∣∣∣∣∣
1∫
0

k∑
i=0

Cik
∂if̃

∂λi
∂k−iG

∂λk−i
dt

∣∣∣∣∣∣
≤

1∫
0

k∑
i=0

Cik
C

(4)
l0i(

1 + |λ|l
)Mk−idt =

C
(3)
l0i(

1 + |λ|l
) ,

where C(3)
l0i =

k∑
i=0
Cl0iMk−i, i.e. the function W̃0(x, λ) belongs to the space Sλ.

We prove the validity of (2.17) for k1 = 1. To this end ,at first we note that from the
explicit expression of G(x, t, λ) it follows that∣∣∣∣∂k+1G

∂x∂λk

∣∣∣∣ ≤ Nk; k = 0, 1, ... .

Using the last relation similar to wow it has been done for W̃0(x, λ), we obtain ∂kW̃0(x,λ)
∂x ∈

∈ Sλ.
To show the validity of the relation (2.19) for 2 ≤ k ≤ n + 3 we differentiate the both

hand sides of (2.14) k1 − 2 times with respect to x

∂k1W̃0

∂xk1
= (a+ λ2)

∂k1−2W̃0

∂xk1−2
+
∂k1−2f̃

∂xk1−2
, 2 ≤ k1 ≤ n+ 3. (2.19)

Since W̃0 ∈ Sλ,and the function a+ λ2 has a polynomial growth with respect to λ then
from (2.19) for k1 = 2 it follows that ∂

2W̃0
∂x2
∈ Sλ, i.e. the relation (2.17) is valid for k1 = 2.

Continuing the reasoning from (2.19), finally we obtain that ∂
n+3W̃0
∂xn+3 ∈ Sλ, i.e. the relation

(2.17) is valid for k1 = n+ 3.
Lemma 1 is proved.
It follows from (2.13) that the function W0(x, y) satisfies the condition

lim
|y|→+∞

W0(x, y) = 0 as well.

Knowing the function W0 from (2.6) and from (2.11) for i = 0 we can determine the
function V0. The function V0 will be a boundary layer type solution of the equation (2.6)
satisfying the condition

∂V0
∂t

∣∣∣∣
t=0

=
∂W0

∂x

∣∣∣∣
x=1

. (2.20)

The characteristic equation corresponding to the ordinary differential equation (2.6), besides
zero roots has one negative root: k = −1.

This fact provides regularity of degeneration of problem (1.2)-(1.4) on the boundary
x = 1.

The boundary layer type solution of the problem (2.20), (2.21)is of the form :

V0 = −
∂W0(1, y)

∂x
e−t. (2.21)

From (2.3) and from (2.10) for k = 1 we obtain that the functionW1(x, y) is determined
from the following boundary value problem :

−∆W1 + aW1 = f1(x, y), (2.22)
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W1|x=0 = 0 , W1|x=1 = − V0|t=0 , (2.23)

where f1(x, y) = − ∂
∂x(∆W0).Using the Fourier transformation with respect to the variable

y we reduce the problem (2.22), (2.23) to the problem

d2W̃1

dx2
− (a+ λ2)W̃1 = f̃1(x, λ), (2.24)

W̃1

∣∣∣
x=0

= 0 , W̃1

∣∣∣
x=1

= ϕ1(λ), (2.25)

where W̃1(x, λ), f̃1(x, λ) is Fourier transformation of the functionW1(x, y) and−f1(x, y)
respectively, ϕ1(λ) is determined by the following formula

ϕ1(λ) =
1√
2π

+∞∫
−∞

e−iλy
∂W0(1, y)

∂x
dy. (2.26)

The solution of the problem (2.24),(2.25) is written in the form

W̃1(x, λ) =W 1(x, λ) +

1∫
0

f̃1(t, λ)G(x, t, λ)dt, (2.27)

where

W 1(x, λ) =
ϕ1(λ)

1− e−2k(λ)
[
e−k(λ)(1−x) − e−k(λ)(1+x)

]
.

It is seen from (2.26) that W 1(x, λ) and all its derivatives with respect to x belong to the

space Sλ. Therefore, since ∂k f̃1(x,λ)
∂xk

∈ Sλ, k = 0, 1, ..., n, then by the Lemma 1, from the
expression (2.27) for W̃1(x, λ) it follows that the function W̃1(x, λ) and all its derivatives
with respect to x to the (n+2)− th order inclusively, belong to the space Sλ. Consequently,
the function W1(x, λ) being the inverse Fourier transformation with respect to the variable
λ for W̃1(x, λ), itself with all its derivatives with respect to x belongs to the space Sy.
Therefore, the function W1(x, y) satisfies the condition lim

|y|→+∞
W1(x, y) = 0 as well.

Further we determine the function V1 from (2.7) and (2.11) for i = 1.Obviously, V1 is
determined by the following formula:

V1 = −
∂W1(1, y)

∂x
e−t.

Then, from (2.3) and (2.10) for k = 2 we determine the functionW2(x, y). ForW2(x, λ)

the following condition is fulfilled:∂
kW2

∂xk
∈ Sy, k = 0, 1, ..., n + 1. After determining W2

from (2.8) and from (2.11) for i = 2 we determine the function V2 as a boundary layer type
solution of the following problem :

∂3V2
∂t3

+
∂3V2
∂t

=
∂3V0
∂t∂y2

+
∂2V0
∂y2

− aV0, (2.28)

∂V2
∂t

∣∣∣∣
t=0

=
∂W2

∂x

∣∣∣∣
x=1

. (2.29)
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It can be easily shown that the boundary layer type solution of the problem (2.28),(2.29)
is of the form:

V2 =

[
a(t+ 1)

∂W0(1, y)

∂x
− ∂W2(1, y)

∂x

]
e−t.

Assume that we have already constructed the functions Wj , Vj−1 for 0 ≤ j ≤ i− 1 and
for them the following induction hypotheses fulfilled:

1) The functions Wj satisfy the condition (2.13) for k1 ≤ n+ 3− j;
2) The function Vj−1 is of boundary layer character in the vicinity x = 1, more exactly,

is of the form:

Vj−1 = e−t
l∑

s=0

cj−1,s(y)t
s,

where cj−1,s(y) are expressed by ∂Wr(1,y)
∂x , r ≤ j − 1 and their derivatives with respect to

y.
In the same way that we determined W0,W1, we determine the function Wi as the

solution of the problem

−∆Wi + aWi = −
∂

∂x
(∆Wi−1) ,

Wi|x=0 = 0, Wi|x=1 = − Vi−1|t=0 .

For the arguments carried out in the construction of W1 and from Lemma 1 it follows
that the functionWi will satisfy the condition (2.13) for k1 ≤ n+3− i. Hence, in particular
it follows that the functions Wi satisfy the boundary condition

lim
|y|→+∞

Wi = 0, i = 0, 1, ..., n (2.30)

as well.
The function Vi is determined as a boundary layer type solution of problem (2.7),(2.11).
Recall that by virtue of the second part of the hypotheses, the right hand side of the

equation (2.7) is of the form e−t
l∑

s=0
Ps(y)t

s, where Ps(y) is expressed by cj−2,s(y) and

c′′j−2,s(y). Hence it follows that one can also find the solution of the problem (2.7),(2.11) in

the form e−t
l∑

s=0
Qs(y)t

s, where Qs(y) is expressed by the function ∂Wr(1,y)
∂x , r ≤ i.

Note that from obvious expressions of the functions V0, V1, ..., Vn it follows that these
functions satisfy the following conditions as well:

lim
|y|→+∞

Vi = 0, i = 0, 1, ..., n. (2.31)

Having multiplied all the functions Vj by the smoothing functions, for the obtained new
functions we keep the previous notation.

Thus, we constructed the sum ũ = W + V that approximately satisfies the equation
(1.2) in the sense

Lεũ = O(εn+1). (2.32)

It follows from (2.9)-(2.11),(2.30),(2.31) that the function ũ satisfies the following bound-
ary conditions:

ũ|x=0 = 0, ũ|x=1 = εϕ(y),
∂ũ

∂x

∣∣∣∣
x=1

= 0, (2.33)
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where ϕ(y) = vn|t=0 . Obviously,

lim
|y|→+∞

ϕ(y) = 0. (2.34)

Having denoted u− ũ = εnz we obtained the following asymptotic represention of the
solution of the problem (1.2)-(1.4):

u =
n∑
i=0

εiWi +
n∑
i=0

ε1+iVi + εnz, (2.35)

where εnz is a remainder.

3 Estimating of the remainder term and the main result

Acting on both sides of (2.35) by the appropriate splitting, of the operator Lε and taking
into account equations (1.2),(2.32) it is easy to see that z satisfies the equation

Lεz = F, (3.1)

where F (ε, x, y) = h1(ε, x, y) + h2(ε, x, y) is a function uniformly bounded in Π with
respect ε. to There

h1(ε, x, y) = −ε
∂

∂x
(∆Wn),

while h2(ε, x, y) near the boundary x = 1 is of the form

h2(ε, x, y) =
∂3Vn−1
∂t∂y2

+
∂2Vn−1
∂y2

− aVn−1 + ε

(
∂3Vn
∂t∂y2

+
∂2Vn
∂y2

− aVn
)
.

It follows from (1.3), (1.4), (2.33), (2.34), (2.35) that z satisfies the following boundary
conditions :

z|x=0 = 0, z|x=1 = −εϕ(y),
∂z

∂x

∣∣∣∣
x=1

= 0, (3.2)

lim
|y|→+∞

z = 0, (3.3)

We introduce a new unixliarly function by the formula

z1 = z + εxe1−xϕ(y). (3.4)

Then the function z1 will be the solution of the problem

Lεz1 = F1, (3.5)

z1|x=0 = 0, z1|x=1 = 0,
∂z1
∂x

∣∣∣∣
x=1

= 0, (3.6)

lim
|y|→+∞

z1 = 0, (3.7)

where F1 = F − εLε
[
xe1−xϕ(y)

]
.

We have the following lemma
Lemma 2. For the solution of problem (3.5)-(3.7) the estimation

‖z1‖2W 1
2 (Π) ≤ C1ε, (3.8)
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is valid, where the constant C1 > 0 is independent of ε.
To prove Lemma 2 we have to multiply the both hand sides of (3.5) by z1 and integrate

by parts allowing for boundary condition (3.6)-(3.7). After some transformations we obtain
the estimate (3.8).

Knowing the estimation for z1, from the equality (3.4) we easily obtain the same esti-
mation for z :

‖z‖2W 1
2 (Γ )
≤ Cε, (3.9)

where the constant C > 0 is independent of ε.
Combining the results obtained above, we arrive at the following statement.
Theorem. Let f(x, y) be a given function inΠ, with continuous derivatives with respect

to x to the (n+1)−th the order, inclusively, while with respect to the variable y is infinitely
differentiable and satisfies the condition (2.12). Then for the solution of the boundary value
problem (1.2)-(1.4) we have the asymptotic representation (2.35), where the functions Wi

were determined by the first iterative process, Vj are boundary layer type functions near
the boundary x = 1 defined by the second iterative process, εnz is a remainder and the
estimation (3.9) is valid for z.
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