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Abstract. In this paper, we consider the total anisotropic Morrey spaces Lg, A, #(R") introduced by

Guliyev in [22] in the isotropic case d = (1,...,1). These spaces generalize the anisotropic Morrey
spaces so that L;i AR = Lg, »(R™) and the modified anisotropic Morrey spaces so that Lg, roR") =

Lg, A(R™). We give basic properties of the spaces L;f’ AnR™) and study some embeddings into the
d

P
anisotropic maximal commutator operator M, l;l and commutator of anisotropic maximal operator [b, M d]

on Lg ,u(R™). We obtain some new characterizations for certain subclasses of BMO(R™).

Morrey space L (R™). We also give necessary and sufficient conditions for the boundedness of the

Keywords. total anisotropic Morrey spaces, anisotropic maximal operator, commutator, BM O spaces

Mathematics Subject Classification (2010): Primary 42B20 - 42B25 - 42B35

1 Introduction

Let T be a Calderén-Zygmund singular integral operator and b € BMO(R"™). A well
known result due to Coifman, Rochberg and Weiss [9] states that [b,T] is bounded on
Ly(R™) for 1 < p < oo when b € BMO(R™). They also gave a characterization of
BMO(R™) in virtue of the L,-boundedness of the above commutator. It is well-known
that the commutator is an important integral operator and plays a key role in harmonic
analysis. Maximal commutator plays an important role in the study of commutators of sin-
gular integral operators with BM O symbols (see, for example [9, 16]). The commutator of
Calder6n-Zygmund operators plays an important role in studying the regularity of solutions
of elliptic partial differential equations of second order (see, for example, [10,11,15,24,
25)).

Let R™ be the n-dimension Euclidean space with the norm |z| for each x € R", §7~1
denotes the unit sphere on R™. For x € R™ and r > 0, let £(x, r) denote the open ellipsoid

centered at z of radius r and Gg(x, r) denote the set R"\E(x,r). Let d = (dy,...,dy),
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di>li=1,...,n|d=7",d; and tiz = (tdlxl, . ,td"xn).By [6,14], the function

F(x,p) =1 x2p~2%, considered for any fixed z € R", is a decreasing one with respect
to p > 0 and the equation F'(z, p) = 1 is uniquely solvable. This unique solution will be
denoted by p(x). It is a simple matter to check that p(x — y) defines a distance between any
two points z, y € R". Thus R", endowed with the metric p, defines a homogeneous metric
space (see, for example, [6,7,14]). The balls with respect to p, centered at = of radius r, are
just the ellipsoids

2

. (1 — 1) (yn — wn)?
Ed(.I,T):{yER ﬂidl++7“27dn<1 s

with the Lebesgue measure |E4(x,r)| = v,rl9, where v,, is the volume of the unit ball in
R™ Letalso II4(x,r) = {y € R" : maxi<j<y, |; —yi|1/di < r} denote the parallelopiped,
Cé’d(a:,r) = R" \ &4(x,r) be the complement of £4(0,7). If d = 1 = (1,...,1), then
clearly p(x) = |z| and &1 (z,7) = E(x,r). Note that in the standard parabolic case d =
(1,...,1,2) we have

|2+ /]2 |t + a2
p(x):\/u A

Let f € L°(R™). The anisotropic maximal operator M? is given by
M) = supleCe 0l [ 15y
t>0 E(z,t)

and the anisotropic maximal commutator of M ¢ with a locally integrable function b is
defined by

My f(x) Zigglg(w,t)l_l /g( ) [b(x) = b(y)[1f (y)|dy,

where |E(z,t)| is the Lebesgue measure of the ellipsoid £(z,¢). If d = 1, then M =
M?* and M, = M} are the classical Hardy-Littlewood maximal operator and maximal
commutator, respectively. The operators M¢ and Mf play an important role in real and
harmonic analysis (see, for example, [29]).

On the other hand, we can define the (nonlinear) commutator of the anisotropic maximal
operator M ¢ with a locally integrable function b by

[b, M%) f(z) = b(z) M f(x) — MU (bf) ().

Obviously, operators M, g and [b, M ] essentially differ from each other since M, lfl is positive
and sublinear and [b, M ] is neither positive nor sublinear.

The commutator estimates play an important role in studying the regularity of solutions
of elliptic, parabolic and ultraparabolic partial differential equations of second order, and
their boundedness can be used to characterize certain function spaces (see, for instance [9,
17,27-29]).

The boundedness of the Hardy-Littlewood maximal operator M on L,(R™) is one of
the most fundamental results in harmonic analysis. It has been extended to a range of other
function spaces, and to many variations of the standard maximal operator. In particular, one
can study commutators of M with BM O functions b. These turn out to be L, bounded for
l<p<oifandonlyifb € BMO and b~ = —min{b,0} € L (R™) [5]. This is useful,
for instance, when studying the product of an H'® function with a BMO function. Note
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that, the boundedness of the operator M} on L,, spaces was proved by Garcia-Cuerva et al.
[16].

Morrey spaces, introduced by C. B. Morrey [26], play important roles in the regularity
theory of PDE, including heat equations and Navier-Stokes equations. In [22] Guliyev in-
troduce a variant of Morrey spaces called total Morrey spaces L, » ,(R™), 0 < p < oo,

A € R and u € R. We consider the total anisotropic Morrey spaces Li A M(R”), give ba-
d

o (R") and study some embeddings into the Morrey space
(R™). We also give necessary and sufficient conditions for the boundedness of the

sic properties of the spaces L
Lg,m
anisotropic maximal commutator operator M, l‘f and commutator of anisotropic maximal op-
erator [b, M¢] on Lg, N M(R”). We obtain some new characterizations for certain subclasses
of BMO(R™).

The structure of the paper is as follows. In Section 2 we give basic properties of the
spaces L]‘i A, (R™) and study some embeddings into the Morrey space L;‘i au(R™). In Sec-
tion 3 we find necessary and sufficient conditions for the boundedness of the anisotropic
maximal commutator Mg on Li A, (R™) spaces. In Section 4 we find necessary and suf-
ficient conditions for the boundedness of the commutator of anisotropic maximal operator
[b, M on L, (R™) spaces.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A &~ B and say that A and B are
equivalent.

2 Definition and basic properties of total anisotropic Morrey spaces

Definition 2.1 Let d = (dy,...,d,),d; > 1,i=1,...,n Letalso0 < p < oo, A € R,
w € R, [ty = min{l,t}, ¢ > 0. We denote by Lgv)\(R”) the anisotropic Morrey space,

by Eg’ \(R™) the modified anisotropic Morrey space [21,23], and by L;‘i N #(R”) the total

Morrey space the set of all classes of locally integrable functions f with the finite norms

A
fllge = sup t 7|f
g, = swp 63 U liygeceny
_a
flza = sup [ty " Ifllz,(e@0))
| HL;A xeR",t>0H1 £l 2,8

_A B
= tl, P [1/t]F
I1£lg,, = s [ " /AT Ifllzyean:

respectively.

Definition 2.2 Let d = (dy,...,dy),d; > 1,1 =1,...,n. Letalso0 < p < 0o, A € R
and p € R. We define the weak anisotropic Morrey space WLg A(R™), the weak modified

anisotropic Morrey space sz’ \(R™) [21,23] and the weak total anisotropic Morrey space
WL%, N “(R") as the set of all locally integrable functions f with finite norms

_A
IFllwra, = xeﬂzgpbot 7 Lfllw L e
_A
£l gen = $€§2I1>0[t]1 "Nl w e @)
_A I3
IFllwra, = sup [ty " /A7 (1 Fllwe, o),

z€R™ t>0
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respectively.
Note that
LZ,O,O(RH) = EZ’,U(R”) = Li,o(Rn) = LP(R"),
WLy oo(R") = WL, (R") = WLy o(R") = WLyR"),
Ly A(R™Y) = LE\(R™), LI, o(R™) = Eﬁ,A(R”),
Iflwea, < Ifllza,  and therefore Ly (R™) c WL, (R™)

DA DA
and . .
Ly uR") Co Ly x(R™) and [ flla < [fllze - @1
Lpau(R") O Ly (R™) and || fllzg, < [1flla (2.2)
LjA(R") Co Ly(B") and |1f]1z, < Iz 23)

and if A < O or A > |d[, then L¢ \(R") = L | (R") = WL | (R") = WL, (R") = O,
where © = O(R") is the set of all functions equivalent to 0 on R™.

Lemma2l [f0<p<oo,0<A<nand 0 < u < n, then
Li/\,u(Rn) = Lp,A(Rn) N Lp,u(Rn)

and

1l gy = max {Uflzs 1S lg, } -

Proof. Let f € Lgv\’“(Rn). Then from (2.1) and (2.2) we have that f € Lg)\(R”) N
L (™) and max {||fll e I fllg, } < 1l -

Now let f € Li/\(Rn) N Lg,#(Rn). Then
1/p
Ifllpa = sup (W it | If(y)l”dy>
L z€R™,t>0 E(x,t)

1/p 1/p
=max{  sup <t‘A / !f(y)!pdy) , sup (t‘“ / !f(y)lpdy>
z€R™,0<t<1 E(z,t) zeR™ t>1 E(z,t)

< max{”f”Lg’A? HfHLg,#} '

Therefore, f € Ld, ,(R") and the embedding LY, (R™) N Ly (R™) . L&, (R") is
valid.
Thus LE, , (R") = L4\ (R") 0 L, (R") and maxc { || fll £z, } = IFlze -

Corollary 2.1 If0 <p < o0, 0< A< |d

, then
L\ (RY) = L2, (R™) 1 Ly(R")

and

1#lgs = mas{Ifllga 111z, } -
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Lemma 2.2 [f0<p<o0,0< A< |dand0<pu<]|d

, then
WLgM(R") = WLg’ LRM N WL;f’u(]R”)

and

I lhwis oy = max {1 lyzs o W lweg, |-

Remark 2.1 If 0 < p < oo, and A < 0 or A > |d| or px < 0 or & > |d|, then

LgM(R”) = WLZ’/\’#(IR{") = O(R").

Lemma 2.3 [f0 <p <00, 0< A<\ <nand0 < puy < pg < |d|, then

Ly (R™) cy L4

DA, D,A2, 142 (Rn)

and
<
Hf”Lz’)%uQ = ”fHLZ,/\l

1

Proof. Let f € L%, 0 <p <00,0 <X <Ay <d],0< g < pg <|d|. Then

L 1/p
£, =max{ s (e [ ppray)
PA2:H2 E(x,t)

z€R™, 0<t<1

1/p
sup (e [ (rpdy) Ty <171y
E(z,t) P

zeR™ t>1

Lemma 24 [f0 <p <o0,0<\<|d|and 0 < p <|d|, then

Ld

1 (R") Cr Loo(R™) O Ly g (R™)

and

< pl/p < )
IIJCHL;w| <0/ Pl fllLee < Hf”LZYldW

Proof. Let f € Lo (R™). Thenforallz € R"and 0 <t <1
_ 1/p
([ 1wPa)” <ol 0<A<ld

E(z,t)

and forallx € R"andt > 1
_ 1/p
(1 [ Vsrdy) " < ok
E(x,t)

Therefore f € Lg (R™) and

7A7|d|

1Fllza, < o1

pAld] T

Let f € L;‘f \d] M(R”). By the Lebesgue’s differentiation theorem we have (see [29])

lim \E(x,t)|1/ |[f(y)|Pdy = |f(x)|P for a.e.x € R".
t—0 E(zt)
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Then for a.e. x € R™

@) = (lim (o)

E(z,t)

Fray) "

_ _ 1/p _
<ot s (0 jppay) <o oy
zeR”, 0<t<1 E(z,t) p,ld|,p

Therefore f € Lo (R™) and
e < v Pl fllga
p;ld|,p
Corollary 2.2 If0 < p < oo, then
Ly af(R") = Ljy g (R") = Loo(R")

and 1
frg ~ g p .
£l = 1905, = o7

Lemma 2.5 [f0 < A < |d ,0<a<|d—Aand 0 < g < |d| — p, then for

jdl— s
22 < p <l

,0<p<|d

Ly u(R") Co Ly jg—aja-p(R™)

and for f € L%, (R") the following inequality

DA
1/p’
g oy S o2l

is valid.

Proof. Let 0 < o < [d. 0 < A < [d|, f € L¢, (R")and 12 < p < [ By the
Holder’s inequality we have

_|d d|-8
90t o= s (A [l
Lld|—av|d| -5 z€R™, t>0 E(z,t)
1/p
ld|—=X ©
/ CN—|d| /e d|—p—-£& _
<o swp ()T [, p(mﬁﬂﬁﬁ/ uwww)
zER™,t>0 E(x,t)
|d|—p _ldl=x
/ _ 7_ﬁ «Q
<oy, sup (i t™) 7T T
Note that
ld|—p _ldl=A _ldl=A _ldl-
sup([t]lt_l) 2 ﬂ[t]? P :max{ sup t“7 7 ,supt’ Pu}<oo
>0 0<t<1 t>1
d-x_ _ld-p
a B

d
Therefore f € L17|d|_a,‘d‘_5(R”) and

1/p
(K P—— ||f||Lg,A,M-

From Lemma 2.5 we get the following:
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Corollary 2.3 If0 < < A < |d|, 0 < a < |d| — A, then for 122 < pp < 1k
Ly u(R™) Co L 1o (R™)
and for f € Li A M(R”) the following inequality
1z, < o™l
is valid.
Corollary 2.4 If0 < XA < |d| and 0 < a < |d| — A, then for p = IdL—A
Ly AR") C Lijg—a(®") and |flpa < o/"If]L -
|d|

Corollary 2.5 If0 < A < |d| and 0 < a < |d| — X, then for 112 < p <

a
LiAR") C L gy o(R") and |fllpa <ol flza -

Remark 2.2 Note that, in the isotropic case d = (1,...,1) Lemmas 2.1, 2.2, 2.3, 2.4 and
2.5 was proved [22, Lemmas 2, 3, 4, 5 and 6].

3 Le

.2~ Poundedness of the anisotropic maximal commutator operator M, 2

In this section, we find necessary and sufficient conditions for the anisotropic maximal

commutator M to be bounded on the spaces L ,  (R™).

The following Guliyev type local estimates are valid (see also [18-20]).

Lemma 3.1 [1] Let 1 < p < oo and E(x,r) be any ellipsoid in R™. If p > 1, then the
inequality

[

1] _ldl
IMf |z ey ST tS;lZPt P fllzp ) (3.1

holds for all f € Li*°(R™).
Moreover if p = 1, then the inequality

IMfllw Lo ey S ' sup 1N Ly ) (3.2)

holds for all f € LY°(R™).

Theorem 3.1 1. If f € L{, ,(R"), 0 < A < |d| and 0 < p < |d|, then Mf €
WL{, (R") and

1M fllwrg, < Crawlflleg, s (33)

where C1  , is independent of f.

20 f e L, ,(R"), 1 < p <00,0< A< |dand0 < p < |d

ng ru(R™) and

, then M4f €

1M fllpe < Coppllfllie s (34

where Cy, 5 ,, depends only on p,\,j and n.
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Proof. Let p = 1. From the inequality (3.2) we get

d - d
1M fllwpa, = sup [t [/t M fllwry )
el TzER™ >0

S sup [N /O8N sup o F e
z€R™, t>0 T>2t

SWleg,,  sup [T/ sup e 1/
s\ T n’ T
d|—A —|d A—|d d|—
=fllpe, - sup B/ sup ()
O peR™ >0 T>t
= fle

which implies that the operator M ¢ is bounded from Lcll’ A u(R™) 0 WLCf, AR
Let 1 < p < oo. From the inequality (3.1) we get

_A B
IMOfll e = sup [t " (107 ML,
Psdsp zeR™, t>0

_A 24 _ldl
S sup ft]y P/t taen sup ([ f]l e,
zeR™, >0 T>2t
2 £ d| _ldl A B
SWfllga,  sup [ty P [1/t7 te supT e 7]y [1/7], "
Bk peR™ >0 T>t
ld|=A p—ld| A—ld] n—p
= fllga, ~ sup [t]; " [1/th " sup [7], 7 [1/7],"
Pk xeR™ >0 >t
=1z,

which implies that the operator A/¢ is bounded in Lg au(R™).

From Theorem 3.1 in the case A = i or u = 0 we get the following corollaries.
Corollary 3.1 [12] 1. If f € LY, (R") and 0 < X\ < |d|, then M4 f € WL, (R") and

d
”M f||WLf1{A < Cl,A ||f”Ltl{A,

where C ) is independent of f.
2Iffe LL\(R™), 1 <p<ooand 0 < A < |d

d
1Ml < Cpa I fllga

where C,, \ depends only on p, \ and n.

,then M f € LY\ (R™) and

Corollary 3.2 [13] 1. If f € L¢ \(R") and 0 < X < |d

d
~ < -~
”M fHWLii,A = Cl,)\ ”fHLil,A’

, then M2 f € WZ‘I{/\(R") and

where C' ) is independent of f.
2 Iffe LL\(R"), 1 <p<ooand 0 < A< |d

d
1M fllza < Corllfllza
PA A

, then M4f € Eg’)\(R”) and

where C,, \ depends only on p, \ and n.
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Definition 3.1 We define the space BMO(R™) as the set of all locally integrable functions
f with finite norm

Il = sup [E 0 /g( 170) = Jetuldy < ox.

zeR™,t>0

where fS(m,t) = ‘g(% t)|_1 fg(x,t) f(y)dy

Theorem 3.2 [2, Corollary 1.11]Ifb € BMO(R"), then there exists a positive constant
C such that )
My f(x) < Clbll (M) f () (3.5)

for almost every x € R™ and for all f € L'°°(R™).

Theorem 3.3 Let 1 < p < 00, 0 < A < |d| and 0 < p < |d|. The following assertions are
equivalent:

(i) b e BMO(R™).
(ii) The operator M{ is bounded on Lgy)w(R”).
Proof. (i) = (ii). Suppose that b € BMO(R™). Combining Theorems 3.1 and 3.2, we get
2
1M S I g S I e S I8
DA Py Dy Dy

(73) = (7). Assume that M)}, is bounded on Lg)\M(R"). Let £ = &(x,r) be a fixed
ellipsoid . We consider f = x¢. It is easy to compute that

D=

ellog,, = s (W7 15 [ xe)

yER™ >0 y,t)

= sup <|5(?Ja t)Né| [t];A Dﬁ]l{) '
yER™ >0

= swp (IO P /) =R W I G
E(yt)CE

On the other hand, since
1
Ml;j(Xs)(JT) 2 ]8\/ |b(2) — bg|dz forall x € €&,
£
we have

1
g, =~ s (1 0/ [ ) @Pa)”
PR E(yt) E(y,
ld|

yit)
lag =2 2]
20 Bl ] g [ 10Ge) — bela (.7
Since by assumption

d
1My (xe)llpa S lixellpe,
DA PyA

by (3.6) and (3.7), we get that

1
w/g!b(z) —beldz < 1.
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From Theorem 3.3 in the case A = p or u = 0 we get the following corollaries, see [3,
4].

Corollary 3.3 [3] Let 1 < p < o0 and 0 < X < |d|. The following assertions are equiva-
lent:

(1) b€ BMO(R™).

(i4) The operator M{ is bounded on Lg}A(R”).

Corollary 3.4 Let 1 < p < 0o and 0 < X\ < |d|. The following assertions are equivalent:
(i) be BMO(R").
(ii) The operator M is bounded on Lg)\(R”).

Remark 3.1 Note that, in the isotropic case d = (1,...,1) Theorems 3.1, 3.3 was proved
[22, Theorems 1, 3].

4 Lg’ A,.-Poundedness of the commutator of anisotropic maximal operator [b, M4]

In this section we find necessarc%/ and sufficient conditions for the commutator of the
anisotropic maximal operator [b, M“] to be bounded on the spaces L%,  (R™).

DA
For a function b defined on R", we denote

B 0,  ifb(z)>0
b =
(=) {|b(m)7 if b(z) < 0
and b (z) := |b(z)| — b~ (). Obviously, bt (z) — b~ (z) = b(z).
The following relations between [b, M%) and Mg are valid :

Let b be any non-negative locally integrable function. Then for all f € L'°¢(R"™) and
x € R™ the following inequality is valid

|[b, M) f ()] = |b(a) M f(x) — MO (bf) ()|
= | M4 (b(x) f) () — MAUbSf) ()| < MU(|b(x) — ] f)(x) = My f(x).
If b is any locally integrable function on R", then
b, MY f ()| < Mf f(z) +2b" (2) M f(z), x€R" (4.1)

holds for all f € Llloc(]R”) (see, for example [22,30]).

Obviously, the Mgl and [b, M?] operators are essentially different from each other be-
cause M,;j is positive and sublinear and [b, M ] is neither positive nor sublinear.

Applying Theorem 3.3, we obtain the following result.

Theorem 4.1 Let 1 < p < 00,0 < X\ < |d] and 0 < p < |d|. Suppose that b is a real
valued locally integrable function in R™. Then the following assertions are equivalent:

(1) b€ BMO(R™) such that b~ € Loo(R™).

(ii) The operator [b, M?] is bounded on Lgy)w(R”).
Proof. (i) = (7). Suppose that b € BMO(R™). Combining Theorems 3.1 and 3.3, and
inequality (4.1), we get

10, Ml pa < NIMG'T + 267 MOS0
DA DA
<IMEFlga + 16 o M
DA DA

< (10l + 107 l) 1z, -
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(i) = (). Assume that [b, M ] is bounded on Lz au(R?). Let & = E(x, 1) be a fixed

ellipsoid . Denote by lel f the local maximal function of f:

1 n
Mif)= s o [ 1f@)ldy o€ R
grae:erce [ Jer
Since
M%bxe)xe = Mg(b) and M%(xe)xe = xe,
we have
| M (b) — bxe| = [M%(bxe)xe — bM%(xe)xe|
< |M%bxe) — bM%(xe)| = |[b, MY xel-
Hence

125/ (b ) = bxellpa ey < lI[b; M ]XsHLd (B

Thus from (3.6) we get

b -t (& oo

_1 2
<|€17F [} (1], " lbxe — My (0l o | ey

_lap 2
Sroe I [y 7 |jb, M Melloa, @
_lap 2
< I 7 Ixelg, 1
Denote by
E:={xec&:bx)<be}, F:={xef&:blx)>bs}.
Since

/E 1b(t) — be dt = /F b(t) — bel dt,

in view of the inequality b(z) < bg < Mg(b), x € E, we get

1 2
w/\b—b5|:|g|/’b—bs\
m/'b My '<|5|/“’ My

Consequently, b € BMO(R™).
In order to show that b~ € Lo (IR™), note that M(b) > |b|. Hence

0<b™ =|b] —b" < MAb) —b" +b~ = MZ(b) —b.

Thus
(b_ )5 < c,

and by the Lebesgue differentiation theorem we get that

b~ (x) <c¢ forae. x € R"



12 Commutator of anisotropic maximal function with BM O functions on . ..

From Theorem 4.1 in the case A = p or u = 0 we get the following corollaries.

Corollary 4.1 [3] Let 1 < p < oo and 0 < X\ < |d|. Suppose that b is a real valued locally
integrable function in R™. Then the following assertions are equivalent:

(1) b€ BMO(R™) such that b~ € Loo(R™).

(i) The operator [b, MY is bounded on Lg}A(R”).

Corollary 4.2 Let 1 < p < coand 0 < X\ < |d|. Suppose that b is a real valued locally
integrable function in R™. Then the following assertions are equivalent:

(1) b€ BMO(R™) such that b~ € Loo(R™).

(ii) The operator [b, MY is bounded on Lg L(R™).

Remark 4.1 Note that, in the isotropic case d = (1,...,1) Theorem 4.1 was proved [22,
Theorem 4].
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