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Abstract. We study the boundedness of the commutators of Marcinkiewicz operators i, with rough
kernels 2 € Ls(S™ 1) for some s € (1,00] and BMO function b on generalized weighted Morrey
spaces Mp,,(w). In the case of b € BMO(R™) we find the sufficient conditions on the pair (v1, p2) with
s <p<ooandw € Apssrorl < p < sand w'? e Ay s which ensures the boundedness of the
operators g p from one generalized weighted Morrey space Mp, o, (w) to another My, , (w).
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1 Introduction

The classical Morrey spaces were originally introduced by Morrey in [16] to study the
local behavior of solutions to second order elliptic partial differential equations. Guliyev,
Mizuhara and Nakai [7, 15, 18] introduced generalized Morrey spaces MP¥(R™) (see, also
[8,19]). Recently, Komori and Shirai [14] considered the weighted Morrey spaces LP*(w)
and studied the boundedness of some classical operators such as the Hardy-Littlewood max-
imal operator, the Calderén-Zygmund operator on these spaces. Guliyev [9] gave a concept
of generalized weighted Morrey space M), ,,(w) which could be viewed as extension of both
generalized Morrey space M,, , and weighted Morrey space LP*(w). In [9] Guliyev also
studied the boundedness of the classical operators and their commutators in these spaces
M, ,(w), see also [1,6,10,11].

Let S"~! = {2 € R™ : |z| = 1} is the unit sphere of R™ (n > 2) equipped with
the normalized Lebesgue measure do = do(x'). Suppose that (2 satisfies the following
conditions.

(7) £2is a homogeneous function of degree zero on R™. That is,

Qtx) = 2(x) forall ¢t>0 and z € R™. (1.1)
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2 Commutators of Marcinkiewicz integral with rough kernels on ...

(ii) {2 has mean zero on S™~!. That is,

/ Q2')do(z!) = 0, (12)
gn—1

where 2/ = x/|z| for any x # 0.
The Marcinkiewicz integral operator of higher dimension ., is defined by

uoN@ = ([ IFadn@Pg)

where o )
_ rT—Yy
Foupia) = | I v

It is well known that the Littlewood-Paley g-function is a very important tool in har-
monic analysis and the Marcinkiewicz integral is essentially a Littlewood-Paley g-function.
In this paper, we will also consider the com- mutator z¢; ;, which is given by the following

expression
oo at\ /2
st = ([T IFb PG )

where

2z —y)
Fh o (z) = / = b(z) — b dy.
Q,t( ) Blat) ‘LU . y‘n_l [ ( ) (y)]f(y) Y

In the case of b € BMO(R"™) we find the sufficient conditions on the pair (p1, ¢2)
with ' < p < coand w € Apjsorl < p < sand w' P e Ay /¢ which ensures the
boundedness of the operators ji(; ;, from one generalized weighted Morrey space M), ,, (w)
to another M, ,, (w).

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A = B and say that A and B are
equivalent.

2 Preliminaries

We recall that a weight function w is in the Muckenhoupt’s class A,(R™) [17],1 < p < oo,
if

[w]a, : = S%P[W]AP(B)

cap(y L) G o) o

where the sup is taken with respect to all the balls B and 1% + 1% = 1. Note that, for all balls
B by Holder’s inequality

1 - 1 _
[w]A/f(B) = |B| 1HwHL/ﬁB) [|w 1/p||Lp/(B) > 1. 2.2)
For p = 1, the class A; is defined by the condition Mw(z) < Cw(x) with [w]a, =
sup 260 and for p = 00 Ase(R") = Uycpens Ap(R") and [w]a,, = inf [w]4,.

z€R™ 1<p<oo
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Remark 2.1 It is known that

_ _q’ ’
W € Ay = WP B N

Moreover, we can write w! ™ € Ay sy = wl=? ¢ A,y because of wl? e Ay g C
A,y Therefore, we get

’wlipl S Ap’/q’ = ’wlip/ S A
1 1
= [ P ) = BT 1 o m @3)
But the opposite is not true.

Remark 2.2 Let’s write w! ™" ¢ Ay /g and used the definitions A, classes we get the
following

a(p—1) q(p—1)

—p' o —
Mpe@wémwm$%4\WJWMUm”hww@
1-p/ 1/p’ —4== 1-p’ /v 1/p
= [w J4 o ol =|B[ "« ||w ”Ll(B) HwHLﬁw)’ 2.4)

where the following equalities are provided.

P d q d ap-1) [\ _ «q P\ plg—1)
1_p__77 T T AN o T Ty - — T ) - - -
p p plg-1) p plg-1)" \p qg—p \q q—p

Then from eq.(2.3) and eq.(2.4) we have

! /.1
w' P € Ay g = [w . p]A/Ij/q
1
= 1Bls ! 1" ) 0Pl gy N7, 2.5)

755 (B)
We define the generalized weighed Morrey spaces as follows, see [9].

Definition 2.1 Let 1 < p < oo, ¢ be a positive measurable function on R"™ x (0, 00)
and w be non-negative measurable function on R™. We denote by M,, ,(w) the generalized

weighted Morrey space, the space of all functions f € LlOC ¢ (R™) with finite norm

_1
1fllaty ) = sup (@, r) " w(B(@,r) 7 | fllL, (B
zER™,r>0

The operator p; was first defined by Stein [20]. And Stein proved that if is continu-
ous and satisfies a Lip,(S""!)(0 < a < 1) condition, then py, is an operator of type
(p,p) (1 < p < 2) and of weak type (1,1). In [2], Benedek, Calder6n and Panzone proved
that if 2 € C*(S™™1), then g, is bounded on L,(R™) for 1 < p < oo. The L, bound-
edness of u has been studied extensively. See [2,13,20,21], among others. Ding, Fan and
Pan [3] proved the weighted L,(R") boundedness with A, weighs for a class of rough
Marcinkiewicz integrals. Recently, Ding, Fan and Pan [4] improved the results mentioned
above and showed that if 2 € H'(S"~1), the Hardy space on the unit sphere, then i, is
still a bounded operator on L, (R™) for 1 < p < oo. In [22], Xu, Chen and Ying proved the
same result as [4] using a different method.
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Theorem 2.1 /5] Suppose that {2 be satisfies the conditions (1.1), (1.2) and 2 € Ly(S™ 1)
for some s € (1,00|. Let also b € BMO(R"™). Then for every s' < p < oo and w €

Ar (R")orl <p<sand w'?" € Ay (R™), there is a constant C > 0 independent of f
such that ’

lnesflly, ., < CllLy.-

We will use the following statement on the boundedness of the weighted Hardy operator

Hg(t) = /too (1 + ;) g(s)w(s)ds, 0<t< oo,

where w is a weight. The following theorem was proved in [9].

Theorem 2.2 [9] Let v1, vo and w be weights on (0, 00) and vy (t) be bounded outside a
neighborhood of the origin. The inequality

sup vy (t) Hyg(t) < Csupvi(t) g(t)
t>0 t>0
holds for some C > 0 for all non-negative and non-decreasing g on (0, c0) if and only if

B := supwvs(t) /too (1 + f) wis)ds < 0.

t>0 t SUPs<r<oo V1 (T)

3 Commutators of Marcinkiewicz operator with rough kernels 110, 5, in the spaces
Mp"P ('UJ)

We recall the definition of the space of BMO(R™).

Definition 3.1 Suppose that b € L'°°(R™), and let

1
b= sup [ ) = boapldy < o,
H H P ‘B(HZ’,T)’ B(a:,r)‘ ( B(x,r)

where

1
506 = (B "0

Define
BMO(R") = {b € LY(R™) : ||b]|s < oo}.

Modulo constants, the space BM O(RR™) is a Banach space with respect to the norm || - ||

Remark 3.1 Let b € BMO(R™). Then there is a constant C' > 0 such that
t
6Bz — bB@y| < Cllbll. ln; for 0 < 2r < t, (3.1)

where C' is independent of b, x, r and ¢.

The following Guliyev type local estimates are valid, see [7-9].
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Lemma 3.1 Suppose that {2 be satisfies the conditions (1.1), (1.2) and 2 € Ls(S™1),
1 <s<oo. Letbe BMO(R").
Ifs <p<ooandw € Ap/si, then the inequality

1™ _1dt
18060 2y (Baor)) S w(B(z0,7)? / (1410 ) 152y 0. (Bl )75
T
holds for any ball B(xq, ), and for all f € LEZ,(R”).
Ifl<p<sandw' ™" ¢ Ay /s, then the inequality
oo
R N N (SN PTe) % P

holds for any ball B(xo,r), and for all f € LYS,(R™).
Proof. Let p € (1,00), b € BMO(R™) and {2 be satisfies the conditions (1.1), (1.2) and
€ Ls(S" 1), 1<s< 00
For arbitrary zp € R", set B = B(zg,r) for the ball centered at xy and of radius r,
2B = B(xg,2r). We represent f as
f=F+fa hily) = FW)xesy): f2(y) = FY)xe,p 1) (3.2)

and have
ltopfllL,..s) < lrepfillz,..s) + llkesfllr,.8)

Since fi1 € Lpw, t0pf1 € Ly and from the boundedness of 115 in Ly, for s < p < oo

and w € Ap /s (see Theorem 2.1) it follows that

1
lnepfille, .. < lpepfille, . @) S 1920 sy [wli, bl fillL,,. @
1
= 120z (smny [wla, 10l £z, (28)-

For x € B we have

s PN S [, ) bl - i Iy

Then

sl z
lnesfolli,.m < ( /B ( /C@B) bly) = b2~y dy) w(x)dx>
HOAY z
& </B (ﬁ’(w) 1b(y) = bp,wl| (= — y)fw dy) w(@dw)
_ o @ pw . ’
+ ( /B < /C(QB) ) = bpull 2 = )l dy) (2)d )

=1 + L.
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Let us estimate I.
1
B=w®) [, )~ bpal 26— g
(2B) [z0 — Y|

w(B)i/(zB )~ bl 1962 =01 [

dt
@ [T ] y) — byl 1202 — y >|rf<y>rdy—th
2r  J2r<|zo— y\<t
b(y) — bpw| [2(x — f Y—
B [ ) bl 1926l 6

Set m = p/q’ > 1. Since w € A,,, from (2.3), we know w'~™ € A,,. Applying
Holder’s inequality and by (3.1), we get

’B\'—'

’ts\'ﬂ

1 [° dt

Iy S ||bll w(B)? /2 1920z = )l zo(B@o. 10() = bl fllLy B it
1 [ dt
S 120y w(B) [ wl e e 1y ey 1B, 4 o — o) ey

[e.e]

t - 1 dt
(110 @ (B@o, )77 11, 0 Beosy B0 D] 7z

t _1dt
(1102 ) 115y w(Blao, )7 .

1
< (1201 sy bl w(B)? /

1 1
S 120500 [l 1l (B >p/

2r

o

In order to estimate /5 note that

I = ( /B \b(x)—bB,w|pw($)dx>; /c ” ‘Q(Tx;ﬁ”;"{ Wl ,

By Fubini’s theorem we have

/ )r <|x0_>L||£< >|dy~/c(2 20 — |1 |/ tnﬂy
-/, /| e I Wy < // 9~ I FO)ldy g

By applying Holder’s inequality for s < p < coand w € A4,,/y, we get

Rz —y)||fly e dt
[, =IOy < ™ =l 1 00 o
C2B) 2 t

‘xO - y‘n T

> o 1 dt
S HQHLS(S"*) / HfHLp,w(B(xO,t)) flw™* /sz(p/s/)/(B(wovt)) |B(0,t + |z — xo])[ P

2r

i o dt
S92z, sm-1y [w]ﬁp/Q £l 2y (Ba,t)) W(B(wo,t)) P | B(wo, )| [B(0, )]+ prasy

[

: > 1dt
=20 ysn-n Wiz, [ I1FlL,wB@.w(Blot) » — (3.3)
2 t
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By (3.1) and (3.3), we get

/ \Q(ﬂf—y)||f(y)|dy
CoBy  |mo—yl"

1 1 [ 1
5HQHLS(sn—l)[w]ZpHbH*w(B)P/2 AN Ly (B ) w(B (20, ) P

3=

I S [bll« w(B

Summing up [; and Iy, for all p € (1, 00) we get

luepfallL, . .B)
1
S 12 Ly sn-1ylw ]51% 0]l w(B)

=

/OO (1 +1n— )HJCHLPUJ B(zo,t) )w(B(xo,t))fii

2r

Thus

1
[N PP L PRy 5 A L () P

1[0 _idt
t B [ (L) Il e Bl T G

2r

On the other hand,
o dt dt
1, em = By iom) [ pier SB[ 1l wimtnny
T
L dt
ST e Py P
T

> _ dt
/2 1 F1 2y (Bzo,)) W0 1/p||Lp/(B(m0,t)) s

1 1 [ _1dt
S [l wB) [ 17ty ooy 0Bl )7 Fe 3

2r

S =

S w(B)

Then, by (3.4) and (3.5) we get

1 1
b fllL,..8) S92l L, sn-1) [w ]Zﬂl 16]]s w(B)»

x/“@+m_Mm%w oy w(Blao, )+ L.

2r

Letalsol < p < sand w'™? € Ap /g Since f1 € Ly (R™), pop (f1) € Ly ,(R™)

and from the boundedness of jup in Ly ,,(R™) for wir e Ay /s and 1 < p < s (see
Theorem 2.1) it follows that

\\H

e (F) 1Ly < lrep (f) L, @ S 192)L,sn-1) [w l_p]ﬁ 16l 1 f1ll 0 )
L S

~ (1@l gm0 PN bl Ly 8-

7
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Ifl<p<sandw!'™? € A, p'/s'» then using Minkowski theorem and Holder inequality,

1 dt
nsw@? [T b bl 196 -0l Wl
2r (zo,t)

b dt \" z
< </B </2r /B(:co,t) 1b(y) — bBw!|92(x — y)|| f(y)|dy W) w(:c)dx)

” dt
= b(-) = bBwl 20 =YL, ) W) dy 77
L7 = bl 2= s, )
</OO/ 126 = )18 I15C) = bl ()] dy 2L
" Jor IBob) «(B) L py (B) 1
dt

L o0 t 1
< n— 4 — _ 5
S bl 1205 ol sy | /B( (141 =) 1BO.r + 20 = y)I* 1 ()] dy o5

< % t 1 dt
S 1o N2l Tl ey [ (1105 1oty 1B+ 01 ity

1 o0 t o 7 1 dt
S bl 120 smy Ill? / (14102 ) 1180 1077217, ) 1B, O 7

1 : - 1 dt
S 100 1205y 1l oy [ (L8 5) 1Ay 107 17, e 1B 0, O
s—p s

and

I = < / ‘b(w)—bB,w|pw($)dx>; . o ‘Q(Tx;i”y’{ Wl 4,
<Wlws [©f 106 -l

< [l ( /| ( L] |rz<x—y>||f<y>|dytff1) w(z)ds

o dt
<toll [ ] - ay-2
bl {7 [ 126~ Dl 1wy
* 1 dt
<lle [ f 120l i 0y

1 o 1 dt
<l s Il [ L 10— Dl 1B+ o~ s Sy
T xo,
1

N——
D=

4 > dt
S N ey T B 1 PR L CR E

W =

L o0 _ L/ 1 dt
S 10l 1205y 10l oy [ 1 eatenin 10721, g B0, D1 iy
s—p s

1 1 o0 L 1 dt
S ol 120z, (sn—1y IBIs [lwllf (B)/2 1N Ly (Bt 10 2L Bty 1B (@0, )]s prEs)
5—p r

1 1
is obtained. By applying (2.3) for ||w' 7' ||Z’1(B($0 ) and (2.5) for |wl|} . () We have the

following inequality o
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le2o(f2)llL, . B)

L 00 t _1 dt
< _ l—p P — p —
S92 W el L m ) 1l tsonn 1ol oo

Sl

s—p

is valid. Thus

1
s (Dl us) S 120 ey w715 (1612, ues)

s

+ ol 4 /2 (1 +1In ;) Ny o 1017 a0 7)'

5B AT

On the other hand,

oo dt
11ty etom = BNy | o

o0 dt
SB[ Wty 30000 7

1

B 1—p/1" 7 B 1 1—p/ i % oo dt
= [w' 1,7 ) 1B [0 P17 ) ||w||Lﬁ(B) . 12y o (Bo.t)) gt

dt

o —i/ L & 1 o/ i/
< [wl P ]A;(B) ||w”£ﬁ(3) /2 ||f||Lp,w(B(;vo,t)) | B(z0,1)]* le p ”zl(B(xo,t)) g+l

T

< 1 0 -1 dt
~ ’wHLﬁ(B) or |’fHLp,w(B($Ovt)) HwHLﬁ(B(ggo,t)) 7

Thus

I p(FlL,..B)

<10 1—p’§ % > 141 ¢ 7% dt
S 1920 Lysn-1y [w ]AZHwHLSEP(m/ ( T n;) Wz, (B0, HwHLﬁ(B(Iowt)) t

Thus we complete the proof of Lemma 3.1.

Theorem 3.1 Suppose that b € BMO(R"), {2 be satisfies the conditions (1.1), (1.2) and
€ LyS" 1), 1<s5<o0.
Let s' < p < 0o, w € Ap (R™) and the pair (1, p2) satisfy the condition
1
0o N inf o1 (z, T)w(B(z, 7))r 4
/ <1+1H* f<T<co T - SCQOQ([E,T),
r r w(B(z,t))r t

where C does not depend on © and . Let also, 1 < p < s, w'™? € Ay o and the pair
(1, p2) satisfy the condition

€ss inf<p1($,7')||le/p

s t\ ter<oo Lo (B@m) dt w(B(z,7))
/T (1—1—111;) T ?§C<P2($a7“)1—>

L s (B@w) kuzﬁw(z,y-))

D=

[[]]
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where C' does not depend on x and r.
Then the operator jiq  is bounded from M, ., (w) to M, o, (w). Moreover

26 f a1y gy () S N lI01y 4, ()

Proof. By Lemma 3.1 and Theorem 2.2 with v1 (1) = ¢1(z,7) 'w(B(x, t))_%, vo(r) =

oo(z, )"t and w(r) = w(B(az,r))_% we have

_1
12616y 0y () = euz}}pww(%r)*lw(B(wﬂ’)) 7 w2pf Ly (B
1 [~ t _1dt
Sl sup oo )™ [ (1)1l B w(Bla, ) 7>
z€R™ r>0 r r t

1
Slblle sup o1 (z, ) w(B(@,r) 7 F (| fllL, 0B
z€R™,r>0

= [[bllx 1 f 1121y, (u0)-
Remark 3.2 Note that Lemma 3.1 and Theorem 3.1 in the case s = oo was proved in [12].
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