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Abstract. In this work, the existence of the fixed points of the mappings does independent of their smooth-
ness, of the single-value or multi-value using a new geometrical approach is studied. Here, the fixed-point
theorems are proved, which generalize the fixed-point theorems of Brouwer and Schauder, and also Kaku-
tani, in some sense. This approach is based on the idea of the Poincare article [1] and the geometry of
the image of mappings and is independent of the topological properties of spaces, which allows studying
mappings acting in vector spaces. We studied the solvability of the nonlinear equations and inclusions by
applying the obtained general results. Here some auxiliary results are obtained, also.
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1 Introduction

The aim of this work is to study the existence of a fixed-point of mappings, and also the
existence of solutions to the problems with such mappings under more general conditions,
i.e. without the smoothness of the examined mappings and of any compactness. Namely,
here shows that the existence of the fixed-point of the nonlinear mapping (in single-valued
and multi-valued cases) can study also under certain geometrical conditions. This approach
allows for studying nonlinear equations and inclusions with mappings f acting in vector
topological spaces (V TS).

Well-known theorem Cauchy on the ”mean” value of the continuous functions acting in
R1 one can assume is one of the first fixed-point theorems. Then J. Hadamard showed, that
the mappings acting in 1−dimension vector spaces also possess this property on a connected
subset if its image is a connected subset. Later will be formulated the mentioned theorems
in the form of a fixed-point theorem, which shows that these results can reckon as the fixed-
point theorems in the 1−dimension case. But results of such type doesn’t possible already
in the 2−dimensional case. In [1] H. Poincare proved the existence of the fixed-point for
the continuous mapping in the 2-dimension case but under sufficiently severe constraints.
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2 Generalized fixed-point theorems. Applications

It needs to be noted in still earlier (1907) H. Poincare proposed to prove the general results
on the existence of the fixed-point of the continuous mappings and stated the importance
of such type results. One can suppose the question posed H. Poincare many mathematics
began to study the existence of the fixed point of the mappings. One can suppose the ques-
tion posed by H. Poincare many mathematics began to study the existence of the fixed point
of the mappings. This problem, in the beginning, was solved in various variants: L. E. J.
Brouwer proved the well-known Brouwer fixed-point theorem for the finite-dimensional
cases, and T. Banach proved the well-known Banach fixed-point theorem for the contrac-
tions operator acting on the Banach space. For brevity, we won’t cite other results relative
to this problem (for more see, e.g. [2] - [11], [13], [18], [28], [32], [35], [38], etc.). In the
infinite-dimensional case with solving the problem of the existence of the fixed-point of
mappings were engaged many authors (see, e.g. [2] - [10], [20], [28], [31], [32], [36], [39]
and their references) used different approaches. J. P. Schauder generalized the Brouwer the-
orem to the infinite-dimensional case and later this result was generalized in the joint work
by J. Leray and J. Schauder called the Leray-Schauder theorem. There exist some gener-
alization of the Banach theorem in the case when the operator is nonexpansive. It should
be noted the fixed-point theorems of Schauder and Kakutani had certain generalizations. In
this work, in the other sense the generalizations of these and also the fixed-point theorems
of Brouwer, and Kakutani have been obtained.

So, here proved the theorems that generalize, in some sense the Brouwer and Schauder
fixed-point theorems, and also results of such type in the multi-valued cases, moreover are
proved some new fixed-point theorems. All obtained here results are based on the geometry
of the image of the examined mappings. The used here approach connected, in some sense,
with the geometrical method. One can reckon our approach is based on the generalization
of the above-mentioned theorem Cauchy and on the properties of the convex sets. In this
work is generalized also the lemma called the ”acute-angled lemma” which is the variant of
the Brouwer theorem. It needs note that this lemma successfully was applied under inves-
tigations of the nonlinear differential equations and inequations (see, e.g. [14,15,30,32,36,
38,40,43], etc.).

The obtained in this work general results, in particular, are applicable to the study of the
solvability of the nonlinear equations and inclusions in V TS (and also to the investigations
of the boundary value problems for nonlinear equations and inclusions). Here also obtained
sufficient conditions at which images of the examined mappings can be the convex subsets.
We would note that the essentiality of this condition below will be shown.

So, here proved the theorems that generalize, in some sense the Brouwer and Schauder
fixed-point theorems, and also results of such type in the multi-valued cases, moreover are
proved some new fixed-point theorems. All obtained here results are based on the geometry
of the image of the examined mappings. The used here approach connected, in some sense,
with the geometrical method. One can reckon our approach is based on the generalization
of the above-mentioned theorem Cauchy and on the properties of the convex sets. In this
work is generalized also the lemma called the ”acute-angled lemma” which is the variant of
the Brouwer theorem. It needs note that this lemma successfully was applied under inves-
tigations of the nonlinear differential equations and inequations (see, e.g. [14,15,30,32,36,
38,40,43], etc.).

The obtained in this work general results, in particular, are applicable to the study of the
solvability of the nonlinear equations and inclusions in V TS (and also to the investigations
of the boundary value problems for nonlinear equations and inclusions). Here also obtained
sufficient conditions at which images of the examined mappings can be the convex subsets.
We would note that the essentiality of this condition below will be shown.

So, here considered a nonlinear mapping f : D (f) ⊆ X −→ Y , whereX and Y are the
V TS and is investigated the question: under which conditions does a given y ∈ Y belong
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to the image f (G) of some subset G ⊆ D (f)? In the case when f : D (f) ⊆ X −→ X is
investigated the question: under which conditions does the mapping f has a fixed point?

It is clear these questions are equivalent to the questions on the solvability of the equa-
tions f (x) = y or there existing such x̃ that f (x̃) = x̃, and also the inclusion of f (x) 3 y
or there existing x̃ that x̃ ∈ f (x̃) depending on the single-valued or multi-valued mapping
f .

For the study of these questions have been used the special approach based on the ge-
ometrical structure of the image f (G) of the given subset G ⊆ D (f) of the examined
mapping, that a priori independent of any smoothness of the examined mapping f . There-
fore, this approach one can call a geometrical approach.

Now we will lead the simple variant of the main fixed-point theorem of this work in the
case of the Hilbert space (for brevity) and one general proposition.

Theorem 1.1 (Fixed-point theorem) Let X be a Hilbert space, BX
r (0) ⊂ X is the closed

ball and the mapping f acting in X be such that f
(
BX
r (0)

)
⊆ BX

r (0). Then if the image
f1
(
BX
r (0)

)
⊂ X be a open (or closed) convex set then there exists such x0 ∈ BX

r (0)
that f (x0) = x0 (or f (x0) 3 x0 if f is the multi-valued), where f1 (x) ≡ x − f (x) for
∀x ∈ BX

r (0).

Proposition 1.1 Let X,Y be LV TS, and f : D (f) ⊆ X −→ Y is the single-valued
mapping. Let the image f (G) of some subset G ⊆ D (f) is connected open or closed
body1 in Y . Then for each fixed element y ∈ int f (G), there exists such subset of G on
which for the mapping f1 (x) = f (x)− y the conditions of Theorem 3.1 are fulfills, in the
other words, in this case, y ∈ Y contains to f (G) iff there exists such subset of G on which
for the mapping f1 (x) = f (x)− y one of the conditions of Theorem 3.1 are fulfills.

This article is constructed as follows. In the beginning the above-posed questions in
multi-dimensional (Section 2) and infinite-dimensional (Section 3) cases are investigated.
The case of the reflexive Banach spaces is studied separately in Section 4. Section 5 the
nonlinear equations and inclusions in Banach spaces by application of the obtained general
results are investigated. Section 6 some sufficient conditions for fulfillment the conditions
of the theorems are obtained, and Section 7 leads the concrete examples of problems.

2 Some generalization of the Brouwer fixed-point theorem and its corollaries

In the beginning, we will provide some known results that are necessary for the studies (see,
[8,9,13,16–19], [21–27], [35]).

We denote by BRn
r (x0) of the closed ball in Rn, n ≥ 1 and by SR

n

r (x0) of the sphere
(boundary of the ball BRn

r (x0)) a center x0 ∈ Rn and radius r > 0.

Theorem 2.1 (see, [3], [15]) Let f acted in Rn and for some r > 0 on the closed ball
BRn
r (0) ⊆ D (f) satisfies conditions: 1) f is continuous; 2) the inequality 〈f (x) , x〉 ≥ 0

for any x ∈ SR
n

r (0). Then there exists, at least, one element x1 ∈ BRn
r (0) such that

f (x1) = 0. (For the proof see, [3], [15].)

Well-known that the closed ball BRn
r (0) is homeomorphic to the closed convex absorb-

ing subset and these are replaceable. Below will be shown that this theorem is the general-
ization to the finite-dimension case of one theorem Cauchy in R1. Moreover, this theorem
is one of the answers to the posed question in the case when mapping is continuous, and the
space is Rn.

1 We would note that sufficient conditions for the image f (G) will be body are provided in this article.



4 Generalized fixed-point theorems. Applications

Theorem 2.2 (see, [21]) Any two non-intersecting nonempty convex sets of linear space
can separate if either one of these has a nonempty interior or they be subsets of finite-
dimension space.

Theorem 2.3 (see, [22]) If M is the closed convex subset of the locally convex linear topo-
logical space X and x0 /∈ M then there exists a nonzero linear continuous functional
x∗0 ∈ X∗ that separates M and x0, i.e. will be found constants c > 0, c0 > 0 such that

sup {〈x, x∗0〉| x ∈M} ≤ c0 − c < c0 = 〈x0, x∗0〉 , (2.1)

where 〈◦, ◦〉 is the dual form for the pair (X,X∗).

Theorem 2.4 (see, [35]) Let X be a real vector topological space, M be an open convex
subset in X , N is a convex subset in X and M ∩ N = ∅. Then there exists such linear
continuous functional x∗0 on X , and also a real number α ∈ R1 that 〈x, x∗0〉 ≥ α for
∀x ∈M and 〈x, x∗0〉 < α for ∀x ∈ N .

We will reduce some concepts from the vector spaces theory (see, [5,6,11,13,25,35])
below will use. Let X be a vector space, L ⊂ X is called a linear manifold in X (or
affine subspace of X), if L is the certain shift of some subspace X0 of X , i.e. there exists
x0 ∈ X such that L = X0 + x0; L ⊂ X is called a hyperplane in X if L is the maximal
affine subspace of X , differently from X , i.e. there exists such nonzero continuous linear
functional x∗0 ∈ X∗ and a number α ∈ R1 that L ≡ {x ∈ X| 〈x, x∗0〉 = α}. If M ⊂ X is
a convex set and the generated over M space is the affine subspace of X then the totality
interior elements of M from X are called relatively interior elements of M and denoted by
riM . A convex set K from the vector space X is called a convex cone a vertex on zero of
X , if K is invariants relative to all homothety, i.e. for ∀α ∈ R1

+ the x ∈ K =⇒ αx ∈ K
fulfills, if in addition, 0 ∈ K ⊂ X then K is called a pointed cone.

Let Rn (n ≥ 1) n−dimension Euclid space, f be nonlinear mapping acting in Rn,
BRn
r (x0) ⊂ Rn be a closed ball a center x0 and a radius r > 0 and SR

n

r (x0) be its
boundary, denote by D (f) ⊆ Rn the domain of f .

Theorem 2.5 Let the subset G ⊂ Rn belong to D (f) and the following conditions are ful-
filled: 1) f (G) be a convex subsetRn; 2) there exists such subspaceX ofRn the dimension
k (0 < k ≤ n) that for any x0 ∈ SR

n

1 (0) ∩X there exists such x1 ∈ G ∩X that

{〈y, x0〉 | y ∈ f (x1) ∩X } ∩R1
+ 6= ∅, R1

+ = (0,∞) , (2.2)

holds (here the R1
+ can be substituted by R1

−). Then 0 ∈ f (G), i.e. ∃x̂ ∈ G satisfying
0 ∈ f (x̂) (if f is single-valued then f (x̂) = 0).

Remark 2.1 We will formulate this result for R1 in the following form.
Let the mapping f acts in R1and the image f (G) of some bounded subset G ⊂ R1 is

the connected subset of R1. If there exist such points a, b ∈ G (a < b) that the inequations
(f (a)− C) · (−1) ≥ 0 and (f (b)− C) · (1) ≥ 0 fulfilled then a point C ∈ R1 belongs to
f (G) (and consequently there is such point c ∈ G that C ∈ f (c)).

The proof follows from the connectivity of f (G). This result is generalized to the results
of Cauchy and Hadamard as one-dimension vector space is equivalent to R1.

Before the proof of Theorem 2.5, we will prove some particular variants of the theorem,
which have an independent interest. In beginning, we bring a simple variant.

Lemma 2.1 Let for some r > 0 the image f
(
BRn
r (0)

)
of the ball BRn

r (0) is closed (or
opened) convex set and is fulfilled the inequation {〈y, x〉 | y ∈ f (x)} ∩ (0,∞) 6= ∅ for
∀x ∈ SR

n

r (0) then 0 ∈ f
(
BRn
r (0)

)
, i.e. ∃x1 ∈ BRn

r (0) such that 0 ∈ f (x1). (if f
single-valued then f (x1) = 0).
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Proof. We will provide from the inverse. Let 0 /∈ f
(
BRn
r (0)

)
≡ M . According to condi-

tion M is closed or opened convex set in Rn then due to the separation theorem of convex
subsets there exists a linear bounded functional x ∈ Rn separating ofM and zero according
to the conditions of the lemma. Since BRn

r (0) is the absorbing set of Rn, therefore one can
assume that functional x belongs to SR

n

r (0). Whence we get 〈y, x〉 < 0 for ∀y ∈ f (x) that
contradicts the condition of the lemma. Lemma proved.

Analogously is proved the following result.

Lemma 2.2 Let f
(
BRn
r (0)

)
be the convex set and on the sphere SR

n

r (0) fulfills the in-
equation {〈y, x〉 | y ∈ f (x)} ∩ (0,∞) 6= ∅ for ∀x ∈ SRnr (0) then 0 ∈ f

(
BRn
r (0)

)
.

Lemma 2.3 Let f
(
BRn
r (x0)

)
be the convex set and there exists mapping g acting in Rn

such that g
(
SR

n

r (x0)
)

is the boundary of an absorbing subset of Rn. Then if for ∀x ∈
SR

n

r (x0) the expression

{〈y, z〉 | ∀y ∈ f (x) , ∀z ∈ g (x)} ∩ (0,∞) 6= ∅ (2.3)

holds then 0 ∈ f
(
BRn
r (x0)

)
.

Remark 2.2 It is clear that if f is single-valued then expression (2.3) one can rewrite as

{〈f (x) , z〉 | ∀z ∈ g (x)} ∩ (0,∞) 6= ∅.
Proof. (Lemma 2.3) As the above lemma, the proof we lead from the inverse. Let 0 /∈
f
(
BRn
r (x0)

)
then repeating of previous argue we get there is such point (a linear bounded

functional) z0 ∈ SR
n

1 (0) ⊂ Rn that 〈y, z0〉 ≤ 0 for ∀y ∈ f (x) and ∀x ∈ BRn
r (x0)

due to the condition on convexity of f
(
BRn
r (x0)

)
and Theorem 2.2 on separation, which

contradicts the condition of the lemma. Consequently, Lemma proved.

Corollary 2.1 Let the mapping f act in Rn and for a subspace X dimension k ≤ n
the f

(
BRn
r (x0)

)
∩ X is a convex set and there exists mapping g acting in Rn such that

g
(
SR

n

r (x0) ∩X
)

is the boundary of an absorbing subset ofX . Then if for ∀x ∈ SRnr (x0)∩
X the expression (3) is fulfilled then 0 ∈ f

(
BRn
r (x0)

)
.

The proof follows from the proof of the Lemma 2.3, more exactly, the above reasoning
enough to conduct for the convex set f

(
BRn
r (x0)

)
∩X (that is a subset of f

(
BRn
r (x0)

)
)

in the subspace X , since X is also the k−dimensional space.

Proof. (of Theorem 2.5) As seen from the above proofs of the Lemmas the selection of the
subset from the domain of the examined mappings isn’t essential since it one can select due
to the preimage of the convexity of f

(
BRn
r (x0)

)
∩X , here is essential the convexity of the

image of the subset from the domain.
So, if X is Rn then the proof follows from Lemmas 2.1 and 2.2. Therefore, let X =

Rk, 1 ≤ k < n. Assume 0 /∈ f (G) and the affine space generated over the convex set
f (G) is the hyperplane L ⊂ Rn and show that under condition 2 of the theorem L couldn’t
be the hyperplane different of the subspace of Rn. The affine space L isn’t a subspace of
Rn according to the assumption 0 /∈ L then there exists x0 ∈ f(G) and subspace X0,
dimX0 < n such that L = X0 + x0. Consequently, X0 is the subspace generated over
f(G) − x0. Since 0 /∈ L there is such element z of SR

n

1 (0) that 〈y, z〉 < 0 for ∀y ∈ L,
hence for ∀y ∈ f(G) as f(G) ⊂ L, due to the separation theorems. But this is contradict
to condition 2 of Theorem 2.5 as there is such y0 ∈ f(G) that 〈y0, z〉 > 0 according to
condition 2. Whence, we get that L is the subspace of X0 since X0 ⊆ X ⊂ Rn. Moreover,
L = X0 = X is the k−dimension subspace of Rn due to condition 2 as it fulfills for all
x ∈ SRk1 (0). Thus, we arrive at the case considered in Lemma 2.3. Then we get 0 ∈ f(G)
due to this lemma.
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From Theorem 2.5 follows the correctness of the following result.

Corollary 2.2 Let the acting in Rn mapping f is such that the subset M of the image
< (f)satisfies the following conditions:

i) M is the convex set; ii) There exists such k−dimension subspace X ⊆ Rn the k : 1 ≤
k ≤ n that for ∀z ∈ SRn1 (0) ∩X there exists y ∈ M such that 〈z, y〉 > 0 or (〈z, y〉 < 0).
Then 0 ∈ < (f).

It is clear that one can the above inequation rewrite in the form{
〈z, y〉

∣∣ ∀z ∈ SRn1 (0) ∩X, ∃x ∈ D (f) , for some y ∈M ∩ f (x)
}
∩ (0,∞) 6= ∅.

(2.4)

Theorem 2.6 (Fixed-point Theorem) Let f act in Rn and the ball BRn
r (x0) center on x0

and the radius r > 0 belongs to the domain of f . Let f
(
BRn
r (x0)

)
⊆ BRn

r (x0) and for
some subspace Rk, k : 1 ≤ k ≤ n, takes place f

(
BRn
r (x0) ∩Rk

)
⊂ BRn

r (x0) ∩ Rk. Let
f1 be the mapping defined in the form f1 (x) ≡ I (x) − f (x) for ∀x ∈ BRn

r (x0). If the
image f1

(
BRn
r (x0)

)
is the convex subset then the mapping f has a fixed point inBRn

r (x0).

The proof immediately follows from the above-mentioned results, therefore here it doesn’t
will be provided. It is enough to note that the fulfillment of the conditions of Theorem 2.5 for
the mapping f1 on the ball BRn

r (x0) ∩Rk implies fromTheorem 2.6 due to its conditions.

Remark 2.3 Theorem 2.6 is the Fixed-point Theorem, which doesn’t such its smoothness,
some compactness, single-value, or multi-value conditions onto mapping f that is usually
assumed. Consequently, this theorem can be considered as the generalization of such type
theorems in the above sense.

Now we provide an example that shows the rigor of inequation in condition 2 of the
above results is essential. For simplicity assume n = 2, i.e. mapping f act in R2and the
image of ball BR2

r (0) ⊂ D (f) ( r > 0) is

f
(
BR2

r (0)
)
= BR2

r (0) ∩
{
x = (x1, x2) ∈ R2 |, x2 > 0

}
∪
[(r

2
, 0
)
, (r, 0)

]
. (2.5)

It isn’t difficult to see that for ∀z ∈ SR
2

1 (0) there exists an y ∈ f
(
BR2

r (0)
)

such that

〈z, y〉 ≥ 0 but 0 /∈ f
(
BR2

r (0)
)

. In particular, the mapping f : BR2

r (0) −→ R2 of such
type one can define in the following way

f (x1, x2) =


(y1, y2) = (x1,−x2) , −r ≤ x1 ≤ r, −r ≤ x2 < 0
(y1, y2) = (x1, x2) , −r ≤ x1 ≤ r, 0 < x2 ≤ r
(y1, y2) =

(
x1
2 + r, 0

)
, −r ≤ x1 ≤ 0, x2 = 0

(y1, y2) =
(
r
2 + x1, 0

)
, 0 < x1 <

r
2 , x2 = 0

(y1, y2) = (x1, 0) ,
r
2 ≤ x1 ≤ r, x2 = 0

. (2.6)

The essentialness of the condition the image f (G), (for G ⊆ D (f)) of the exam-
ined mapping is the convex set is obviously. Indeed, if assume that in the above example
we have f

(
BR2

r (0)
)

= BR2

r (0) \BR2

r/2 (0) and f (0) = k then condition 2 satisfies but

BR2

r (0) \BR2

r/2 (0) ∪ {k} isn’t a convex set and obviously 0 /∈ BR2

r (0) \BR2

r/2 (0) ∪ {k}.

It is clear that Lemma 2.1 is the generalization of the ”acute-angle” lemma (see, e.g. [3,
12,15,16,40,43,44]) in the above-mentioned sense. Consequently, in the above-mentioned
sense, Theorem 2.6 is the generalization of the Brauwer fixed-point theorem (see, e.g. [3,6,
15,32,34]) (since it is equivalent to ”acute-angle” lemma), and also the Kakutani fixed-point
theorem (see, e.g. [13,16,19,26]) for the multi-valued case.
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3 Generalization of Theorem 2.5 to infinite-dimension cases and their corollaries

In this section, we will generalize the results of the previous section to more general spaces.
The possibility of such generalizations is due to the convexity concept being independent
of the dimension and the topology of the space. In the beginning, we will generalize the
results to the case of the Hausdorff V TS. In this section, we will generalize the results of
the previous section to the general spaces.

Let f : D (f) ⊆ X −→ Y be a nonlinear mapping.
Let X and Y be locally convex V TS (LV TS), X∗ and Y ∗ be their dual spaces, respec-

tively. Denote by ∂U (∂U∗) the boundary of a convex closed bounded absorbing set U (U∗)
in the appropriate space (see, [33])2. In particular, if X be a Banach space then ball BX

r (0)
is the absorbing set in X , and the sphere SXr (0) is the relevant boundary.

Theorem 3.1 Let f : D (f) ⊆ X −→ Y be some mapping and a set G ⊆ D (f) be such
that the image f (G) one of the following conditions satisfies:

i) f (G) is the convex set with a nonempty interior in Y ; ii) f (G) is the open (closed)
convex set in Y . Then if for any linear continuous functional y∗ ∈ ∂U∗ ⊂ Y ∗ there exists
x ∈ G such that the following inequation
{〈y∗, y〉 | y ∈ f (x)} ∩ (0,∞) 6= ∅ in the case i); {〈y∗, y〉 | y ∈ f (x)} ∩ [0,∞) 6= ∅

in the case ii) holds then 0 ∈ f (G).

Proof. The proof we bring from the inverse. Let 0 /∈ f (G) then there exists such linear
continuous functional y∗0 ∈ ∂U∗ that 〈y∗0, y〉 ≤ 0 for any y ∈ f (G) in case i), due to
convexity of f (G) according to the separation theorems of the convex sets in the LV TS
(see, e.g. [15–17,19]). We get, by the analogously reasoning to the proof of the theorem in
the previous section, that in case ii) there exists such linear continuous functional y∗0 ∈ ∂U∗
that 〈y∗0, y〉 < 0 for any y ∈ f (G) according to the separation theorems in theLV TS.
But leading the analogous reasoning to the above-mentioned we arrive at results, which
contradicted the conditions of this theorem. Thus, we obtain that must be only the inclusion
of 0 ∈ f (G) due to the obtained contradiction.

It should be noted that such type result is correct and also for the Hausdorff V TS.
Consider the case when X and Y be vector spaces (V S) and f : D (f) ⊆ X −→ Y be

some mapping.

Theorem 3.2 Let f : D (f) ⊆ X −→ Y be a mapping, the image f (G) of set G ⊆ D (f)
be a convex subset in Y , and there exist such subspace Y1 that for any subspace Y0 with
codimY1 Y0 = 1 the following expressions fulfill

f (G) ∩ (Y1)
+
Y0
6= ∅ & f (G) ∩ (Y1)

−
Y0
6= ∅. (3.1)

Then zero of the space Y (0 ∈ Y ) belongs to f (G) ⊆ Y , i.e. there exists such x0 ∈ G
that 0 ∈ f (x0).

Proof. Let 0 /∈ f (G). In conditions of the Theorem, there exist the subspace Y2 ⊆ Y1 rel-
ative to which the set f (G) is the convex set with a nonempty C−interior according to the
convexity of f (G) (see, [22]). Moreover is sufficient to choose the affine space generated
over f (G) that will be a subspace of Y due to conditions of the Theorem on the f (G).3

2 This is chosen for simplicity. In reality, one can choose the boundary of the closed balanced absorbing set.
3 Notes. Any hyperplane L of vector space Y is equivalent to some subspace Y0 of Y with co dimY Y0 = 1.

Any hyperplane L of Y separates this space into two half-space, which can be denoted as Y +
L and Y −L .

An element y0 of the subsetU ⊂ Y calledC−interior element if for ∀y ∈ U there exists ε > 0 such that for all δ : 0 < |δ| <
ε the inclusion y0 + δy ∈ U holds.
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Consequently, without loss of generality can be accounted that Y2 ≡ Y1. For simplicity,
in the beginning, assume Y1 = Y . Then there exists such subspace Y3 ⊂ Y that relative to
which f (G) belongs to one of half-spaces Y +

Y3
or Y −Y3 (see, [23,24]). Moreover, f (G)∩Y3 =

∅ according to the separation theorems of the convex subsets in V S (see, [21]). But this
contradicts condition (3.1), which shows the correctness of the state of the theorem in the
case when Y1 = Y .

Let now Y1 ⊂ Y and denote the mapping f0 (x) = f (x)∩Y1 for ∀x ∈ G then f0 (G) =
f (G) ∩ Y1. Clear that f0 (G) is a convex set in Y1. Consequently, one can repeat the above
reasoning for the mapping f0 (x) and the space Y1 as independent V S from Y that again
will give the same result as the previous, which contradicts condition (3.1).

Thus we obtain the correctness of the state of the Theorem 3.2.

From theorems mentioned above flow out the correctness of the following fixed-point
theorem.

Corollary 3.1 (Fixed-Point Theorem) Let the mapping f acts into the space X that is (a)
V S or (b) LV TS and the convex subset G ⊆ D (f). Let f : G −→ G and denote by
f1 : G −→ G the mapping f1 = Id − f (f1 (x) = Id x − f (x) for ∀x ∈ G). Assume the
mapping f1 on the set G satisfies condition (3.1), in case (a); the condition of the Theorem
3.1, in case (b). Then the mapping f in the set G has a fixed point, i.e. there exists x0 ∈ G
such that x0 ∈ f (x0) (if f is a single-value mapping then f (x0) = x0).

The proof is obvious. If to compare this result with the Schauder and Fan-Kakutani fixed-
point theorems (see, e.g. [13,17,22,23,39]), then can be seen this result is generalized to
these theorems, in the above-mentioned sense.

It isn’t difficult to see the correctness of the following result.

Corollary 3.2 Let the mapping f acting from LV TS X to LV TS Y on some subset G ⊆
D (f) satisfies the following condition: there exists such subspace Y0 of Y (Y0 ⊆ Y ) that
f (G) ∩ Y0 is a convex set, moreover, either (a) is open (or closed), or with the nonempty
interior with respect to Y0. Then if for each y∗ ∈ ∂U∗ ∩ Y ∗0 ⊆ Y ∗ there exists such element
x ∈ G that the expression

(a) {〈y, y∗〉 | y ∈ f (x) ∩ Y0 } ∩ [0,∞) 6= ∅;

(b) {〈y, y∗〉 | y ∈ f (x) ∩ Y0 } ∩ (0,∞) 6= ∅

holds. Then 0 ∈ Y belongs to f (G), i.e. 0 ∈ f (G).

Now we will reduce examples showing the essentialness of the conditions of the above-
proved theorems. Let X be a reflexive Banach space and Y = X∗, i.e. dual space to the
X . Assume f : D (f) ⊆ X −→ X∗ and BX

r0 (x0) ⊆ D (f), moreover, f
(
BX
r0 (x0)

)
=

BX∗
r0 (x∗0) ⊂ X∗, where r0 > 0 and the centers x0 ∈ X,x∗0 ∈ X∗ of these balls such

that ‖x0‖X , ‖x∗0‖X∗ > r0. Let the mapping f is such as the duality mapping between the
dual spaces, more exactly, for ∀x ∈ BX

r0 (x0) fulfill the ensue expressions f (x) = x∗ ∈
BX∗
r0 (x∗0) and 〈f (x) , x〉 = 〈x∗, x〉 = ‖x‖X · ‖x∗‖X∗ > 0. Condition 1 is fulfilled but

condition 2 isn’t fulfilled since there exists such x̂ ∈ SX1 (0) that no exists x̃ ∈ BX
r0 (x0)

satisfying the inequality 〈f (x̃) , x̂〉 ≥ 0 consequently, the claims of these theorems don’t
fulfill. The essentialness of the convexity of the image is obvious.

We will prove one result (for simplicity, in the case of the single-valued mappings) in
the case when the space Y is LV TS, which is sufficient, in some sense for fulfilling the
conditions of Theorem 3.1.
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Proposition 3.1 Let X,Y be LV TS, and f : D (f) ⊆ X −→ Y is the single-valued
mapping. Let the image f (G) of some subset G ⊆ D (f) is connected open or closed body
in Y . Then for each fixed element y ∈ int f (G), there exists such subset of G on which for
the mapping f1 (x) = f (x)− y the conditions of Theorem 3.1 are fulfilled.

Proof. Indeed, for each point y ∈ f (G) there exists an open or closed convex neighborhood
V (y) ⊆ f (G) that contains this point accordingly to the conditions of the proposition.
Then the mapping f1 is enough to consider on the subset G1 that is the preimage of V (y),
i.e. f−1 (V (y)) ≡ G1 ⊆ G, consequently, f1 : G1 −→ V (y).

We won’t consider the more general cases.

4 On mappings acted in reflexive Banach spaces

In this section, we will investigate mappings acted from one Banach space to another. It
is clear, the results obtained in Section 3 true also in this case. We will study this case
separately since well-known that the geometry of the reflexive Banach spaces was studied
sufficiently complete that allows proving more exact results. Therefore, these results are
more applicable for studying the detail of various problems.

So, we assume spacesX and Y are the reflexive Banach spaces with the strongly convex
norms jointly with their dual spaces in the whole of this section (see, e.g. [7], [15], [22],
[37], [38], etc.). As well-known, each reflexive Banach space can be renormalized in such
a way this space and its dual will the strongly convex spaces (see, [37], and also [7], [15]).
Consequently, in what follows, without loss of generality, we will account that all of the
examined reflexive Banach spaces are strongly convex spaces.

Let X be strongly convex reflexive Banach space jointly with its dual space X∗. For
simplicity in the beginning assume Y = X∗ and the mapping f acts from X to X∗. Thus
the main result of this section will be formulated as follows.

Theorem 4.1 Let f : D (f) ⊆ X −→ X∗ be some mapping and G ⊆ D (f). Assume
f (G) be a convex subset in X∗ and there exists such subspace X∗0 ⊆ X∗ that belongs to
the affine space X∗f(G) generating over f (G) and either codimX∗ X

∗
0 ≥ 1 or 0 ∈ X∗f(G);

Moreover, there exists such X1 ⊆ X that X∗0 ⊆ X∗1 , codimX1 X0 ≥ 0 and for ∀x0 ∈
SX1 (0) ∩X1 the inequation

{〈x∗, x0〉 | ∃x ∈ G & x∗ ∈ f (x) ∩X∗1 } ∩ (0,∞) 6= ∅ (4.1)

holds. Then 0 ∈ f (G), i.e. ∃x1 ∈ G =⇒ 0 ∈ f (x1) (if the mapping f is single-value then
f (x1) = 0).

For the proof of this theorem previously need to prove some auxiliary results are neces-
sary. We start with a simple variant of Theorem 4.1.

Lemma 4.1 Let f : D (f) ⊆ X −→ X∗ be a mapping and G ⊆ D (f). Assume f (G) be
a convex subset in X∗ and there exists such subspace X∗0 ⊆ X∗ that belongs to the affine
space X∗f(G) generated over f (G) and codimX∗ X

∗
0 ≥ 1. Then if for ∀x0 ∈ SX1 (0) there

exists x ∈ G such that {〈f (x) , x0〉} ∩ (0,∞) 6= ∅ then 0 ∈ f (G).4

Proof. We would note if here the condition of the case (i) of Theorem 3.1 is fulfilled then
the proof ensues from Theorem 3.1. Assuming this condition isn’t fulfilled then we will use
the following result that will be proved later.

4 In what follow we will denote for briefness by {〈f (x) , x0〉} the set {〈y, x0〉 | y ∈ f (x)}, where (y, x0) ∈ (X∗, X).
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Lemma 4.2 Let f : D (f) ⊆ X −→ Y be a mapping and G ⊆ D (f) ⊆ X , where
the spaces X , Y be LV TS. Let U∗ ⊂ Y ∗ be a closed bounded balanced absorbing set
in Y ∗ with the boundary ∂U∗. Then if for ∀y∗ ∈ ∂U∗ there exists x ∈ G such that
{〈f (x) , y∗〉} ∩ (0,∞) 6= ∅ fulfills then the affine space Yf(G) generated over f (G), at
least, is everywhere dense affine subspace in the space Y .

Proof. Continuation of the proof of Lemma 4.1. According to Lemma 4.2 under the condi-
tion of Lemma 4.1 X∗f(G) is, at least, everywhere dense linear subspace in X∗. Let X∗1 be
a subspace of X∗ that belongs to X∗f(G). Then f (G)∩X∗1 is the convex set with nonempty
interiors in X∗1 (see, e.g. [5], [17], [21], [22]). As X is the reflexive Banach space then X∗1
also is the reflexive space. Obviously that under the conditions of Lemma 4.1 on X∗1 for
∀y∗ ∈ ∂U∗ ∩ X∗1 there exists x ∈ G such that {〈f (x) ∩X∗1 , y∗〉} ∩ (0,∞) 6= ∅ fulfills
(for the proof see, [32]). Thus, we get that with respect to X∗1 for the examined mapping all
conditions of the Theorem 3.1 are fulfilled, therefore using this theorem the correctness of
the claim of Lemma 4.1 is obtained.

It remains to prove of the Lemma 4.2.

Proof. (of the Lemma 4.2) The proof we lead from the inverse. Let Yf(G) isn’t the every-

where dense affine subspace in the space Y . Denote the closure of Yf(G) by Y1 ≡ Yf(G)
Y .

According to the assumption Y1 ⊂ Y and Y1 6= Y ,and also that is the closed convex affine
subspace. Then there exists y∗ ∈ Y ∗ such that 〈y∗, Y1〉 < 0, which contradicts the condition
of Lemma 4.2.

Now we provide one result using that one can to prove the Lemma 4.1 in another way.

Proposition 4.1 Let X be a strongly convex reflexive Banach space jointly with its dual
space X∗, and Ω ⊂ X be a bounded convex set. Then if each one-dimension subspace L of
X intersects Ω, i.e. L ∩Ω 6= ∅, then either 0 ∈ Ω or Ω is such a convex body that zero of
X belongs to the closure of Ω, i.e. 0 ∈ Ω.

It is clear that under the condition of this result the affine space generated over Ω con-
tains a linear subspace of X .

Lemma 4.3 Let the conditions of the Theorem 4.1 be fulfilled with the following distinction,
in which the expression (4.1) is fulfilled in the following form: Let X1 ⊂ X be a subspace
and codimX1 Xf(G) ≥ 0. Then if for ∀x0 ∈ SX1 (0) ∩X1 there exists an x ∈ G such that
{〈f (x) ∩X∗1 , x0〉} ∩ (0,∞) 6= ∅ holds then 0 ∈ f (G).

The proof of this lemma analogously to the proof of the Lemma 4.1, therefore we don’t
provide it.

Proof. (of the Theorem 4.1) This proof follows from lemmas 4.1 and 4.3. Indeed Lemma
4.1 shows correctness of the Theorem 4.1 from one side, and Lemma 4.3 shows correctness
of the Theorem 4.1 from in another side. Consequently, the Theorem 4.1 complete proved.

The correctness of the following statements immediately ensues from the above-mentioned
results.

Corollary 4.1 (Fixed-Point Theorem) Let f be a mapping acting in the reflexive Banach
space X and BX

r (x0) ⊆ D (f) ⊆ X be a closed ball. Assume f map BX
r (x0) into itself,

where r > 0 is a number. Let f1 be a mapping defined as f1 (x) ≡ x − f (x) for ∀x ∈
BX
r (x0). Then if the image f1

(
BX
r (x0)

)
of the ball BX

r (x0) is a convex set either open
(closed) or f1

(
BX
r (x0)

)
⊂ int BX

r (x0) and int f1
(
BX
r (x0)

)
6= ∅ then the mapping f

has a fixed point in the ball BX
r (x0).
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Corollary 4.2 (Fixed-Point Theorem) Let f be a mapping acting in the reflexive Banach
space X and BX

r (x0) ⊆ D (f) ⊆ X be a closed ball. Assume f map BX
r (x0) into it-

self, where r > 0 is a number. Let f1 be a mapping defined as f1 (x) ≡ x − f (x) for
∀x ∈ BX

r (x0). Then if the image f1
(
BX
r (x0)

)
of the ball BX

r (x0) is a convex set and
f1
(
BX
r (x0)

)
⊂ int BX

r (x0) moreover, the affine space generated over f1
(
BX
r (x0)

)
con-

tains some subspace of X then the mapping f has a fixed point in the ball BX
r (x0).

Remark 4.1 Since each closed convex body is homeomorphic to the closed ball, then for
the closed convex body of the Banach space we can analogously prove the above-cited
corollaries.

5 On solvability of the nonlinear equations and inclusions

In the beginning, we will provide the results, which in some sense are corollaries of results
from the above sections, therefore we will lead them in the simplified variants.

Let X and Y be LV TS, and f be a mapping acting from X to Y .

Theorem 5.1 Let y ∈ Y be an element. Let there exist such subset G ⊆ D (f) ⊆ X that
f (G) is a convex subset of Y satisfying the condition i) or ii) of Theorem 3.1. Then if for
∀y∗ ∈ ∂U∗ ⊂ Y ∗ there exists such x ∈ G that fulfills the corresponding inequation

i) 〈f (x)− y, y∗〉 ∩ (0,∞) ; or 〈f (x)− y, y∗〉 ∩ [0,∞)

then y ∈ f (G), i.e. ∃x1 ∈ G =⇒ y ∈ f (x1) (f (x1) = y).

For the proof is sufficient to note that if by f1 to denote the mapping f1 (·) ≡ f (·)− y,
then it isn’t difficult to see that mapping f1 : G −→ Y satisfies on subset G all conditions
of the Theorem 3.1, therefore, and its claim fulfills also.

Remark 5.1 We should be noted the condition ”for ∀y∗ ∈ ∂U∗ ⊂ Y ∗ there exists such
x ∈ G that” is a relation between ∂U∗ and a subset G0 of G, therefore one can denote it
as a mapping g acting from X to Y ∗ such that for each y∗ ∈ ∂U∗ =⇒ g (y∗) = x ∈ G0,
moreover, g (∂U∗) = G0, or the inverse g−1 (G0) = ∂U∗. Unlike the general case for the
concrete problem is necessary to seek the above-mentioned mapping. In what follows in
this section, we will use mappings of such type.

Corollary 5.1 Let the mapping f act from Banach space X to the Banach space Y , where
(iii) Y ≡ X∗ or (iv) Y ≡ X ≡ X∗∗. Then the equation (the inclusion) f (x) = y (f (x) 3
y) is solvable for any y ∈ Y if fulfilling conditions:

1) There exists such subset G ⊆ D (f) ⊆ X that f (G) is a convex subset with a
nonempty interior in Y ;

2) For ∀x ∈ ∂U∗ ⊂ Y ∗ takes place the expression (iii) 〈f (x)− y, x〉 ∩ (0,∞) 6= ∅;
(iv) 〈f (x)− y, J (x)〉 ∩ (0,∞) 6= ∅, where J is the duality operator: J : X −→ X∗.

Now we will prove certain results that generalize the well-known theorems of articles
[15], [32], [40], etc. Here the generalization is understood in the sense that on a subset from
the domain of an examined mapping that is fulfilled the needed conditions can be such

(a) a mapping is without any smoothness conditions;
(b) a subset from the domain of mapping doesn’t have any conditions.
So, let Y be a semi-reflexive LV TS (see, e.g. [5]), S be a weakly complete ”reflexive”

pn−space (see, [32], [44], [45] and references in these), X be a separable V TS, moreover
X ⊂ S and is everywhere dense in S (or Y and S be semi-reflexive LV TS ), Xm be an
m−dimension linear subspace of X , generated over first m elements from total systems of
X .
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3) Let f : S −→ Y be a bounded 5 and weakly closed mapping.6 Let G ⊂ X be a
such neighborhood of zero of space X that each subset G∩Xm = Gm (m = 1, 2, ..) is the
closed neighborhood of zero of X and f (Gm) is the closed convex subset in Y.

Theorem 5.2 Let the condition 3) is fulfilled and A : X −→ Y ∗ be a linear continuous
operator. Then each y ∈ Y belongs to the subset f (G) − kerA∗ in other words y + z ∈
f (G) i.e. there exists x0 ∈ G such that f (x0) = y+ z if operator A : X −→ Y ∗ such that
the inequation

〈f (x)− y,Ax〉 ≥ 0, x ∈ ∂Gm, m = 1, 2, ... (5.1)

holds for each m, where z ∈ kerA∗ ⊂ Y .

For the proof sufficiently noted it is led to applying the Galerkin method, which usually
is applied in such type cases (see, [15], [40], [45], etc), however here instead of ”acute-angle
lemma” is used its generalization, which has been proved in Section 2.

Remark 5.2 In the multivalued case of the mapping the weakly closedness of the mapping
be understood as: if a sequence {xα} from D (f) weakly converges to x ∈ D (f) and
correspondent sequence {f (xα)} weakly converges to the subset U ⊂ Y then U = f (x).
Consequently, the claim of Theorem 5.2, in this case, will be as each y ∈ Y belongs to the
subset f (G)− kerA∗ in other words y + z ∈ f (G) i.e. there exist x0 ∈ G such that y + z
∈ f (x0) if operator A : X −→ Y ∗ such that the inequation (5.1) holds for each m, where
z ∈ kerA∗ ⊂ Y .

Now consider equations (also inclusions) in the Banach space.
Let Y and S be spaces such as above, X be a separable reflexive Banach space that is

everywhere dense in S, and f : S −→ Y is the bounded mapping.
Consider the following conditions.
c) Let there exists r0 > 0 such that for any closed ball BX

r (0) ⊂ X (r > r0 > 0) there
exists such neighborhood Gr of 0 ∈ S that BX

r (0) ⊆ Gr, Gr ∩ BX
r1 (0) ⊆ BX

r1 (0) and
f (Gr) be open (or closed) convex set in Y , where r1 (r) ≥ r (r1 dependent only on r);

d) There exists such linear bounded operator A : X −→ Y ∗ that the following relation

〈f (x) , Ax〉 ≥ ϕ ([x]S) [x]S & ϕ ([x]S)↗∞ at [x]S ↗∞,

holds, where ϕ : R1
+ −→ R1 is the continuous function and [x]S is the p−norm on S;

e) There exists such nonlinear operator g : X ⊆ S −→ Y ∗ that g(x)
‖g(x)‖Y ∗

= ĝ (x), and

also ĝ (X) = SY
∗

1 (0), moreover, on X the following relation

〈f (x) , ĝ (x)〉 ≥ ϕ ([x]S) [x]S & ϕ ([x]S)↗∞ at [x]S ↗∞,

holds, where ϕ and [x]S are same as in condition d).
(In the case f : X −→ Y in the above relation instead p−norm is necessary to take

‖x‖X .)

Theorem 5.3 Let conditions c) and d) fulfill. Then for any y ∈ Y satisfying condition

sup

{
〈y,Ax〉
[x]S

| x ∈ X
}
<∞ (5.2)

there exist such x0 and y0 ∈ kerA∗ ∩ Y that f (x0) = y + y0.

5 Let X and Y be LV TS and f be a mapping acting from X to Y . A mapping f is called bounded mapping if the image
of each bounded subset of X is a bounded subset of Y .

6 Let X and Y be LV TS and f be a mapping acting from X to Y . A mapping f be called weakly closed mapping if a
sequence {xα} from D (f) weakly converges to x ∈ D (f) and sequence {f (xα)} converges to y ∈ Y then y = f (x).
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Proof. For the proof is sufficient to note that according to condition d) there exists ball
BX
r0 (0) such that on SXr0 (0) inequation |〈y,Ax〉| ≤ ϕ ([x]S) [x]S holds due to (5.2). There-

fore, one can use condition c). According to condition c) there exist such neighborhoodGr0
of 0 and ball BX

r01 (0) that on SXr01 (0) inequation 〈f (x)− y,Ax〉 ≥ 0 holds. Consequently,
conditions of Theorem 5.1 satisfy then its claim satisfies also.

Theorem 5.4 Let conditions c) and e) fulfill. Then for any y ∈ Y satisfying condition

sup

{
〈y, ĝ (x)〉

[x]S
| x ∈ X

}
<∞ (5.3)

there exists such x0 that f (x0) = y.

The proof of this theorem is analogous to the above-proved.

Remark 5.3 We should be noted one can formulate and prove the theorems of the previous
type also in the case, when Y , X are Banach spaces moreover, Y is reflexive space, and
f : X −→ Y is the bounded mapping. But theirs we don’t will adduce here, since the
formulate of these theorems, and also their proofs are analogous to the above-mentioned
theorems.

We provide now one result for the equation with the odd operator.

Theorem 5.5 Let f acts from reflexive Banach space X to its dual space X∗ and is the
single-value odd operator. Assume there exists such closed balanced convex neighborhood
G ⊂ X that f (G) is a convex closed subset of X∗. Then there exists such subset G1 ⊆ G
and a subspace X∗0 ⊆ X∗ that for each x∗ ∈ X∗0 satisfying of inequation ‖x∗‖X∗ ≤
‖f (x)‖X∗ , ∀x ∈ G1 the equation f (x) = x∗ is solvable in G.

Proof. At the condition of the theorem 0 ∈ f (G). Consequently, an affine space X∗0 gener-
ated over f (G) is the subspace of X∗, and f (G) is the convex closed body in the subspace
X∗0 due to the convexity of the image f (G). Whence, without loss of generality, one can
suppose that X∗0 ≡ X∗. Since X and X∗ are the reflexive Banach spaces, one can assume

these spaces are strongly convex, and the dual mapping J : X J←−−→
J−1

X∗ is the monotone

bijection (one-to-one, see, e.g. [31], [40]).
As f (G) is the closed convex set there exists a subset G1 of G for which takes place the

relations f (G1) = ∂f (G), f−1 (∂f (G)) ⊇ G1. Another hand using the dual mapping J
one can determine a subsetG0 = J−1 (∂f (G)). Then there exists such one-to-one mapping
f0 acting in X that f0 : G1 ←−−→ G0 and for each x ∈ G1 fulfill the equation

〈f (x) , f0 (x)〉 =
〈
f (x) , J−1 (f (x))

〉
= ‖f (x)‖X∗

∥∥J−1 (f (x))∥∥
X
.

The set ∂f (G) is the boundary of the closed convex absorbing subset of X∗, therefore,
the subset G0 = J−1 (∂f (G)) also will be a boundary of the closed absorbing neighbor-
hood of zero of X according to the condition of the theorem. Then using of Theorem 5.1,
we obtain the solvability of the equation f (x) = y for any y ∈ X∗ satisfying the inequality〈
f (x)− y, J−1 (f (x))

〉
≥ 0. Consequently, the equation f (x) = y is solvable for any

y ∈ X∗ satisfying the inequality〈
y, J−1 (f (x))

〉
≤
〈
f (x) , J−1 (f (x))

〉
= ‖f (x)‖X∗

∥∥J−1 (f (x))∥∥
X

due to the above reasoning.

Note 5.1 As the solvability of the inclusions in the Banach space can study an analogous
way, using the appropriate theorems, therefore we won’t provide results of such type.
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6 Some sufficient conditions for the convexity of the image of mappings

Let X , Y be the V TS, and f be a mapping acting from X to Y .

Lemma 6.1 Let the mapping f , acting from LV TS X to LV TS Y , some subsets from
D (f) ⊆ X translated to connected subsets of Y . Let there exist such subsets G1 ⊂ G ⊆
D (f) that f (G1), f (G) be connected subsets with the nonempty interiors of Y and such
convex subset M of Y that inequations f (G1) ⊆ M ⊆ f (G) hold. Then there exists such
subset G2 ⊂ G that f (G2) =M (in the case when the mapping f is multi-valued then one
can determine the mapping f1 by restricting the mapping f as f1 (x) = f (x) ∩M for each
x ∈ G2).

The proof is obvious.

Proposition 6.1 Let the mapping f , acting from LV TS X to LV TS Y , be locally home-
omorphic from D (f) ⊆ X on < (f) ⊆ Y . Then if the D (f) contains a subset with a
nonempty interior then the mapping f fulfills the condition of Lemma 6.1.

Lemma 6.2 Let X be reflexive Banach space, and f acting from X to its dual space X∗,
be a potential mapping with a convex potential F (i.e. the Gateaux derivative is ∂F =
f ). Then the image f (G) be a convex subset of X∗ of each convex subset G, generated
by the functional F , where a subset G, generated by potential is understood as G =
{x ∈ X | F (x) ≤ C, }, and C be a constant.

Proof. The mapping f is the Gateaux derivative of a differentiable convex functional F ,
i.e. ∂F (x) = f (x) for each x ∈ int D (f) according to the condition of the lemma. Well-
known, the dual functional F ∗ to F also is convex functional (see, [12], [16], [19], [25],
[26], [27]). Moreover, the following relations

(i) ∀x ∈ domF =⇒ f (x) ∈ domF ∗; (ii) ∀x∗ ∈ ∂F (x)⇐⇒ x ∈ ∂F ∗ (x∗) (6.1)

are fulfilled, where ∂F is the subdifferential of the functional F .
In this case, the subdifferential ∂F is the Gateaux derivative of F . Then, if the subset

G ⊂ int dom F is the convex closed subset in X then the corresponding subset G∗ ⊂
int domF ∗ will be convex closed subset inX∗ (see, [16], [19]). Whence follows, ifG ⊂ X
is the convex subset then the image f (G) = G∗ ⊂ X∗ is also the convex subset.

Whence implies the correctness of the following result.

Corollary 6.1 Let X be reflexive Banach space, and f acts from X to its dual space X∗,
then if the mapping f is the subdifferential of a convex functional then the claim of the
Lemma 6.2 is true.

Now we will lead one result for the case when X and Y are the spaces of functions, and
the mappings are concrete chosen.

Lemma 6.3 Let a bounded mapping f acting in R1 the connected subset translate to a
connected subset and satisfy the inequalities

f (ξ) · ξ ≥ c0 |ξ|p+1 − ĉ0; |f (ξ)| ≤ c1 |ξ|p + ĉ1, ∀ξ ∈ R1,

for some constants, c0, c1 > 0, ĉ0, ĉ1 ≥ 0, p > 1.
Assume A : W k,p0

0 (Ω) −→ Lp0 (Ω) is the linear continuous operator satisfying the
inequation

c2 ‖u‖Wk,p0
0

− ĉ2 ≤ ‖A (u)‖Lp0 ≤ c3 ‖u‖Wk,p0
0

+ ĉ3,
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for ∀u ∈ W k,p0
0 (Ω) , where Ω ⊂ Rn, n ≥ 1, is the bounded domain with the sufficiently

smooth boundary ∂Ω, and c2,c3 > 0, ĉ2, ĉ3 ≥ 0, p0 ≥ p·p1, p, p1 > 1, k ≥ 0 are constants.

Then for each ball BW
k,p0
0

r (0) ⊂ W k,p0
0 (Ω), r ≥ r0 > 0 there exists such subset

Gr ⊂ W k,p0
0 (Ω) that f0 (Gr) ≡ (f ◦A) (Gr) ≡ f (A (Gr)) is a convex subset with the

nonempty interior of Lp1 (Ω), moreover, f0

(
B
W
k,p0
0

r (0)

)
⊆ f0 (Gr) ⊆ f0

(
B
W
k,p0
0

r1 (0)

)
holds for some r1 ≥ r, where r0 is a constant depending at the above constants.

Proof. The proof is sufficient to bring for the mapping f : Lp0 (Ω) −→ Lp1 (Ω) since it
isn’t difficult to see the linear operator A is surjective (see, e.g. [5], [15], [19], [26], [29]).
Then is enough to consider the subsets of Lp0 (Ω) of the following types

Mr2 ≡
{
u ∈ Lp0 (Ω)

∣∣∣ ‖f (u)‖Lp1 ≤ r2, r2 > r0

}
.

Whence using the conditions of the lemma and leading some estimations we obtain

c0 ‖u‖pLp0 − c̃0 ≤ ‖f (u)‖Lp1 ≤ c1 ‖u‖
p
Lp0

+ c̃1.

These inequations show that the image f (Mr2) of the above-introduced subset Mr2
contains some ball and belongs to another ball from Lp1 (Ω). Consequently, there exist
such subsets Gr that f0 (Gr) will be convex subsets with the nonempty interior of Lp1 (Ω).

We will provide some well-known facts from [5] that are necessary for the next result.

Definition 6.1 (see, [5]) Let K be a convex set of the linear space (LS) X containing zero
as the C−interior point. If µ is the support function of K, then the function τ defined for
all pairs x, y ∈ X by the equation

τ (x, y) = lim
α↘+0

1

α
[µ (x+ αy)− µ (x)]

called tangential functional of the set K.

If K is the convex subset, as in Definition 6.1 then 1
α [µ (x+ αy)− µ (x)] is a growing

function at α ≥ 0, and functional τ (x, y) is defined for all pairs x, y ∈ X (see, [5]).
Let K is the subset of the LS X and x ∈ K be a C−boundary point of K then the

functional x∗ ∈ X∗ called a tangent to the subset K on the point x ∈ K if there exists such
constant c that 〈x∗, x〉 = c and 〈x∗, y〉 ≤ c for ∀y ∈ K.

Theorem 6.1 . Let X be a V TS and K ⊂ X be a closed subset of X , possessing interior
points. Assume the subset K possesses the nontrivial tangent functional on all points of an
everywhere dense subset of the boundary of K then K is the convex set.(see, [5])

For the proof, and also about the correctness of its inverse statement see, [5].

Corollary 6.2 Let a bounded mapping f acting from reflexive Banach space X to its dual
space X∗ is

(i) a monotone hemi-continuous coercive operator (see, [15], [43]). Then f translates
a closed convex subset with a nonempty interior of X onto a closed convex subset with a
nonempty interior of X∗;

(ii) a positive homogeneous radially continuous monotone mappings. Then f translates
a convex subset of X defined by a functional depending on mapping f , for which zero is an
interior point, onto a convex subset of X∗.
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The proof of the (i) follows from Theorem 6.1, and the proof of the (ii) immediately
follows from the presentation of the corresponding functional

F (x) ≡
1∫
0

〈 f (tx) , x〉 dt ≡ 1

α+ 1
〈 f (x) , x〉 ,

where α is a exponent of homogeneity.

7 Examples

Example 1. Let X be a reflexive Banach space, J be a duality operator J : X −→ X∗,
generated by a strongly monotone growing continuous function (see, e.g. [15])

Φ : R1
+ −→ R1

+, Φ (0) = 0, Φ (τ)↗∞ at τ ↗∞,

ϕ : R1
+ −→ R1

+ be some mapping translating the connected set to the connected set (i.e.
connected mapping) that satisfies the condition: for each interval, I ⊂ R1

+ there exists
sup {ϕ (τ) | τ ∈ I } = ϕ (τI), moreover, here maybe ϕ (τI) =∞.

Let X and X∗ be strongly convex spaces, f : X −→ X∗ be a mapping having the form
as in the following equation

f (x) ≡ ϕ (‖x‖X) J (x) = y, y ∈ X∗. (7.1)

Theorem 7.1 Under the above conditions the equation, (7.1) is solvable for any y ∈ X∗
satisfies the following inequality

‖y‖X∗ ≤ sup {ϕ (r)Φ (r) | r ≥ 0} = ϕ (r0)Φ (r0) .

Proof. In the beginning note that according to Lemma 6.2 the image f
(
BX
r (0)

)
⊂ X∗

of the ball BX
r (0) ⊂ X is a convex subset of X∗. The duality operator J is a bijective

mapping due to spaces X and X∗ being strongly convexity (see, [5], [15], [23]). Moreover,
the image of each ball BX

r0 (0) ⊂ X is a ball BX∗
r1 (0) ⊂ X∗, where r1 = Φ (r0). Whence

implies that the mapping f can be represented as

f (x) ≡ ϕ (‖x‖X) Φ (‖x‖X) x
∗, ∀x ∈ BX

r (0) , (7.2)

since J (x) ≡ Φ (‖x‖X) x∗, where the functional x∗ ∈ SX
∗

1 (0) ⊂ X∗ is the functional
generating the norm ‖x‖X .

Thus the image f
(
SXr0 (0)

)
of each sphere SXr0 (0) ⊂ X is the sphere SX

∗
r1 (0) ⊂ X∗

under mapping f . Consequently, since x∗ ∈ SX∗1 (0) ⊂ X∗ then from (7.2) implies that the
image f

(
BX
r0 (0)

)
of ball BX

r0 (0) ⊂ X is the ball BX∗
r1 (0) ⊂ X∗ with the corresponding

radius r1 = r1 (r0).
Then using the Theorem 5.1 we get that equation (7.1) is solvable for any y ∈ X∗

satisfying inequation

|〈y, x〉| ≤ rϕ (r)Φ (r) , ∀x ∈ SXr (0)

for some r > 0.
In the other words, the equation (7.1) is solvable for any y ∈ X∗ satisfying the following

condition: there exists such r > 0 that ‖y‖X∗ ≤ ϕ (r)Φ (r).
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Example 2. Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with sufficiently smooth bound-
ary ∂Ω. Consider the following problem

f (u) ≡ −∆u+ ψ (u) 3 h (x) , x ∈ Ω, u | ∂Ω = 0, (7.3)

where ∆ is the laplacian, and ψ is the mapping acting from H1
0 ≡ W 1,2

0 (Ω) to L2 (Ω),
moreover, can be represented in the form

ψ (u) = {v (x)}u =

{
1, x ∈ {y ∈ Ω | u (x) > 0}

{w}u ∈ L∞ (Ω) , x ∈ Ω0 ≡ {y ∈ Ω | u (y) = 0}
−1, x ∈ {y ∈ Ω | u (x) < 0}

.

So, ψ be such multi-valued mapping that for each function u ∈ H1
0 the image ψ (u) is the set

of functions {v (x)} ⊂ L∞ (Ω) such that |v (x)| ≤ 1 a.e. on Ω, and also [−1, 1] ⊂ < (ψ).
Here W 1,2

0 (Ω) is the Sobolev space of the functions v : Ω −→ R1, and W−1,2 (Ω) is its
dual space (see, [41], [42]).

In the other words, the mapping f acts from H1
0 to H−1 ≡ W−1,2 (Ω), moreover, the

inclusion (7.3) is understood in the following sense: f (u) = −∆u + {v (x)}u for each
function u ∈ H1

0 .

Theorem 7.2 Let the above conditions on problem (ref) be fulfilled. Then for any h ∈ H−1,
the problem (7.3) has solutions u (x), which belongs to the space H1

0 .

Proof. For the proof enough to show that all conditions of the Theorem 5.1 fulfill for the
mapping f . We will show for any h ∈ H−1 there exists such set G ⊂ H1

0 that f (G) is the
convex body and exists such subset ∂G1 of G that be a boundary of an absorbing subset
G1, on which takes place the inequation

〈f (u)− h, u〉 > 0, ∀u ∈ ∂G1 ⊂ G ⊂ H1
0 .

Here we will use the Lemma 6.1, namely here enough to choose such balls BH1
0

r1 (0),

B
H1

0
r2 (0) ⊂H1

0 (0 < r1 < r2) that satisfy the inequation f
(
B
H1

0
r1 (0)

)
⊆M ⊆ f

(
B
H1

0
r2 (0)

)
,

where M be a convex subset. We should be noted choosing of balls is dependent on the
given h ∈ H−1.

In the beginning, is necessary to show the correctness of some inequalities.
It isn’t difficult to see

〈f (u) , u〉 = 〈−∆u+ ψ (u) , u〉 = ‖∇u‖2H + ‖u‖L1
≥ ‖∆u‖2H−1 ,

where ∇ ≡
(

∂
∂x1

, ..., ∂
∂xn

)
, ∆ ≡ ∇∗ ◦ ∇, H ≡ L2 (Ω). Moreover, there exists a constant

c ≥ 1 such that

〈f (u) , u〉 = ‖∇u‖2H + ‖u‖L1
≤ c

(
‖∆u‖2H−1 + ‖ψ (u)‖H−1

)
(7.4)

and on each sphere SH
1
0

r1 (0) ⊂ H1
0 , r > 1 for some constants c1, c2 > 0 takes place

‖∆u‖2H−1 ≤ c1 ‖f (u)‖ ≤ ‖∆u‖2H−1 + ‖ψ (u)‖H−1 ≤ c2 ‖∆u‖2H−1 . (7.5)

For the proof that the image f
(
B
H1

0
r (0)

)
⊂ H−1 of the ball BH1

0
r (0) ⊂ H1

0 , r ≥ 1

be a convex set with the nonempty interior we will use the convexity of the corresponding



18 Generalized fixed-point theorems. Applications

functional, according to the proof of Lemma 6.2 and the condition on the mapping ψ 7 ) one
can assume ball BH1

0
r (0) ⊂ H1

0 be an effective set of the functional Φ

Nf (γX , y∗) =
{
〈y, y∗〉 = τ ∈ R1 | y ∈ f (x) , x ∈ γX (x1, x2) , x1, x2 ∈ G

}
,

where x1, x2 ∈ G are some points, and γX (x1, x2) ⊂ G is the curve connecting of these
points, y∗ ∈ Y ∗ be a linear continuous functional.

Theorem 7.3 (see, [32] and its references) Let X , Y be linearly connected LV TS, and
f : D (f) ⊆ X −→ Y be a mapping, G ⊆ D (f) be a locally connected subset. Then
if for any x1, x2 ∈ G there exists such curve γX (x1, x2) that the subset Nf (γX , y∗) be
connected for each linear continuous functional y∗ ∈ Y ∗ then f (G) be a connected set.

See, Soltanov K. N., On the connectivity of sets and the image of discontinuous map-
pings. On nonlinear mappings. Proc. Inter. Topol. Conf., Baku-87, 1989, v II, 166-173 (Rus-
sian) (see, [16], [19]). Since mapping f is the subdifferential of the convex functional

Φ (u) ≡ 1

2
‖∇u‖2Hn + ‖u‖L1

≡ Φ0 (u) + Φ1 (u)

due to well-known results (see, [16], [19]) one can assume ball BH1
0

r (0) ⊂ H1
0 be an ef-

fective set of the functional Φ. Consequently, it is sufficient to examine an effective set of
dual-functional Φ∗ of functional Φ. Due to sub-differentiability of the functional Φ, at least
on the int dom Φ, the inclusions int dom Φ ⊆ < (∂Φ) ⊂ dom Φ∗ hold.

As the functional is the sum of functionals Φ0 and Φ1 its dual Φ∗ is the infimal convolu-
tion of functionals Φ0 and Φ1 therefore are necessary to define their dual functionals. It is
known (see, [30]) under v∗ ∈ domΦ∗0 holds Φ∗0 (v

∗) ≡ 1
2 ‖v

∗‖2Hn , moreover

domΦ∗0 ≡ {v∗ ∈ Hn | ‖v∗‖Hn ≤ r} ,

and also under u∗ ∈ domΦ∗1 ⊂ L∞ (Ω) holds Φ∗1 (u
∗) ≡ κ

(
u∗
∣∣ BL∞

1 (0)
)
, where8

BL∞
1 (0) is the closed ball radius r = 1, centered in zero of L∞ (Ω), and κ (u∗ |M ) is

the indicator function of the set M ≡ BL∞
1 (0) ≡ domΦ∗1.

Then we get for h ∈ domΦ∗ ⊂ H−1

Φ∗ (h) ≡ Φ∗0 (h∗) + Φ∗1 (u
∗)h∗ + u∗ = h

holds, and also domΦ∗ = domΦ∗0 + domΦ∗1, moreover is known (Φ0 ◦ ∇)∗ = ∇∗ ◦ Φ∗0
([19]), in this case (Φ0 ◦ ∇)∗ (h∗) = Φ∗0 (v

∗), ∇∗v∗ = h∗ ([16]).
Thus we obtain

Φ∗ (h) ≡ inf
u∗,h∗

{
1
2 ‖v

∗‖2Hn | h∗ + u∗ = h, h∗ = ∇∗v∗,
h∗ ∈ BH−1

1 (0) ⊂ H−1, u∗ ∈ BL∞
1 (0) ⊂ L∞ (Ω)

}
.

Whence imply that int domΦ∗ 6= ∅, moreover BH−1

r (0) ⊆ domΦ∗. Consequently,

f
(
B
H1

0
r (0)

)
have nonempty interior, and also other condition of Lemma 6.2 fulfills for

the mapping f by virtue of inequalities ([16]) and ([17]). Moreover, the domΦ∗ expands
according to the growth of the radius r that proving the correctness of the claim of Theorem
7.2.

7 Since mapping f is the subdifferential of the convex functional

Φ (u) ≡
1

2
‖∇u‖2Hn + ‖u‖L1

≡ Φ0 (u) + Φ1 (u)

due to well-known results (see, [16], [19]
8 χ (u∗ |M ) = {.0 if u∗ ∈M,∞ if u∗ /∈M}
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Example 3. Now we will lead with a simple example of the application of one of the
fixed-point theorems that were proved in this work.

Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with sufficiently smooth boundary ∂Ω,
H ≡ L2 (Ω) be a Lebesgue space that is the Hilbert space and f : D (f) ⊆ H −→ H be
a nonlinear mapping. Assume the mapping f as acting in H has the representation f (u) ≡
u − α ‖u− u0‖2H (u− u0), where 0 < α ≤ 4−1. We want that f : BH

1 (u0) ⊂ H −→
BH

1 (u0) holds. Denote by ũ = u−u0 for any u ∈ BH
1 (u0) then f (u) ≡ u0+ũ−α ‖ũ‖2H ũ.

We will show that ‖f (u)− u0‖H ≤ 1

‖f (u)− u0‖H =
∥∥∥u0 + ũ− α ‖ũ‖2H ũ− u0

∥∥∥
H

=
∥∥∥(1− α ‖ũ‖2H) ũ∥∥∥

H
.

Whence the function ũ satisfies inequality ‖ũ‖H = ‖u− u0‖H ≤ 1 by it definition, then

‖f (u)− u0‖H =
∥∥∥(1− α ‖ũ‖2H) ũ∥∥∥

H
=
(
1− α ‖ũ‖2H

)
‖ũ‖H < 1

holds, due to the condition on α. Consequently, for any u ∈ BH
1 (0) is correct the estimation

‖f (u)− u0‖H < 1, in other words, f
(
BH

1 (u0)
)
⊂ BH

1 (u0) holds.
Thus, if define the mapping f1 (u) = u− f (u) then we get

f1 (u) = u− f (u) = α ‖u− u0‖2H (u− u0) = α ‖ũ‖2H ũ.

Consequently, we obtain f1 is the Gateaux derivative of the convex functional F1, i.e.
f1 (u) = ∂F1 (u), where

F1 (u) =
1

4
α ‖u− u0‖4H =

1

4
α ‖ũ‖4H .

So, the image f
(
BH

1 (u0)
)

of the mapping f is the convex set with the nonempty interior
according to the results of the above section. On other hand, the necessary inequality of the
fixed-point theorem is fulfilled since

〈f1 (u) , ũ〉 =
〈
α ‖ũ‖2H ũ, ũ

〉
= α ‖ũ‖4H > 0.

holds for each ũ ∈ SH1 (0).
Consequently, the mapping f possesses the fixed-point inBH

1 (u0), i.e. there exists u1 ∈
BH

1 (u0) such that f (u1) = u1.
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