
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 43 (1), 1-7 (2023).

Limit theorems for the Markov random walks describes by the
generalization of autoregressive process of order one (AR(1))
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Abstract. In this paper are proved the strong law of large numbers and the central limit theorem for the
Markov random walks describes by the generalization autoregressive process of order one.
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1 Introduction and problem statement

Let (Ω,F, P ) be a probability space, and {ξn, n ≥ 1} be a sequence of independent
random variables with Eξn = 0 and Eξn = σ2n. Define the sequence random variables
{Xn} by

Xn = θ0Xn−1 + ξn (1.1)

for some fixed number θ0 ∈ (−∞,∞), where initial value X0 is independent of {ξn}.
In the case of independent and identically distributed random variables ξn (i.i.d) the

process is call a autoregressive process of order one (AR(1)) ([1]-[9]).
We know that ([8], [9]) the least-squares estimator θ0 for θ (1.1) gives

θn =

n∑
i=1

XiXi−1

σ2
i

n∑
i=1

(
Xi−1

σi

)2 . (1.2)

In [9] was shown that under conditions
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sup
i

σ2i+1

σ2i
<∞ and

∞∑
n=1

E

(
ξ2n
σ2n
∧ 1

)
=∞, (1.3)

where (a ∧ 1) = min(a, 1) convergence almost surely θn
a.s.→ θ0 as n→∞ is true.

Set

An =

n∑
i=1

XiXi−1
σ2i

, Mn =

n∑
i=1

ξiXi−1
σ2i

, Bn =

n∑
i=1

(
Xi−1
σi

)2

.

Then we have from (1.2)

θn =
An
Bn

= θ0 +
Mn

Bn
.

It follows that convergence almost surely

Mn

Bn

a.s.→ 0 of n→∞ (1.4)

is the necessary and sufficient condition for θn
a.s.→ θ0 of n→∞.

In was shown that conditions (2.3) are sufficient for (1.4).
Note that in work [1] for the case of (i.i.d) random variables ξn with Eξ1 = 0 and

Eξ21 = 1 was shown that if |θ0| < 1 and EX2
0 <∞ as n→∞

An
n

a.s.→ θ0
1− θ20

,
Bn
n

a.s.→ 1

1− θ20

Dn =
A2
n

Bn

a.s.→ θ20
1− θ20

. (1.5)

Furthermore, in [8] for the case of i.i.d. random variables ξn withEξ1 = 0 andEξ21 <∞
is obtained the following result: if |θ0| < 1 and EX2

0 <∞, then

lim
n→∞

P
(√
n (θn − θi) ≤ x

)
= Φ

(
x√

1− θ20

)
, x ∈ R = (−∞,∞) , (1.6)

where φ(x) = 1√
2π

x∫
−∞

e−y
2/2dy.

Next we prove the strong law a of large numbers of the form (1.5) and with some ad-
ditional assumptions the central limit theorem for An , Bn and Dn for the independent
nonidentically random variables.

Note that the statistics An , Bn and Dn playes important roule in nonlinear Markov
renewal theory and in sequential analysis ([1]-[7]).

Theorem 1.1 Let {ξn, n ≥ 1} be a sequence of independent random variables withEξn =
0 and
Eξ2n = 1. Suppose that

∞∑
n=1

E
(
ξ2n ∧ 1

)
=∞ and |θ0| < 1, EX2

0 <∞.

Then as n→∞
Bn
n

a.s.→ 1

1− θ20
, (1.7)
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An
n

a.s.→ θ0
1− θ20

, (1.8)

and
Dn

n

a.s.→ θ20
1− θ20

. (1.9)

Proof. By equality
X2
i = θ20Xi−1 + 2θ0Xi−1ξi + ξ2i

and
n∑
i=1

X2
i =

n∑
i=1

X2
i−1 +X2

n −X2
0 .

We have
n∑
i=1

X2
i−1 +X2

n −X2
0 = θ20

n∑
i=1

Xi−1 + 2θ0

n∑
i=1

Xi−1ξi +
n∑
i=1

ξ21

or (
1− θ20

) n∑
i=1

X2
i−1 =

n∑
i=1

ξ21 + 2θ0

n∑
i=1

ξ1Xi−2 +
(
X2

0 −X2
n

)
. (1.10)

In view of X2
n = θ20X

2
n + 2θ0ξnXn−1 + ξ2n by (1.1). We have

EX2
n = 1 + θ20EX

2
n−1, (1.11)

since random variables ξn and Xn−1 are independent and Eξn = 0, Eξ2n = 1.
From (1.11) we obtain

EX2
n = 1 + θ20 + θ40 + ...+ θ2n−20 + θ2n0 EX2

0 ,

wich by asumptions |θ0| < 1 and EX2
0 <∞ yield

EX2
n →

1

1− θ0
as n→∞. (1.12)

By (1.12) and Chebyshev’s inequality we have

X2
0 −X2

n

n

P→ 0 as n→∞. (1.13)

We have by (1.12)

E

(
1
n

n∑
i=1

ξ1Xi−1

)2

= 1
n

n∑
i=1

Eξ21 · EX2
i−2

= 1
n2

n∑
i=1

EX2
i−1 → 0 as n→∞.

Hence
1

n

n∑
i=1

ξ1Xi−1
P→ 0 as n→∞. (1.14)

Applying Kolmoqorov’s theorem on the strong law of large numbers for random variable
ξ2n.
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We have
1

n

n∑
i=1

ξ21
a.s.→ 1 as n→∞. (1.15)

By (1.13), (1.14) and (1.15) from (10) it follows that

Bn
n

=
1

n

n∑
i=1

X2
i−1

P→ 1

1− θ20
as n→∞. (1.16)

It is easy to see (1.16) is true for almost sure convergence, sense the sequenceBn, n ≥ 1

increating to infinity Bn
a.s.→ ∞ as n→∞. Consequently,

Bn
n

a.s.→ 1

1− θ20
as n→∞. (1.17)

Now we prove (1.8).
Note that

An =

n∑
i=1

XiXi−1 = θ0

n∑
i=1

X2
i−1 +

n∑
i=1

ξiXi−1

or
An
n

=
θ0
n

n∑
i=1

X2
i−1 +

1

n

n∑
i=1

ξiXi−1. (1.18)

Under conditions of theorem 1.1 (see [9])

Mn

Bn
=

1

Bn

n∑
i=1

ξiXi−1
a.s.→ 0 as n→∞.

By (1.17) we have

1

n

n∑
i=1

ξiXi−1 =
Mm

n
=
Bn
n

Mn

Bn

a.s.→ 0 as n→∞.

Then by (1.17) from (1.18) we obtain

An
n

a.s.→ θ0
1− θ20

as n→∞.

Convergence (1.9) by (1.7) and (1.8) follows from equality

Dn

n
=

n

Bn

(
An
n

)2

.

Next, we shall prove the central limit theorem for An, Bn and Dn.
Let N(µ, σ2) be a random variable with normal distribution with mean µ and variance

σ2.
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Theorem 1.2 Suppose that the sequence {ξn, n ≥ 1} of independent random variables

with Eξn = 0, Eξ2n = 1 is uniformly inteqrable and
∞∑
n=1

E
(
ξ2n ∧ 1

)
=∞.

If 0 < |θ0| < 1 and EX2
0 <∞, then as n→∞.

1)
√
n

(
Bn
n
− 1

1− θ20

)
d→ N(0, α1), where α1 =

1

|θ0|2
(
1− θ20

) . (1.19)

2)
√
n

(
An
n
− θ0

1− θ20

)
d→ N(0, α2), where α2 =

1

1− θ20
. (1.20)

3)
√
n

(
Dn

n
− θ20

1− θ20

)
d→ N(0, α3), where α3 =

θ20
1− θ20

. (1.21)

Proof. Under conditions of theorem 1.2 in paper [6] is obtained the following result (see
(1.6))

√
n (θn − θ0)

d→ N
(
0, 1− θ20

)
as n→∞.

or

lim
n→∞

P
(√
n (θn − θ) ≤ x

)
= Φ

(
x√

1− θ20

)
, (1.22)

x ∈ R, Φ(x) = 1√
2π

x∫
−∞

e−y
2/2
by.

Without of logs set σ2 = 1.

Applying (1.22) we have in view of
Bn
nθn
→ 1

θ0(1− θ20)
for the case 0 < θ0 < 1

lim
n→∞

P

(√
n

(
Bn
n
− 1

1− θ20

)
≤ x

)
= lim

n→∞
P

(
Bn
n
≤ x√

n
+

1

1− θ20

)

= lim
n→∞

P

(
θn ·

Bn
nθn
≤ x√

n
+

1

1− θ20

)
= lim

n→∞
P

(
θn ≤

xθ0(1− θ20)√
n

+ θ0

)
= lim

n→∞
P
(√
n (θn − θ0) ≤ xθ0

(
1− θ20

))
= Φ

(
xθ0

(
1− θ20

)√
1− θ20

)
= Φ

(
xθ0

√
1− θ20

)
. (1.23)

For the case −1 < θ0 < 0 by the equality Φ(x) = 1− Φ(−x) we obtain

lim
n→∞

P

(√
n

(
Bn
n
− 1

1− θ20

)
≤ x

)
= Φ

(
−xθ0

√
1− θ20

)
which together with (1.23) yields

lim
n→∞

P

(√
n

(
Bn
n
− 1

1− θ20

)
≤ x

)
= Φ

(
x |θ0|

√
1− θ20

)
,
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from which (1.19) follows.

For the proof of (1.20) by (1.22). We have in view of
An
nθn

a.s.→ 1
1−θ20

as n→∞

lim
n→∞

P

(√
n

(
An
n
− θ0

1− θ20

)
≤ x

)
= lim

n→∞
P

(
An
n
≤ x√

n
+

θ0
1− θ20

)
= lim

n→∞
P

(
θn
An
nθn
≤ x√

n
+

θ0
1− θ20

)
= lim

n→∞
P

(
θn ≤

x
(
1− θ20

)
√
n

+ θ0

)
= lim

n→∞
P
(√
n (θn − θ0) ≤ x

(
1− θ20

))
= Φ

(
x
√
1− θ20

)
,

which proves (1.20).

Finally by (1.22), in view of
Dn

nθn

a.s.→ θ0
1− θ20

as n → ∞ for the case 0 < θ0 < 1,

we have

lim
n→∞

P

(√
n

(
Dn

n
− θ20

1− θ20

)
≤ x

)
= lim

n→∞
P

(
Dn

n
≤ x√

n
+

θ20
1− θ0

)
= lim

n→∞
P

(
θn
Dn

nθn
≤ x√

n
+

θ20
1− θ0

)
= lim

n→∞
P

(
θn ≤

x(1− θ20)
θ0
√
n

+ θ0

)
= lim

n→∞
P

(
√
n (θn − θ0) ≤

x
(
1− θ20

)
θ0

)

= Φ

(
x

√
1− θ20
θ0

)
. (1.24)

For −1 < θ0 < 0, by equality Φ(x) = 1− Φ(x) we have

lim
n→∞

P

(√
n

(
Dn

n
− θ20

1− θ20

)
≤ x

)
= Φ

(
−x
√
1− θ20
θ0

)
,

which together (1.24) yields

lim
n→∞

P

(√
n

(
Dn

n
− θ20

1− θ20

)
≤ x

)
= Φ

(
x

√
1− θ20
|θ0|

)
,

from which (1.21) follows.
Note that the above results are of importance in nonlinear Markov renewal and in certain

statistical applications ([1], [2], [9]).
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