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generalization of autoregressive process of order one (AR(1))
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Abstract. In this paper are proved the strong law of large numbers and the central limit theorem for the
Markov random walks describes by the generalization autoregressive process of order one.
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1 Introduction and problem statement

Let ({2, F, P) be a probability space, and {&,, n > 1} be a sequence of independent
random variables with E¢,, = 0 and E¢, = o2. Define the sequence random variables

{Xn} by

Xy = GOanl =+ gn (11)

for some fixed number 6y € (—oo, 00), where initial value X is independent of {&,}.

In the case of independent and identically distributed random variables &, (i.i.d) the
process is call a autoregressive process of order one (AR(1)) ([1]-[9]).

We know that ([8], [9]) the least-squares estimator 6, for 6 (1.1) gives

1.2)

In [9] was shown that under conditions
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2 Limit theorems for the Markov random walks describes by the generalization of...

2
D (ffz )—oo, (1.3)

where (a A 1) = min(a, 1) convergence almost surely 6,, 3" 6y as n — oo is true.
Set

XiXi1 §z 11 X\’
a= 3 oy 3 (X
-1 i i1\ 7

Then we have from (1.2)

A M
Op = =" =0y + —".
"~ B, "B,
It follows that convergence almost surely
M,
B—”“Oofn—mo (1.4)

n

is the necessary and sufficient condition for 6, 2% 0y of n — 0.

In was shown that conditions (2.3) are sufficient for (1.4).

Note that in work [1] for the case of (i.i.d) random variables &, with £¢; = 0 and
E¢? = 1 was shown that if |fp| < 1 and EXZ < oo as n — oo

m 1-62 n 1-62
AQas 02
D,=-"r%% _0 1.5
Ba  1—62 (1-3)

Furthermore, in [8] for the case of i.i.d. random variables &,, with ££; = 0 and Eéf < 00
is obtained the following result: if |fp| < 1 and EX? < oo, then

Tim P (v (0 — 0;) < ) :@(\/13”_79%» 2 €R=(—00,00), (16

where ¢(x) = eV /2dy.

7 f
Next we prove the strong law a of large numbers of the form (1.5) and with some ad-
ditional assumptions the central limit theorem for A, , B,, and D,, for the independent
nonidentically random variables.
Note that the statistics A,, , B, and D,, playes important roule in nonlinear Markov
renewal theory and in sequential analysis ([1]-[7]).

Theorem 1.1 Let {&,,, n > 1} be a sequence of independent random variables with E,, =

0 and
o0
EE&2 = 1. Suppose that Y E (§2 N 1) = oo and 6| <1, EX§ < co.
n=1
Then as n — o0
Bn a.s. 1
— 1.7
S (1.7)
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An a.s. 90
n 1.8
el et (1.8)
Dn a.s. 9(2)

. 1.9
n - 1—08 (1.9

Proof. By equality

X2 =02X; 1 + 200X, 1& + &

n n
dOXP =) X7+ X) - X5
=1 =1

‘We have

n n n n
Z X2+ X5 — X5 =6 Z Xi 1+ 2600 Z Xia&i+ Zf%
i=1 i=1 i=1 i=1

n n n
(1L-)D X2, =>"+200) &Xi o+ (X3 —X2). (1.10)
=1

=1 =1
In view of X2 = 03 X2 + 200, X1 + €2 by (1.1). We have
EX? =14+60}EX?_,, (1.11)

since random variables &, and X,,_; are independent and E¢,, = 0, Eg,% = 1.

From (1.11) we obtain

EX2=1+03+0;+...+60" >+ 03"EX],

wich by asumptions || < 1 and EXZ < oo yield

EX? - as n — oo. (1.12)

1—6g
By (1.12) and Chebyshev’s inequality we have

X2_X2
2070 B as n— oo, (1.13)
n

We have by (1.12)

n 2 n
E <; 5" ml) _ 13 pe . Bx2,
=1

= n
:#ZEXZZ_I%O as n — oo.
i=1
Hence
1 < P
=) X1 0 as n— oo (1.14)
n
i=1

Applying Kolmoqorov’s theorem on the strong law of large numbers for random variable
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We have

1 n
=) g1 as n— oo, (1.15)
n =1

By (1.13), (1.14) and (1.15) from (10) it follows that

B, 1 p 1
nn:n;XiQ_l %1—708 as n — o0. (116)

Itis easy to see (1.16) is true for almost sure convergence, sense the sequence B, n > 1
increating to infinity B,, 3 0o as n — oo. Consequently,

B’n a.s. ]-
-n . 1.1
n—>1—93 as n — 0o (1.17)
Now we prove (1.8).
Note that
n n n
A=Y X Xi 1 =00 X2, + D 6X,
i—1 i=1 i=1
or
An 0 & 1<
?n = EOZX’ZQ—l—I_EZgiXi—l' (1.18)
i=1 i=1

Under conditions of theorem 1.1 (see [9])

n
Bn Bn iz

By (1.17) we have
n on

1 & M B, M,
=) LX, === 0 as 0 oo,
i3 n

Then by (1.17) from (1.18) we obtain

Convergence (1.9) by (1.7) and (1.8) follows from equality

Dy _ (A
n  B,\n)/) '
Next, we shall prove the central limit theorem for A,,, B,, and D,,.

Let N(u,0?) be a random variable with normal distribution with mean p and variance
2
o°.
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Theorem 1.2 Suppose that the sequence {&,,n > 1} of independent random variables
o0

with B¢, = 0, E&2 = 1 is uniformly inteqrable and > E (5% A 1) = 00.
n=1

If0 < |6p| < 1 and EX3 < oo, then as n — oo.

1)
B, 1 d 1
n|——-—-——) —=>N(0,a1), where ay = —5———. 1.19
V(- 2g) A voa ERTNCTTor) S
2)
An 90 d 1
\/ﬁ<n -1 _9(2)> — N(0,2), where ag = 1_793. (1.20)
3)
D, 03 d 03
\/ﬁ<n— 1_93> — N(0,a3), where as = T (L.21)

Proof. Under conditions of theorem 1.2 in paper [6] is obtained the following result (see

(1.6))
Vi (0, — 60) 5 N (0,1 —63) as n — oo.

or

. T
Tim P (v (0, —0) < z) = & (m) : (122)

1 x
r€R, O(x)= Nor / e*yz/zby.
s

Without of logs set 02 = 1.

B 1
Applying (1.22) we have in view of ﬁ — m for the case 0 < 6y < 1

. B, 1 . B, x 1
- < = — < — [
nhmP<\/ﬁ<n 1_0(%) x) nhmP(ﬂ_\/ﬁ—i—l 93>

, B, x 1 . 20(1 — 63)
= lmP (6, —2<—4—)=1lmP(6, <220 49
o <9 nen_\/ﬁ+1—08> nio (9 Jn

= lim P (v/n (6 — 60) < 260 (1 — 63))

n—oo

20 (1 — 62)
= <\/1_7030> :¢<x90,/1—93>. (1.23)

For the case —1 < 6y < 0 by the equality #(x) = 1 — ¢(—x) we obtain

. Bn 1 _ 2
nlg](r)loP <\/ﬁ <n — 1_0(%) §a:) —95(—3:90\/1—00)

which together with (1.23) yields

. B, 1
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from which (1.19) follows.

For the proof of (1.20) by (1.22). We have in view of AT?" % —193 as n — oo
P (ﬁ <ilzn g2 ) ="
=£&P@§<;ﬁn_%>
= lim P (9";:17; < % + ﬁo%)

which proves (1.20).

Finally by (1.22), in view of

we have

D T 0?2
lim P (6,—2% < —— 0
Jimn (nn—wﬁq_%>
z(1—62)
lim P (6, < 0
= Jim P (00 < TG 0

i (mn o) < )
n—oo 00
/ 2
= ¢ <m1_9()> . (1.24)

For —1 < 6y < 0, by equality (x) = 1 — $(x) we have

2 _ p2
i (v (22 185 ) <o) <o (),
0

n—oo

which together (1.24) yields

2 /1 _ pn2
lim P | v/n &— fOQ <z)|=9 331790 ,
n 1 90 |00|

n—oo

from which (1.21) follows.
Note that the above results are of importance in nonlinear Markov renewal and in certain

statistical applications ([1], [2], [9]).
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