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Abstract. In the pap er we find sufficient conditions that provide the existence and uniqueness of a bound-
ary value problem for a class of operator differential equations of second order, that contain a normal
operator in the principal part, in the space of smooth vector-functions. These conditions are expressed
by the properties of operator coefficients. We also obtain the estimations of the norms of intermediate
derivatives in the space of smooth vector-functions.

Keywords. Hilbert space, operator-differential equation, boundary value problem, smooth solution.

Consider in separable Hilbert space the boundary value problem
—u""(t) + A%u(t) + A/ (t) + Agu(t) = f(1), t € Ry = (0,00) (1)

u'(0) =0, (2)

where u(¢), f(t) are the functions determined in R = (0, co) almost everywhere, with the values from
H, the derivatives are understood in the sense of distributions theory [1], and operator coefficients of
equation (1) satisfy the condition:

1) A is a normal operator with bounded inverse whose spectrum is contained in the angular sector

Se={A:|arg)| <e, 0<e < 7/2};

2) The operators A; € L (H;, H) N L(H;41.H1), j = 1,2.

Here L(X,Y) is the space of bounded operators acting from the space X to the space Y, and the
space Hy = D(C"), v > 0 (Ho = H) with the norm |[|z||, = [|C7z||, where the operator C'is a
positive-definite self-adjoint operator from the representation of the operator A = UC, and U is unitary
operator.

Let Lo(R+; H) be a Hilbert space of all functions f(¢) determined in R almost everywhere, mea-
surable, with the values in H for which

1/2

s = | [ 1701 a
0

Following the monograph [1], we introduce the following Hilbert space

Wi (Ry; H) = {u ™ € Ly(Rys H), ¢y e LQ(R+;H)}, m=1,2,3
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with the norm

2 12
o I )

In connection with studying the problem (1), (2), consider the Hilbert space

[ —— (]

W;(RJr;H) = {u tu € Wg?’(RJr cH), 4/ (0) = 0} .
The spaces Lo(R; H) and W4 (R; H) are similary determined for R = (—o0, o0).

Definition 1. If for f(t) € Ws (R; H) there exists u(t) € Wi (R; H) that satisfies equation (1) in
R identically, boundary condition (2) in the sense of convergence

tlﬁ_% H“/(t)||3/2 =0

and estimation

HUHW23(R+;H) < const |\f”W21(R+;H) )
we say that problem (1), (2) is well-defined solvable in W3 (R ; H). Note that for f(t) € La(Ry; H), u €
W22 (R+; H) this problem was studied by many authors when A is a self-adjoint operator (see e.i. [2-4]),
and when A is a normal operator in the paper [5].

Note that the existence of smooth solutions of boundary value problems when A is a self-adjoint
operator, f € W4 (Ry; H) while u € Wi (Ry; H) was investigated in the papers [6-7], and for f €
W3 (Ry; H), u € Wiy (R; H) in the paper [8]. On the whole axis, the well-posedness of the equation
(1) was studied in (9).

In the present paper we find the conditions on the coefficients of equation (1) that provide well-defined
solvability of problem (1), (2) in W3 (R4 ; H). Denote

Pou=—u" + A2u, Piu=Au + Asu, u € W; (Ry; H).
At first we prove the following lemma.
Lemma 1. Let conditions 1) be fulfilled. Then for u € W; (R+; H) it holds the inequality
2 2 2
\|P0u|\W21(R+;H) > ||“||W,_,3(R+;H) + (1 + 2cos 2¢) HAu/||W21(R+;H) (3)

Proof. Letu € VCIJ/; (R4; H) (v/(0) = 0). Then

2 2
Poull2 o H_ ///+A2 / +H_C N—I—CAQ ‘
1Poulliv rasm " lla(rysmn Y iacrym
= [l i [ —9Re(u”, A%u) 1, iy + |||
L2(Ry;H) Lo(Ry H) ' La(Ry;H) L2(Ry;H)
2
A2 ‘ — 2Re(Cu’, C A - 4
tleat|, 2RO OA L )

After integrating by parts, we get

—2Re (u'”, AQu/)
Lo(Ry;H)
= 2Re (A*u”7 Au//)

> 2cos2¢e HCu”

2
12(R+;H) "LQ(R+;H) (5)

and
—2Re (Cu”,CAQ'u)
L2 (R4 H)
2 1 427 2 7/ 2
:2Re<C u,A u) 2200525“Cu .
La(Ry;H)

l2(R4;H)
Taking into account inequalities (5) and (6) in equality (4), we complete the proof of the lemma.
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Now estimate the intermediate derivatives in the space Wy (R ; H). It holds the following

Theorem 1. Let condition 1) be fulfilled. Then for u € VCT)/; (R+; H) it holds the inequality

A% (j>H <ci(e) R s G=0,1
e (O L P
where
{ 1, 0<e<m/4
cole) = 1
_— /4 <e< /2
V2cose / /
1
= < 2.
c1(e) T 0<e<m/
Proof. Let j = 1. Then for u € W;(R+; H) we have:
12 12 2 411 712
149 g ooy = 10 g = [ oy 16 ooy
_ 2 7 27 " "
o (C u,C )LQ(R+;H) +(Cu”, Cu >L2(R+;H)'
After integrating by parts, we have
(CQu/,C2u/) =— <C3u,CuH)
Lo (R4 H) Lo (R4 H)
1 3 2 173 2
< —
-2 (HC UHLQ(R+;H) + [ ||L2(R+;H)>
and .,
(Cu ,C’u”)
La(Ry;H)
1 2 2
— (2 ' ///) <1 " HCQ ’ ‘
( wou Ly(Ry;H) — 2 Hu HL2(R+§H)+ v Lo(RyH)
Consequently,
m2 1 2 1 7112
| Au HW21(R+;H) < 5 lullwgryim + 5 [Cu ||W21(R+;H)
1 2 1 / 2
=5 lullwg(rym + 5 | Au ”W21(R+;H)'
Thus,

2
144 Vw3 1y < Nilivgceomn

Using lemma 1, we get

2 2 7112
| Au ||W21(R+;H) < Poullyy(ry ) — (1 +2cos 2¢) | Au HW21(R+:,H) :
Consequently,
A 2 < 2
2(1 + cos 2¢) || ) }|W21(R+;H) < |\P0u\|W21(R+;H)
i.e.
1
li
1A s s i) S Gagez 1Poullwg (rysmy» 0 e <m/2.

Now prove the inequality in the case when j = 0. Obviously,

2 2 2
4% =[le* =™ +et
W3 (Ry;H) W3 (R4;H) La(Ry;H) La(R4;H)
and ) ) )
! I
H“/ ”W21(R+;H) = HC“ /|‘L2(R+;H) + Hu///‘|L2(R+;H) :
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Then

2 I 712 o 2 3 |12
HA “HW%(R%H) + u HWzl(R+;H) = <H“ HLZ(R+;H) + HC “‘ L2(R+;H)>

2 2 2
+ (HOUHHL2(R+;H) + HCQUI ) = Hu||%/V§(R+;H) + HA“/||W21(R+;H) :

L2(R+;H)
Using lemmal, we get

2
%]

wacoan 1 sy < VPR oy — 2cos2e [ 4|

2
‘WZI(R+;H)'
Let0 <e < m/4 (cos2e > 0). Then we get

2
%]

72 2
<
W3 (Ry;H) + [l HW21(3+;H) < IPoullw; (r ;)

i.e.
4%

< ||[Pou JE -
WiR, i) S I Poullyw;s (g, ;m)

Consequently, for 0 < e < 7/4
2 _
H u"Wzl(R+;H) < co(e) [|1Poullwy r. sy = 1Poullwy (ry o) -

Now suppose that 7/4 < ¢ < 7/2 (cos2e < 0). Then using inequality (7) for j = 1 we get

2 2
[ gy 1 Py < 1Py = 2052 |40 iy

2 1 2
= IPoullw (. sm) — 200828 o 1Poullwy (r. )

( 1 cos 2¢

2
~ 2cos? 5) IPoullwy e smm)

_ 2cos? € — cos 2e

2 2
I Poullw (r, iy = I Poullw (r,m) -

2cos2 ¢ 2cos2e

Consequently, for 7/4 < ¢ < 7/2 we have

2
u < —=—— lPou ) -
H Hng(R+;H) ~ V2cose | HW?l(RJr’H)

Thus, for0 < e < 7/2

2
U < cp(e) ||Pou ) -
192 sy = 0 WP

The theorem is proved.

Theorem 2. The operator Py isomorphically maps the space W; (Ry; H) onto W3 (R H).

Proof. As the equation —u'/(t) + A2u(t) = 0 has the general solution ug(t) from W3 (R4 ; H) in the
form ug(t) = e oy, ¢ € Hj /o, then from the condition 4/ (0) = 0 it follows —Ap = 0ie. ¢ = 0.
Consequently, for ug(t) = 0i.e. KerPy = {0}. Show that the equation Ppu = f has a solution for any
f € Wa(Ry; H). As is known [1], if f € W4 (Ry; H), then we can continue it in the right semi-axis so
that the continuation f(t) € W4 (R; H) and ||f1\|W21(R+;H) < const ||f|\W21(R;H). Denote by fl()\) the
Fourier transformation of the function fi (¢) and construct the vector-function

+oo
ui(t) = — /(A2E+A2)_1fl()\)ei’\td)\7 teR.

— 00
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Show that u; (t) € W3 (R; H). By the Plancherel theorem

2
2 . 3 1|2
e llwg (o) = HC ulHLz(R;H) 1N iy

= ||Cc3T (A 1 lada ol
=[etm |+ [a o,
—~ 2 ~ 2
= |C3NE+ AL RO MOZE+AH RO
[etote a7 R0, OB AT RO
~ 2
< su H02 N+ A2 _1H HC )\’
sup ( ) 1 (N (R
+sup H/\Q(AQEJFAQ)*H HAﬁ (A)‘ .
AER Ly (R;H)

Since foreach A € R
HC2()\2E+A2)_1‘ = sup

M2(>\2 +M262w)—1‘

2o
lpl<e
= sup /,LQ()\4 + 1t + 223% 2 cos 2@)71/2’
HZ 1o
lpl<e
< sup ,LLQ()\4 + ,u4 + 22212 cos 26)_1/2’ .
K12 Ho

Obviously, for cos2e > 0 (0 < e < 7/4)

o]
HZHo

TCAETO R ESt
and for cos 2e < 0 the function (/4 < e < 7/2)

sup
©2>po

,uz()\4 + /L4 + 2)\2/L2 cos 25)71/2’

1

4 ) —-1/2
< sup (7' +1+27 cos?s) < —
sin 2e

T>0

therefore supHC2 (A2E+A2)71H < Kpy(e), where Ko(e) = 1for 0 < ¢ < 7/4 and Ky(e) =
(sin2e) ! for m/4 < e < 7/2.
Similarly we get
sup ‘AQ()\QE + A2)_1‘ < Ks(g) = const.
A

Consequently, u1 € W3 (R; H) and ||u1llyys g,y < const || fllwz gy <
< const Hf||W21(R+;H) .

Obviously, u1(t) satisfies the equation —u”(t) + A?u(t) = f(t) for t € Ry almost everywhere.
But the both hand sides of the equation are continuous functions, then u;(¢) satisfy the given equation
identically in R . Contraction u1 () on [0, co) belongs to the space W3 (Rt ; H). Denote this continuation

by &1 (t) € W3 (R+; H). Hence, from the theorem on traces it follows 5%3)(0) €Hz j 1/2,7=0,1,2

moreover Hf%j)(O)H ) < const Hf‘|W21(R+»H) , j = 0,2. Now we will look for the solution of the
3—j—1/2 ;

equation Pypu = f in the form

u(t) = &1(t) + e,
where ¢ € Hj /5 is a still unknown vector. From condition o' (0) = 0 it follows that —Ap + £1(0) = Oi.e.
@ = A7'¢](0) € Hy 5. Thus,

u(t) = &1(t) + A eTHAEL (0) € W (R H).
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On the other hand,

—1 —tA
lutllwg (ry oy < NEnlwg o + || A7 <0)ng _—

< llutllwg (s + const Hf’(O)H3/2 < const || fllwy (r;m) -
The theorem is proved.
Now prove the basic theorem.
Theorem 3. Let conditions 1) and 2) be fulfilled, and

a(e) = c(e) max (| A1l g, g - 141 1y i1,

+eo(e) (142l py i s AU gy, ) < 1

where cq(€) and c1(g) were determined from theorem 1. Then problem (1), (2) is well-defined solvable in
W3 (R H).

Proof. Write problem (1), (2) in the form of the equation Pu = Pyu+Pyu = f, where f € W (Ry; H), u €
W3 (R4 ; H). By theorem 2, the operator PO_1 : Wa(Ry; H) — W3(Ry; H) is an isomorphism. Assume
uw = P lw, then we get the equation w + PPy Yy = fin W34 (Ry; H). On the other hand, for any
w € Wy (Ry; H) there hold the inequalities
|75l

_ _ !
it 1w e = A+ Azelogy

<Ay oy + IA2ullwy (o)

1" 2
- (fo

1/2
2
s 142 )

2 9 1/2
+ (||A2u/||L2(R+;H) + HAA?uHLz(RJr;H)) < max (|41l g, i > 141 iy 1,)

9 1/2
2 1112
x (HA o + 4w HLQ<R+;H>> +max (|42l gy 142 51y,
2 2 1/2
(e el )
Lo(Ry;H) Lo(R;H)

Using theorem 1, we get

|Pups s < (er(Eymax (A1l g,y 1At lptyorr,)

W3 (Ry;H)
+co(e) max (HA2HH2_>H ) ||A2||H3—>H1)) HPOU|‘W21(R+;H) =a(e) ||WHW21(R+;H) :

Thus, the operator E + Py Py 1is invertible in W4 (R4 ; H). Then

u=Py (E+PPy ) ' f

and
lullwg (r, ;i) < const[fllwi(r, o) -

The theorem is proved.
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