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Abstract. In the paper, in L2(0,∞) we consider a bundle of fourth order differential operators when the
principal characteristic polynomial has a unique multiple root. We establish double asymptotics of funda-
mental systems of solutions of the appropriate differential equation, study the structure of the spectrum,
construct the kernel of the bundle. It is defined that for correct formulation of the problem it is necessary
to give four conditions at the left end.

In the space L2(0,∞) consider a bundle of differential operators Lαλ generated by the differential
expression

lλ(Y ) ≡ Y IV − 4iY III − 6λ2Y I +
(
4iλ3 + P30(x)

)
Y I

+
(
λ4 + P41(x)λ+ P40(x)

)
Y = 0, (1)

and boundary condition

Uν(Y ) = αν0Y (0, λ) + αν1Y
I(0, λ) + αν2Y

II(0, λ) + αν3Y
III(0, λ) = 0, ν = 1, 4, (2)

where λ is a spectral parameter, the functions P30(x), P41(x), P40(x) are complex-valued summable on
[0,∞), they and their fourth order derivatives are rather quickly stabilized at infinity, αik, ν = 1, 4, k =

0, 3 are fixed complex numbers such that Uν(Y ) are linear independent.
Specifity of the bundle Lαλ is that the principal characteristic polynomial of the equation lλ(Y ) = 0

has a unique root i with multiplicity 4. In the case of multiple roots of this polynomial the formal solutions
of equation (1) may contain fractional degrees of parameter both in the index of the exponent and at the
multiplier of the exponent, and the structure of asymptotic representations depends not only on higher
coefficients but also on algebraic combinations of coefficients at lower degrees of parameter [1]. Here
these properties are taken into account so that the formal solutions do not contain fractional degrees of
parameter.

Direct spectral aspects of ordinary differential operators on a finite segment in the case of different
characteristic roots in Birkhoff -Tamarkin sense were studied rather well. The most complete investiga-
tions of different spectral aspects were carried out in the works of G.D.Brikhoff, Ya.D. Tamarkin, M.A.
Naimark, M.V. Keldysh, A.G. Kostyunchenko, V.A. Il’in, M.G. Gasymov, M.L. Rasulov, A.A. Shkalikov
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and others. In particular, the issues of multiple completeness of the system of eigen and adjoint functions
of such bundles were solved depending on lacation of these roots. Herewith, the essential condition of
multiple completeness is the location of roots on different beams outgoing from the origin. When this con-
dition is violated, the given system of adjoint functions has infinite deficiencies in the sense of multiple
completeness [2,3,4].

Differential bundles given on infinite intervals were also studied well in the case of diferent characc-
teristic roots. And here it was revaled such an effect that the member of boundary conditions on the left
end in the case of semi-axis also depends on the location of the parameter λ and is connected with arrange-
ment of the roots of the characteristic equation, and the appropriate bundle is not an analytic function of
the parameter λ on all complex plane [5,6].

As the bundle under of consideration has one multiple characteristic root, and this means that all of
them lie on one beam outgoing from the origin, this beam should be specially studied. When there are
characteristic multiple roots, but they are symmetrically arranged with respect to origin, the appropriate
results on expansion in eigen function of continuous and discrete spectra were obtained in the papers
[7,8,9].

Formal series of representations of fundamental systems of solutions lλ(Y ) = 0 contain only entire
degree of parameter because some coefficients at lower degrees of parametric of a polynomial bundle
don’t participate at it and as |λ| → ∞ they have ordinary exponential asymptotics as with the principal
terms 1, x, x2, x3 and the solutions are found by the method of the papers [1,10]. As not all the coefficients
of the differential expression lλ(Y ) decrease at infinity, the number composing the fundamental system of
solutions (f.s.s.) belonging to L2(0,∞) depends to which half-plane ±Jmλ ≥ 0 the spectral parameter
enters.

In the present paper, a formula of double asymptotics of the solutions of equation (1) both with respect
to the parameter and argument x is established. The structure of the spectrum is studied, the resolvent of
the bundle is constructed.

Theorem 1. Assume that the integrals
∞∫
a
x4
∣∣∣P (j)
ks (x)

∣∣∣ dx, j = 0, k + s converge for any a > 0. Then

differential equation (1) at each of half-planes ±Jmλ ≥ 0 has f.s.s. Yk (x, λ) , k = 1, 4 that allow as
|λ| → ∞ and x→∞ the asymptotic representations as

Yk (x, λ) =

[
g
(0)
k (x) +

1

λ
g
(1)
k (x) +

1

λ2
g
(2)
k (x) +

1

λ3
g
(3)
k (x) +

Ek (x, λ)

λ4

]
eiλx, k = 1, 4 (3)

as |λ| → ∞ and for each fixed x.
As x → ∞ uniformly with respect to λ : { ±Jmλ ≥ 0, |λ| ≥ R, R is a rather large number } the

following asymptotic representations hold:

Yk (x, λ) =
[
g
(0)
k (x) + o(1)

]
eiλx, x→∞, k = 1, 4 (4)

The derivatives of these solutions allow similar asymptotic representations.
Here g(0)k (x) = xi−1, i = 1, 4 are f.s.s. of the fourth order equation d4

dx4 g
(0)
k (x) = 0, g

(k)
i (x), k = 1, 3

are the particular solutions of the fourth order inhomogeneous differential equation with the left side
d4g

(0)
k (x)
dx4 , and the right side contains the coefficients of functions and their derivatives to third order

inclusively, the functions Ei (x, λ) are bounded in the domain {a ≤ x <∞, |λ| ≥ R}.

Proof. For obtaining asymptotic representation (3) we consider the formal solutions

Yk (x, λ) =

[ ∞∑
ν=0

λ−νg
(0)
k (x)

]
eiλx, k = 1, 4, that were studied in [10] for a finite segment. Substi-

tute these formal series in equation (1), then equate between themselves the coefficients at the identical
degree λ and get a recurrent system of fourth order differential equations and a system of algebraic rela-
tions. Under the theorem conditions from integrability of these differntial systems from x to∞ we find
an algorithm for determining the coefficients of Brikhoff expansion in λ. Hence, applying lemma1.1.of
the paper (5) we get the statement of the theorem for the set {a ≤ x <∞, ±Jmλ ≥ 0, ∀a > 0}. Each
of the obtained solutions Yk (x, λ) , k = 1, 4 may be continued also on the interval [0, a] and we can
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construct on this interval a solution satisfying the conditions Y (ν) (a, λ) = Y
(ν)
k (a, λ) , ν = 0, 3 and the

solutions determined in such a way on the interval [0, a] satisfy the equation on the same interval. By im-
mediate differentiation of formal solutions with respect to [0, a] to third order, we get that f.s.s. Yk (x, λ) ,
k = 1, 4 together with derivatives allow such representations. From the same representation we can easily
get formula (4), where smallness of the second summand is determined by the method of the paper [9].

If for some ε > 0 the coefficients of the function for all x ∈ [0,∞) satisfy the condition

eεx
∣∣∣P (j)
ks (x)

∣∣∣ ≤ cks, (5)

then by using [5] it is easy to establish shat equation (1) has f.s.s. Yk (x, λ) , k = 1, 4 in the domain
{(x, λ) : 0 ≤ x <∞, 0 < |λ| ≤ r} , where r is a rather small positive number. For a fixed, x ∈ [0,∞)

these solutions are holomorphic functions with respect to λ for 0 < |λ| ≤ r. Asymptotic representations
(3) hold uniformly with respect to λ for 0 < |λ| ≤ r. And if λ = 0, then the equation obtained from
lλ(Y ) = 0 has linearly independent solutions Yk (x, λ) , k = 1, 4 such that as x → ∞ and at arbitrary
positive ε1 < ε it holds

Yk (x, λ) =
x4−k

(4− k)! +O
(
e−ε,x

)
, k = 1, 4

that means holomorphy of solutions (3) and (4) with respect to λ and for 0 < |λ| ≤ R.
Deonote by D the totality of all functions Y (x, λ) ∈ L2 (0,∞) such that:
1) the derivatives Y (ν) (a, λ) , ν = 0, 3 exist and are absolutely continuous in each finite interval

[0, b] , b > 0 for each λ : ±Jmλ ≥ 0; 2) lλ(Y ) ∈ L2 (0,∞). Further, denote by Dα a totality of
functions from D for which conditions (2) are fulfilled. Define Lαλ in such a way: its domain of definition
is Dα and Lαλ = lλ(Y ) for y ∈ D. Denote A(λ) = det ‖Ui(yk)‖4i,k=1 and consider the upper half-plane
λ : ±Jmλ ≥ 0. In its open part all the solutions Yk (x, λ) , k = 1, 4 belong to the space L2 (0,∞). If λ
is in the open lower half-plane, none of these solutions belong to this space. Then the eigen values of the
operator Lαλ are determined from the equation A(λ) = 0. On the real axis none on these solutions belong
to L2 (0,∞) , consequently, the operator Lαλ has no eigen values arranged on this axis. Indeed, othervise,

if λ0 is an eigenvalue with Jmλ0 = 0, then necessarily Yk (x, λ) =
4∑
i=1

ci Yi (x, λ) and Y (x, λ0) ∈

L2 (0,∞) ;herewith even if one of the numbers ci, k = 1, 4 should differ from zero, but as x → ∞ we
have

Y (x, λ0) = {c1 + c2x+ c3x
2 + c4x

3 + o(1)}eiλ0x.

Therefore, as N →∞
N∫
0

|Y (x, λ0)|2 dx =

N∫
0

∣∣∣c1 + c2x+ c3x
2 + c4x

3
∣∣∣2 dx = c21N + c21

N3

3
+ c23

N5

5
+ c24

N7

7
+ o(1)

and if Y (x, λ0) ∈ L2 (0,∞) , then necessarily ck, k = 1, 4 i.e.Y (x, λ0) = 0. There are also no eigen
values+ in the open lower half-plane.

Theorem 2. Subject to conditions (5) the bundle Lαλ may have finitely many nonreal eigen values from
the upper half-plane, finitely many real spectral properties, the real axis coincider with the continuous
spectrum. Subject to the conditions of theorem 1, the spectrum of the bundle Lαλ may form a denumerable
set in λ− plane, whose limit points may be only on the real axis and a continuous spectrum coinciding
with the real axis.

Let λk be a prime eigen value of the operator Lαλ . Then the eigen function responding to λk will be

Yk (x) =
4∑
i=1

ck Yk. Assume c4 = 1. Form conditions (2) we have
3∑
k=1

ck Ui(Yk)+ Ui(Y4) = 0, i = 1, 4 .

For the existence of nonzero solutions with respect to ck, k = 1, 3 of these equations, the rank r of the
system should be less than 4. Let r = 3. Then from the system

3∑
k=1

ck Ui(Yk) = Ui(Y4), i = 1, 4 (6)
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we find ci = ∆i
∆0

, where ∆0 = det ‖Ui(yk)‖3i,k=1 and ∆i is obtained from ∆0 replacing the i-th column
by the column {−U1(Y4), U2(Y4)− U3(Y4)}. The appropriate eigen function is expressed by the formula

Yk(x) = −
3∑
k=1

∆i
∆0

Yi (x, λk) + Y4 (x, λk) . (7)

Let’s construct the resolvent Rαλ of the operator Lαλ : LαλY = f =⇒ Y = Rαλ f . By the method of
variation of constants, from the general solution

Y (x, λ) =

4∑
i=1

ci(x)Yi (x, λ) (8)

we find

c′j(x) =
(−1)jW (Y1...Yj−1Yj+1...Y4)

W (Y1, Y2, Y3, Y4)
f = ωj(x, λ)f, j = 1, 4 (9)

where ωj(x, λ), j = 1, 4 represent the solution of the equation adjoint to LαλY = f and is the ratio of the
cofactor of the j-th element to the last row of the Woronskian determinant from f.s.s. to the Wronskian
determinant itself , these functions are not the elements of the space L2 (0,∞) .

Let us consider the upper half-plane . Integrating (9) for λ from this half-plane we find

cj(x) = c
(0)
j +

x∫
0

ωj(ξ, λ)f(ξ)dξ. (10)

Substituting (8) in (2), with regard to (10) we get

Uν(Y ) =

4∑
i=1

c
(0)
j Uν(Yi) +

4∑
i=1

Uν(Yi)

x∫
0

ωi(ξ, λ)f(ξ)dξ = 0, ν = 1, 4. (11)

Hence

c
(0)
j = −

4∑
k=1

1

A(λ)

x∫
0

∣∣∣∣∣∣∣∣
U1(Y1)...U1(Yj−1)U1(Yk)U1(Yj+1)...U1(Y4)

U2(Y1)...U2(Yj−1)U2(Yk)U2(Yj+1)...U2(Y4)

................................................

U4(Y1)...U4(Yj−1)U4(Yk)U4(Yj+1)...U4(Y4)

∣∣∣∣∣∣∣∣
×ωik(ξ, λ)f(ξ)dξ = −

4∑
k=1

x∫
0

Ajk(λ)

A(λ)
ωk(ξ, λ)f(ξ)dξ =

x∫
0

hj(ξ, λ)f(ξ)dξ,

here

Ajk(λ) =

∣∣∣∣∣∣∣∣
U1(Y1)...U1(Yj−1)U1(Yk)U1(Yj+1)...U1(Y4)

U2(Y1)...U2(Yj−1)U2(Yk)U2(Yj+1)...U2(Y4)

................................................

U4(Y1)...U4(Yj−1)U4(Yk)U4(Yj+1)...U4(Y4)

∣∣∣∣∣∣∣∣ ,

hj(ξ, λ) =

−
4∑
k=1

Ajk(λ)
A(λ)

ωk(ξ, λ), if ξ ≤ x

0 if ξ > x.

Consequently, for the solution Y (x, λ) we get the representation

Y (x, λ) = Rαλf =

x∫
0

K+(x, ξ, λ)f(ξ)dξ, Jmλ ≥ 0 (12)
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where f(x) is any function from the space L2 (0,∞) ,

K+(x, ξ, λ) =

−
4∑
k=1

Yk(x, λ)hk(ξ, λ), if ξ ≤ x

0 if ξ > x.

, Jmλ ≥ 0

Now we consider the half-plane Jmλ ≥ 0. Here Yj (x, λ) ∈ L2 (0,∞) , j = 1, 4, ωj(ξ, λ) ∈ L2 (0,∞) ,

j = 1, 4. Integrating (9) from x to∞, we have

cj(x) = c
(∞)
j +

x∫
0

ωj(ξ, λ)f(ξ)dξ, j = 1, 4. (13)

Taking into account (10) in (8) and from the fact that Y (x, λ) should belong to the space L2 (0,∞) ,

we have c(∞)
j = 0, j = 1, 4. Denoting

K−(x, ξ, λ) =

 −
4∑
k=1

Yj(x, λ)hk(ξ, λ), if ξ ≤ x

0 if ξ > x.

, Jmλ ≥ 0

we get

Y (x, λ) = Rαλf =

x∫
0

K−(x, ξ, λ)f(ξ)dξ, Jmλ ≥ 0. (14)

Having the estimation for Yj (x, λ) , j = 1, 4,we get the kernel of the resolvent operator is the Hilbert-
Schmidt kernel. Thus, we arrive at the following statement.

Theorem 3. For all values of Jmλ ≥ 0 not being the root of the equation A(Y ) = 0 and not lying
on the real axis, the resolvent of the operator Lαλ is an integral operator with a kernel satisfying the
Carleman condition for which at rather large |λ| the estimation O(1) is valid uniformly with respect
to x, λ at each finite interval. Herewith, by approximating of λ to the real axis the norm of the resol-
vent tends to infinity and the domain of definition of the resolvent operator is dense in L2 (0,∞) .If for
λ0 ∈ R(−∞,∞) it holds A(λ0) = 0, then this point is a point of spectral singularity of the operator Lαλ .

Thus, for determining the resolvent set of the bundle Lαλ all four conditions of (2) should be given.
The amount of conditions at the left end depends on how many solutions Yk (x, λ) , k = 1, 4, belong to
L2 (0,∞) .

References

1. Pechentsev A.S.: Asymptotic expansions of solutions of linear differential equations containing a parameter. Diff. uravn.
17, 1611-1620 (1981), Russian.

2. Vagabov A.I.: Quadratic bundles of ordinary differential operators. Matematcheskiye zametki, 42, No3, 381-
393.(Russian)

3. Bogomolova E.P., Pechentsev A.S.: On basis properties of the system of eigen functions of a boundary value problem
with multiple root of characteristic polynomial Vestnik Moskowskogo Universiteta. ser.1, matematica, mekhanika, No4,
17-22 (1989), Russian.

4. Gasymov M.G., Magerramov A.M.: Investigation of a class of even order operator bundles DAN SSSR, 265, No2,
277-280 (1982), Russian.

5. Funtakov V.N.: On expansion in eigen function of an arbitrary order not self-adjoint differential bundle on a semi-axis
[0,∞ .I-II Izvestia AN Azerb. SSR, ser. fizi. matem.i tekhn. nauk, I: No 6, 3-19 (1960), II: No, 3-21 (1961), Russian.

6. Maksudov F.G., Magerramov A.M., Mamedov M.Z.: Spectral analysis of a bundle of special type differential operators.
DAN SSSR, 310, No 1, 24-28 (1990), Russian.

7. Orujov E.G.: Spectral analysis of differential operators with multiple characteristics on a semi-axis. Uspekhi matem-
aticheskikh nauk, 54, No 2(326), 181-182 (1999), Russian.

8. Orujov E.G.: Resolvent and a spectrum of a class of not self-adjoint differential operators with multiple characteristics
Trudy Inst matem. i mech. AN Azerb. VI(XII), 148-160 (1997), Russian.

9. Mirzoyev S.S., Orujov E.G., Aliev A.R.: Spectral analysis of a fourth order differential bundle on the axis. Doklady
RAN, 442, No 3, 312-314 (2012), Russian.

10. Namazova N.M.: On some boundary value problems for a fourth order differential equations with multiple characteristics
Transactions of NAS of Azerbaijan, XXXII, No 4, 79-86 (2012).


