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Abstract. It is well known that potential type integrals play an important role in research of various
problems of the harmonic analysis and have numerous applications in the theory of the partial differ-
ential equations. The present paper studies properties of Riesz potential in terms of local oscillation of
functions.

1. Preliminaries
Let Rn be an n- dimensional Euclidean space of the points x = (x1, x2, ..., xn), B (a, r) :=

{x ∈ Rn : |x− a| ≤ r} is a closed ball in Rn of radius r > 0 with the center at the point a ∈ Rn.
Denote the class of all local p-power summable functions defined on Rn by Lploc (R

n), (1 ≤ p <∞),
the class of all local bounded functions defined on Rn by Lploc (R

n). By Lp (Rn) we mean the usual
Lebesgue space on Rn, and we denote by ∥·∥Lp the corresponding norm, that is

∥f∥p = ∥f∥Lp(Rn) :=

∫
Rn

|f (x)|p dx

 1
p

if 1 ≤ p <∞,

and ∥f∥∞ = ∥f∥L∞(Rn) := ess sup
{
|f (x)| := x ∈ Rn

}
.

Denote by Pk the totality of all polynomials on Rn whose degrees are equal to or less than k.
Let f ∈ Lploc (R

n), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, k ∈ N (N is a set of natural numbers). Define the
following functions

µkf (x; r)p := inf
π∈Pk−1

∥f − π∥Lp(B(x,r)) , r > 0, x ∈ Rn,

µkf (r)pq :=


∥∥∥µkf (·; r)p∥∥∥

Lq(Rn)
if 1 ≤ q <∞

sup
x∈Rn

µkf (x; r)p if q = ∞.

From definitions easily follows, that µk+1
f (x; r)p≤µ

k
f (x; r)p and µk+1

f (r)pq≤µ
k
f (r)pq (x ∈ Rn, r>0).

We can show that if B (x1, r1) ⊂ B (x2, r2) then µkf (x1; r1)p ≤ µkf (x2; r2)p.
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It follows that µkf (r)pq increases monotonically.

Proposition 1. Let f ∈ Lq2loc (R
n), 1 ≤ q1 < q2 ≤ ∞, k ∈ N . Then the following inequality is

true

µkf (x; r)q1 ≤ |B (0, 1)|
1
q1

− 1
q2 · rn

(
1
q1

− 1
q2

)
· µkf (x; r)q2 ,

(
x ∈ Rn, r > 0

)
. (1)

Proof. Let 1 ≤ q1 < q2 ≤ ∞. If we denote q := q2
q1

, 1
q + 1

q′ = 1, then for any polynomial π ∈ Pk−1 we
obtain by using Holder’s inequality

∫
B(x,r)

|f (t)− π (t)|q1 dt ≤

 ∫
B(x,r)

|f (t)− π (t)|q1·q dt


1
q

·

 ∫
B(x,r)

dt


1
q′

= |B (x, r)|
1
q′ ·

 ∫
B(x,r)

|f (t)− π (t)|q2 dt


q1
q2

= |B (0, 1)|
1
q′ · rn·

1
q′

 ∫
B(x,r)

|f (t)− π (t)|q2 dt


q1
q2

.

It follows that  ∫
B(x,r)

|f (t)− π (t)|q1 dt


1
q1

≤ |B (0, 1)|
1

q′·q1 · rn·
1

q′·q1

 ∫
B(x,r)

|f (t)− π (t)|q2 dt


1
q2

.

Since
1

q′ · q1
=

1

q1

(
1− 1

q

)
=

1

q1

(
1− q1

q2

)
=

1

q1
− 1

q2
,

we have  ∫
B(x,r)

|f (t)− π (t)|q1 dt


1
q1

≤ |B (0, 1)|
1
q1

− 1
q2 · rn·

(
1
q1

− 1
q2

)
·

 ∫
B(x,r)

|f (t)− π (t)|q2 dt


1
q2

.

From this it is easy to obtain the inequality (1) in the case 1 ≤ q1 < q2 <∞. The case 1 ≤ q1 < q2 =

∞ is easily verified. The proposition is proved.

Corollary 1. Let f ∈ Lq2loc (R
n), 1 ≤ q1 < q2 ≤ ∞, k ∈ N , 1 ≤ p ≤ ∞.

Then the next inequality holds true

µkf (r)q1p ≤ |B (0, 1)|
1
q1

− 1
q2 · rn·

(
1
q1

− 1
q2

)
µkf (r)q2p , r > 0. (2)
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Let x = (x1, x2, ..., xn) ∈ Rn, v = (v1, v2, ..., vn), vj (i = 1, 2, ..., n) be non-negative integers,
|v| = v1+ v2+ ...+ vn, xv = xv11 ·xv22 · · ·xvnn . Apply the orthogonalization process by the scalar product

(f, g) =
1

|B (0, 1)|

∫
B(0,1)

f (t) g (t) dt

to the system of the power functions {xv}, |v| ≤ k, (k ∈ N ∪ {0}) arranged by partially lexicographic
order1 [1], where|E| is the Lebesque measure of the set E ⊂ Rn. Denote by {φv}, |v| ≤ k the obtained
orthogonal normed system.

Let L1
loc (R

n). Suppose that ([2], [3]):

Pk,B(a,r)f (x) =
∑
|v|≤k

 1

|B (a, r)|

∫
B(a,r)

f (t)φv

(
t− a

r

)
dt

φv

(
x− a

r

)
.

It is obvious that Pk,B(a,r)f is a polynomial degree of which is equal or less than k.
Denote

Ok (f,B (a, r))p :=
∥∥f − Pk−1,B(a,r)f

∥∥
Lp(B(a,r))

for f ∈ Lploc (R
n) (1 ≤ p ≤ ∞). Let us call Ok (f,B (a, r)) local oscillation of k-th order of the function

f on the ball B (a, r) in the metric Lp.
Note that if k = 0 then

Pk,B(a,r)f (x) ≡
1

|B (a, r)|

∫
B(a,r)

f (t) dt =: fB(a,r),

and therefore
O1 (f,B (a, r))1 =

∫
B(a,r)

∣∣f (t)− fB(a,r)

∣∣ dt.
It is known that [4] for each polynomial π ∈ Pk−1 and each ball B (x, r) ⊂ Rn the inequality∥∥f − Pk−1,B(x,r)

∥∥
Lp(B(x,r))

≤ C ∥f − π∥Lp(B(x,r))

is true, where the positive constant C does not depend on p, f , B and π. Hence it follows that
∃C > 0, ∀x ∈ Rn, ∀r > 0:

µkf (x; r)p ≤ Ok (f,B (x, r))p ≤ C · µkf (x; r)p .

It should be mentioned that the theory of spaces defined by local oscillation has been developed by
several authors, for instance F.John and L.Nirenberg [5], S.Campanato [6], N.G.Meyers [7], S.Spanne [8],
J.Peetre [9], D.Sarason [10] etc. (see also [11], [12]).

2. Definition and some properties of spaces Lk,φp,q,θ
Denote by Φ the class of all the positive functions φ (t) monotonically increasing in (0,+∞) such

that φ (+0) = 0.
Let ν is a positive number. We denote by Φν a set of all φ ∈ Φ such that φ (t) · t−ν almost decreases2

on (0,+∞).
Let k ∈ N , 1 ≤ p, q, θ ≤ ∞, φ ∈ Φk+n

p
. We denote by Lk,φp,q,θ the class of all the functions

f ∈ Lploc (R
n) such that ∥f∥

Lk,φp,q,θ
< +∞ where for 1 ≤ θ <∞

∥f∥
Lk,φp,q,θ

:=

 ∞∫
0

(
µkf (t)pq
φ (t)

)θ
dt

t

 1
θ

,

1 It means that xν precedes xµ if either |ν| < |µ|, or |ν| = |µ| but the first nonzero difference νi − µi is negative.
2 A nonnegative function h(t), t ∈ (0,+∞, is said to be almost decreasing when there exists a constant c > 0 such that

h(t1) ≥ ch(t2) is satisfied for every t1, t2 ∈ (0,+∞) with t1 < t2.
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and for θ = ∞

∥f∥
Lk,φp,q,θ

:= sup

{
µkf (t)pq
φ (t)

: t > 0

}
.

If we consider the class Lk,φp,q,θ as a subset in the quotient space Lploc (R
n) /Pk−1, then ∥·∥

Lk,φp,q,θ
is the

norm on Lk,φp,q,θ . We can show that Lk,φp,q,θ with the norm ∥·∥
Lk,φp,q,θ

is a complete normed space.

Theorem 1. Suppose 1 ≤ q1 < q2 ≤ ∞, 1 ≤ p, θ ≤ ∞, φ ∈ Φk+ n
q2

.
Then

Lk,φq2,p,θ ⊂ Lk,Ψq1,p,θ

and
∃c > 0, ∀f ∈ Lk,φq2,p,θ : ∥f∥

Lk,Ψq1,p,θ
≤ c · ∥f∥

Lk,φq2,p,θ
,

where ψ (r) = φ (r) · rn·
(

1
q1

− 1
q2

)
, r > 0.

Proof. If f ∈ Lk,φq2,p,θ, then using inequality (2) in case 1 ≤ θ <∞ we have

∥f∥
Lk,Ψq1,p,θ

=

 ∞∫
0

(
µkf (t)q1p
ψ (t)

)θ
dt

t

 1
θ

≤ |B (0, 1)|
1
q1

− 1
q2 ·

 ∞∫
0

(
µkf (t)q2p
φ (t)

)θ
dt

t

 1
θ

= |B (0, 1)|
1
q1

− 1
q2 · ∥f∥

Lk,φq2,p,θ
.

Analogously we consider the case θ = ∞. The theorem is proved.

Proposition 2. Suppose that 1 ≤ p, q, θ ≤ ∞, φ, ψ ∈ Φk+n
p

and

c > 0, ∀t ∈ (0,+∞) : φ (t) ≤ c · ψ (t) .

Then Lk,φp,q,θ ⊂ Lk,ψp,q,θ and

∃C > 0, ∀f ∈ Lk,φp,q,θ : ∥f∥
Lk,ψp,q,θ

≤ C · ∥f∥
Lk,φp,q,θ

,

that is space Lk,φp,q,θ is continuously embedded in space Lk,ψp,q,θ .

Proof. Let 1 ≤ p, q ≤ ∞, 1 ≤ θ <∞. Then we have

∥f∥
Lk,φp,q,θ

=

 ∞∫
0

(
µkf (t)pq
φ (t)

)θ
dt

t

 1
θ

≥ c−1

 ∞∫
0

(
µkf (t)pq
ψ (t)

)θ
dt

t

 1
θ

= c−1 ∥f∥
Lk,ψp,q,θ

.

The case 1 ≤ p, q ≤ ∞, θ = ∞ is similar. The proposition is proved.

Corollary 2. Let 1 ≤ p, q, θ ≤ ∞, φ, ψ ∈ Φk+n
p

and

∃c1 > 0, c2 > 0, ∀r ∈ (0,+∞) : c1φ (r) ≤ ψ (r) ≤ c2φ (r) .

Then Lk,φp,q,θ = Lk,ψp,q,θ and their norms are equivalent.

From inequality µk+1
f (r)pq ≤ µkf (r)pq (r > 0) it is easy to obtain that Lk,φp,q,θ is continuously em-

bedded in space Lk+1,φ
p,q,θ .
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We denote the set of all the positive functions ψ (δ) monotonically increasing in (0,+∞) by Ψ . If ν
is a positive number, then we denote by Ψν a set of all ψ ∈ Ψ such that ψ (t) · t−ν almost decreases on
(0,+∞).

If ψ ∈ Ψk, k ∈ N , then we will denote by BMOkψ a class of all the functions f ∈ L1
loc (R

n) for
which the following relation

∃C > 0, ∀a ∈ Rn, ∀r > 0:

Ωk (f,B (a, r))1 :=
1

|B (a, r)|

∫
B(a,r)

∣∣f (t)− Pk−1,B(a,r)f (t)
∣∣ dt ≤ Cψ (r)

is valid.
We define the norm on BMOkψ by the equality

∥f∥BMOkψ
:= sup

{
Ωk (f,B (a, r))1

ψ (r)
: r > 0, a ∈ Rn

}
.

In particular, if k = 1, ψ (δ) ≡ 1 then BMOkψ = BMO, where BMO is the space of all local
summable functions of bounded mean oscillation. The class BMO for the first time was introduced in
[5].

It is easy to see that if p = 1, q = ∞, θ = ∞, φ (δ) = δnψ (δ) then Lk,φp,q,θ = BMOkψ and their norms
are equivalent.

Consider also a class VMO which was introduced in [10]: VMO is the class of all f ∈ BMO for
which the relation

lim
r→0

sup
a∈Rn

1

|B (a, r)|

∫
B(a,r)

∣∣f (t)− fB(a,r)

∣∣ dt = 0

is valid. For f ∈ VMO we define ∥f∥VMO := ∥f∥BMO .
For f ∈ L1

loc (R
n), k ∈ N we assume that

Mk
f (δ) = sup

0<r≤δ
x∈Rn

1

|B (x, r)|

∫
B(x,r)

∣∣f (t)− Pk−1,B(x,r)f (t)
∣∣ dt, δ > 0.

Let ψ ∈ Ψk, k ∈ N . By VMOkψ we denote the class of all functions f ∈ BMOkψ , for which
Mk
f (δ) = o (ψ (δ)), δ → 0. In class VMOkψ we introduce the norm by the equality

∥f∥VMOkψ
:= ∥f∥BMOkψ

.

In the case of k = 1, ψ (δ) ≡ 1 equality VMOkψ = VMO holds true.

3. Operator Rα,kf in spaces defined by conditions on local oscillations of functions
Consider the following potential type integral operator

Rα,kf (x) =

∫
Rn

Kα (x− y)−

 ∑
|ν|≤k−1

xν

ν!
DνKα (−y)

X{|t|>1} (y)

 f (y) dy,

where Kα (x) = |x|α−n, 0 < α < n, ν = (ν1, ν2, ..., νn), νi (i = 1, 2, ..., n) are non-negative integers
xν = xν11 · xν22 · · · xνnn , ν! = ν1! · ν2! · · · νn!, |ν| = ν1 + ν2 + ...+ νn, k ∈ N ,

Dνg :=
∂|ν|g

∂xν11 ∂x
ν2
2 · · · ∂xνnn

,

X{|t|>1} is the characteristic function of the set {t ∈ Rn : |t| > 1}.
Operator Rα,kf is certain modification of the Riesz potential

Iαf (x) =

∫
Rn

f (y)

|x− y|n−α
dy.
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It should be noted that if f ∈ Lp (Rn) and 1 ≤ p < n
α , then the integral Rα,kf differs from integral

Iαf by a polynomial power of which is equal or less than k − 1. If p ≥ n
α , then the potential Iαf no

defined for all functions f ∈ Lp (Rn).
Moreover, for example, if 1 ≤ p ≤ ∞ and k + n

p > α, then for f ∈ Lp (Rn) integral Rα,kf (x)
absolutely converges almost everywhere.

Note that modified Riesz potential similar to the Rα,kf was considered, for example, in T.Kurokawa
[13], T.Shimomura and Y.Mizuta [14] etc. (see also [15]).

The following assertion holds.

Theorem 2 [16]. Let f ∈ Lploc (R
n), 1 ≤ p ≤ ∞, k, l ∈ N , k ≥ [α] + l ([α] designates the entire

part of number α), 0 < α < n, x ∈ Rn and

∞∫
1

t−k−
n
p+α−1 · µlf (x; t)p dt < +∞.

Then the inequality

µk
f
(x; δ)p ≤ C · δk+

n
p

∞∫
δ

t−k−
n
p+α−1µlf (x; t)p dt, δ > 0, (3)

is valid, where f := Rα,kf , and the constant C > 0 is independent of f , δ and x.

Theorem 3. Let f ∈ Lploc (R
n), 1 ≤ p, q ≤ ∞, 0 < α < n, k, l ∈ N , k ≥ [α] + l and

∞∫
1

t−k−
n
p+α−1 · µlf (t)pq dt < +∞.

Then the inequality

µk
f
(δ)pq ≤ C · δk+

n
p

∞∫
δ

t−k−
n
p+α−1µlf (t)pq dt, δ > 0, (4)

is valid, where f := Rα,kf , and the constant C > 0 is independent of f and δ.

By virtue of this theorem we prove the following theorem on the action of the operator f 7→ Rα,kf

in spaces Lk,φp,q,θ .

Theorem 4. Let 1 ≤ p, q, θ ≤ ∞, l ∈ N , 0 < α < n, k ≥ [α] + l, φ ∈ Φl+n
p

, φ1 (δ) = δαφ (δ),
(δ > 0) and

δk+
n
p−α

∞∫
δ

t−k−
n
p+α−1φ (t) dt = O (φ (δ)) (δ > 0) .

If f ∈ Ll,φp,q,θ , then Rα,kf ∈ Lk,φ1

p,q,θ and it holds the inequality∥∥Rα,kf∥∥Lk,φ1
p,q,θ

≤ C ∥f∥
Ll,φp,q,θ

,

where the constant C > 0 is independent of f .

Corollary 3 [4]. Let 0 < α < n, l ∈ N , k ≥ [α] + l, ψ ∈ Ψl and

δk−α
∞∫
δ

t−k+α−1ψ (t) dt = O (ψ (δ)) . (5)
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Then f 7→ Rα,kf is a bounded operator fromBMOlψ intoBMOkψ1
, whereψ1 (δ) = δαψ (δ), (δ > 0).

Since the function ψ (δ) ≡ 1 satisfies the condition (5), we obtain the following assertion.

Corollary 4. Let 0 < α < n, k = [α] + l. Then f 7→ Rα,kf is a bounded operator from space BMO into
the space BMOkψ1

, where ψ1 (δ) = δα (δ > 0).

Lemma 1. Let φ,ψ ∈ Ψ , µ > 0, φ ∈ Zµ i.e.

δµ
∞∫
δ

φ (t)

tµ+1
dt = O (φ (δ)) , δ > 0,

and let ψ (δ) = o (φ (δ)), δ → 0, ψ (δ) = O (φ (δ)), δ > 0. Then

δµ
∞∫
δ

ψ (t)

tµ+1
dt = o (φ (δ)) , δ → 0.

Proof. If φ ∈ Zµ, then there is a number β ∈ (0, µ) such that φ(t)
tβ

is almost decreasing, i.e.

∃c > 0, ∀t1, t2 ∈ (0,+∞) :

(
t1 < t2 ⇒ φ (t2)

tβ2

≤ c · φ (t1)

tβ1

)
.

If ψ (r) = o (φ (r)), r → 0, and ψ (r) = O (φ (r)), r > 0, then there is a bounded function α (t) ≥ 0

such that lim
t→0

α (t) = 0 and for r ∈ (0, 1] holds the equality

ψ (r) = α (r) · φ (r) .

We introduce the function

α (r) =

{
sup

0<t≤r
α (t) , if r ∈ (0, 1] ,

c0 = ∥α∥L∞(0,+∞) , if r > 1.

Then ψ (r) ≤ α (r) ·φ (r), r ∈ (0,+∞), α (r) is monotonically increasing on (0,+∞) and lim
r→0

α (r) = 0.

Considering it, further we have

δµ
∞∫
δ

ψ (t)

tµ+1
dt ≤ δµ

∞∫
δ

α (t) · φ (t)

tµ+1
dt

= δµ
∞∫
δ

α (t)

tµ−β+1
· φ (t)

tβ
dt ≤ c · φ (δ)

δβ
· δµ

∞∫
δ

α (t)

tµ−β+1
dt = c · φ (δ) · δµ−β ·

∞∫
δ

α (t)

tµ−β+1
dt. (6)

We show that if ν > 0, then

J (δ) = δν
∞∫
δ

α (t)

tν+1
dt = o (1) , δ → 0.

Let 0 < δ ≤ 1. Then we have

J (δ) = δν
∞∫
δ

α (t)

tν+1
dt = δν

√
δ∫
δ

α (t)

tν+1
dt+ δν

1∫
√
δ

α (t)

tν+1
dt+ δν

∞∫
1

α (t)

tν+1
dt
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≤ α
(√

δ
)
· δν

∞∫
δ

1

tν+1
dt+

(√
δ
)ν

· α (1) ·
(√

δ
)ν

·
∞∫
√
δ

1

tν+1
dt+ c0 · δν

∞∫
1

1

tν+1
dt.

All terms on the right side of this inequality tend to zero when δ → 0. It follows that lim
δ→0

J (δ) = 0.

Therefore, due to the relation (6) we have

δµ
∞∫
δ

ψ (t)

tµ+1
dt = o (φ (δ)) , δ → 0.

Theorem 5. Let 0 < α < n, k ≥ [α]+ l, k, l ∈ N , φ ∈ Zk−α. Then the operator f = Rα,kf is a bounded
map from VMOlφ to VMOkφ1

, where φ1 (δ) = δα · φ (δ), δ ∈ (0,+∞).

Proof. From Theorem 2 we receive the following estimate in terms of characteristics Mk
f (δ):

M
k

f
(δ) ≤ c · δk

∞∫
δ

M l
f (t)

tk−α+1
dt, δ > 0. (7)

If f ∈ VMOkφ, then from estimate (7) it follows that

M
k

f
(δ) ≤ c · δk

∞∫
δ

∥f∥VMOlφ
· φ (t)

tk−α+1
dt ≤ c · ∥f∥VMOlφ

· δα · δk−α
∞∫
δ

φ (t)

tk−α+1

≤ c1 · ∥f∥VMOlφ
· δα · φ (δ) = c1 · ∥f∥VMOlφ

· φ1 (δ) , δ > 0.

Hence we have ∥∥f∥∥
BMOkφ1

= sup
δ>0

M k
f (δ)

φ1 (δ)
≤ c · ∥f∥VMOlφ

. (8)

It is necessary to show, that f ∈ VMOkφ1
.

Let 0 < δ ≤ 1. Then from inequality (7) we obtain

M
k

f
(δ) ≤ c · δα · δk−α

∞∫
δ

M l
f (t)

tk−α+1
dt, δ > 0. (9)

Since M l
f (r) = o (φ (r)), r → 0, M l

f (r) = O (φ (r)), r > 0, and φ ∈ Zk−α, then from the lemma 1 we
obtain that

δk−α
∞∫
δ

M l
f (t)

tk−α+1
dt = o (φ (δ)) , δ → 0.

Then from (9) it follows that M k
f (δ) = o (δα · φ (δ)) , δ → 0.

Corollary 5. Let 0 < α < n, k = [α] + 1. If f ∈ VMO, then f = Rα,kf ∈ VMOkψ1
, where ψ1 (δ) = δα

(δ > 0).
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