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Abstract. In this paper we prove the Sobolev-Morrey typeMp(·),ω(·)(Ω)→Mq(·),ω(·)(Ω)-theorem for
the commutator of potential operators [b, Iα(·)], also of variable order. Also prove the Mp(·),ω(·)(Ω)
boundedness commutator of singular integral operators [b, T ].
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1 Introduction

We consider the variable exponent Morrey spaces Lp(·),λ(·)(Ω) over an open set Ω ⊆ Rn, introduced
in [2]. In [2] there was proved the boundedness in Lp(·),λ(·)(Ω) of the maximal operator and a Sobolev
type Lp(·),λ(·)(Ω) → Lq(·),λ(·)(Ω)-theorem for the potential operator Iα(·) of variable order, under the
assumptions inf

x∈Ω
α(x) > 0, sup

x∈Ω
[λ(x) + α(x)p(x)] < n, under the log-condition on p(·) and λ(·). In the

case of constant α, for potential operators there was also proved the boundedness theorem Lp(·),λ(·) →
BMO in the limiting case p(x) =

n−λ(x)
α . The corresponding results for the case where p, λ and α are

constant, these results are well known, see for instance [18], [35]. In the recent paper [23] there was
proved the boundedness of the maximal operator and the singular integral operator in variable exponent
Morrey spaces in the setting of homogeneous spaces.

Last decade there was a real boom in investigation of variable exponent Lebesgue spaces Lp(·)(Ω)
and the corresponding Sobolev spaces Wm

p(·)(Ω), we refer to surveys [9], [22], [38] on the progress in this
field, including topics of Harmonic Analysis and Operator Theory.

For mapping properties of singular integrals operators and commutator of singular integral operators
on Lebesgue spaces with variable exponent we refer to [8], [27], [28], [33] and [38].
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In this paper, within the frameworks of variable Morrey spaces Lp(·),λ(·)(Ω) over bounded sets Ω ⊆
Rn, we continue the study of the Hardy-Littlewood maximal operator

Mf(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)|dy,

the potential type operator

Iα(x)f(x) =

∫
Ω

|x− y|α(x)−nf(y)dy, 0 < α(x) < n,

and the fractional maximal operator

Mα(x)f(x) = sup
r>0
|B(x, r)|

α(x)
n −1

∫
B̃(x,r)

|f(y)|dy, 0 < α(x) < n

of variable order α(x) and Calderon-Zygmund type singular operator

Tf(x) =

∫
Ω

K(x, y)f(y)dy

where K(x, y) is a ”standard singular kernel”, that is, a continuous function defined on {(x, y) ∈ Ω×Ω :
x 6= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C |y − z|σ

|x− y|n+σ , σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C |x− ξ|σ

|x− y|n+σ , σ > 0, if |x− y| > 2|x− ξ|.

Under the log-conditions, we prove the Lp(·)(Ω,ω) → Lq(·)(Ω,ω)-boundedness of commutators of
potential operators. and the Lp(·),λ(·)(Ω)-boundedness of singular integral operators and their commuta-
tors.

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate quanti-
ties. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

N o t a t i o n :
Rn is the n-dimensional Euclidean space,
Ω ⊆ Rn is an open set, ` = diam Ω;
χE(x) is a characteristic function of a set E ⊆ Rn;
B(x, t) = {y ∈ Rn : |x− y| < t}, B̃(x, t) = B(x, t) ∩Ω;
by c and C we denote various absolute positive constants, which may have different values even in the
same line.

2 Preliminaries on variable exponent Lebesgue spaces

Let p(·) be a measurable function on Ω with values in [1,∞). We assume that

1 < p− ≤ p(x) ≤ p+ <∞, (2.1)

where we use the standard notation

p− := ess inf
x∈Ω

p(x) > 1, p+ := ess sup
x∈Ω

p(x) <∞. (2.2)

By Lp(·)(Ω) we denote the space of all measurable functions f(x) on Ω such that

Ip(·)(f) =

∫
Ω

|f(x)|p(x)dx <∞.
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Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. As is known, the following inequalities hold

‖f‖p+
p(·) ≤ Ip(f) ≤ ‖f‖

p−
p(·), if ‖f‖p(·) ≤ 1, (2.3)

‖f‖p−
p(·) ≤ Ip(f) ≤ ‖f‖

p+
p(·), if ‖f‖p(·) ≥ 1 (2.4)

from which there follows that

c1 ≤ ‖f‖p(·) ≤ c2 =⇒ c3 ≤ Ip(f) ≤ c4 (2.5)

and
C1 ≤ Ip(f) ≤ C2 =⇒ C3 ≤ ‖f‖p(·) ≤ C4 (2.6)

with c3 = min{cp−1 , c
p+
1 }, c4 = max{cp−2 , c

p+
2 }, C3 = min{Cp−1 , C

p+
1 }, C4 = max{Cp−2 , C

p+
2 }.

By p′(·) =
p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate exponent. The Hölder inequality is valid in the

form ∫
Ω

|f(x)||g(x)|dx ≤
(

1

p−
+

1

p′−

)
‖f‖p(·)‖g‖p′(·). (2.7)

For the basics of variable exponent Lebesgue spaces we refer to [41], [33].

Definition 2.1 By P log(Ω) (weak Lipshitz) we denote the class of functions defined on Ω satisfying the
log-condition

|p(x)− p(y)| ≤ C

− ln |x− y| , |x− y| ≤
1

2
, x, y ∈ Ω, (2.8)

where C = C(p) > 0 does not depend on x, y.

We treat p(x) as a function on Rn by the unique infinite point. To manage with the weighted case under
the consideration, we introduce an assumption on p(x) at infinity stronger than the usually considered
assumption

|p(x)− p(∞)| ≤ C

ln(e+ |x|) , x ∈ Rn, (2.9)

where p(∞) := lim
x→∞

p(x).

The space Lp(·) coincides with the space{
f(x) :

∣∣∣∣∫
Ω

f(y)g(y)dy

∣∣∣∣ <∞ for all g ∈ Lp
′(·)(Ω)

}
(2.10)

up to the equivalence of the norms

‖f‖Lp(·) ≈ sup
‖g‖

Lp
′(·)≤1

∣∣∣∣∫
Ω

f(y)g(y)dy

∣∣∣∣ (2.11)

see [33], Theorem 2.3 or [39], Theorem 3.5.
The Lp(·)-boundedness of the Hardy-Littlewood maximal operator was proved by L. Diening [7]

under conditions (2.1)-(2.8).
By ϕ we always denote a weight, i.e. a locally integrable function with range Ω. The weighted

Lebesgue space Lp(·),ϕ(Ω) is defined as the set of all measurable functions for which

‖f‖Lp(·),ϕ(Ω) = inf

{
η > 0 :

∫
Ω

(
|f(x)|
η

)p(x)
ϕ(x)dx ≤ 1

}
.

Let us define the class Ap(·)(Ω) (see [9], [34]) to consist of those weights ϕ for which

sup
B
|B|−1‖ϕ

1
p(·) ‖

Lp(·)(B̃(x,r))
‖ϕ−

1
p(·) ‖

Lp′(·)(B̃(x,r))
<∞.

The following theorem for bounded sets Ω, but for variable α(x), was proved in [37] under the con-
dition that the maximal operator is bounded in Lp(·)(Ω), which became an unconditional result after the
result of Diening [7] on maximal operators.
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Theorem 2.1 Let Ω ⊂ Rn be bounded, p, α ∈ P log(Ω) satisfy assumption (2.1) and the conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n. (2.12)

Then the operator Iα(·) is bounded from Lp(·)(Ω) to Lq(·)(Ω) with

1

q(x)
=

1

p(x)
− α(x)

n
. (2.13)

2.1 Variable exponent Morrey spaces

We find it convenient to define the generalized Morrey spaces in the form as follows.
Definition 2.2 Let ω(x, r) be a non-negative measurable function on Ω × (0, `) and 1 ≤ p < ∞. The
generalized Morrey spaceMp(·),ω(Ω) is defined by the norm

‖f‖Mp(·),ω = sup
x∈Ω,0<r<`

r
− n
p(x)

ω(x, r)
‖f‖

Lp(·)(B̃(x,r))
.

According to this definition, we recover the spaceMp(·),λ(·)(Ω) under the choice ω(x, r) = r
λ(x)−n
p(x) :

Mp(·),λ(·)(Ω) =Mp(·),ω(·)(Ω)

∣∣∣∣∣
ω(x,r)=r

λ(x)−n
p(x)

.

Everywhere in the sequel we assume that

inf
x∈Ω,0<r<`

ω(x, r) > 0 (2.14)

which makes the space Mp(·),ω(Ω) nontrivial. Note that when p is constant, in the case of w(x, r) ≡
const > 0, we have the space L∞(Ω).

In [13] the following three theorems were proved.

Theorem 2.2 [13] Let Ω ⊂ Rn be bounded, p ∈ P log(Ω) satisfy assumption (2.1) and the functions
ω1(x, r) and ω2(x, r) satisfy the condition

∫ `

r

ω1(x, t)
dt

t
≤ C ω2(x, r), (2.15)

whereC does not depend on x and t. Then the operatorsM and T are bounded from the spaceMp(·),ω1(·)(Ω)

the spaceMp(·),ω2(·)(Ω).

Theorem 2.3 [13] Let Ω ⊂ Rn be bounded, p, q ∈ P log(Ω) satisfy assumption (2.1), α(x), q(x) satisfy
the conditions in (2.12), (2.13) and the functions ω1(x, r) and ω2(x, r) fulfill the condition

∫ `

r

tα(x)ω1(x, t)
dt

t
≤ C ω2(x, r), (2.16)

whereC does not depend on x and r. Then the operatorsMα(·) and Iα(·) are bounded fromMp(·),ω1(·)(Ω)

toMq(·),ω2(·)(Ω).
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Theorem 2.4 [13] Let Ω ⊂ Rn be bounded, p ∈ P log(Ω) satisfy assumption (2.1), α(x) fulfill the
conditions in (2.12) and let ω(x, t) satisfy condition (2.15) and the conditions

ω(x, r) ≤ C

r

α(x)

1− p(x)
q(x)

, (2.17)

∫ `

r

tα(x)−1 ω(x, t)dt ≤ Cω(x, r)
p(x)
q(x) , (2.18)

where q(x) > p(x) and C does not depend on x ∈ Ω and r ∈ (0, `]. Suppose also that for almost every
x ∈ Ω, the function w(x, r) fulfills the condition

there exist an a = a(x) > 0 such that ω(x, ·) : [0, `]→ [a,∞) is surjective.

Then the operators Mα(·) and Iα(·) are bounded fromMp(·),ω(·)(Ω) toMq(·),ωq(·)/p(·)(·)(Ω).

Remark 2.1 Note that in the case p(x) = const the Theorems 2.2 and 2.3 was proved in [11], [12] and
Theorem 2.4 in [12].

Let M ] be the sharp maximal function defined by

M ]f(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy,

where f
B̃(x,t)

= |B̃(x, t)|−1
∫
B̃(x,t)

f(z)dz.

3 Commutators of the potential operators

Theorem 3.1 LetΩ ⊂ Rn be bounded, p ∈ P log(Ω) satisfy assumption (2.1), inf
x∈Ω

α(x) > 0 and let there

exists a positive constant C such that

ω(x, r) ≤ Cr−α(x), r > 0. (3.1)

Then the operators Mα(·) is bounded fromMp(·),ω(·)(Ω) to L∞(Ω).

Proof. Let x ∈ Ω and r > 0. By the Hölder inequality we get successively

rα(x)−n
∫
B̃(x,r)

|f(y)|dµ(y)

= rα(x)−nω(x, r)ω−1(x, r)

∫
B̃(x,r)

|f(y)|dµ(y)

≤ Crα(x)−
n

p′(x)ω(x, r)r
− n
p(x)ω−1(x, r)‖f‖Lp(·)(B(x,r))‖χB̃(x,r)

‖Lp′ (·)

≤ Crα(x)ω(x, r)‖f‖Mp(·),ω(·) ≤ C‖f‖Mp(·),ω(·)

Then
‖Mα(·)f‖L∞(Ω) ≤ C‖f‖Mp(·),ω(·)(Ω).

Theorem 3.2 Let p ∈ P log(Ω) satisfy assumption (2.1) and let ω(x, t) satisfy condition (3.1). Then the
operator Iα is bounded fromMp(·),ω(·)(Ω) to BMO(Ω).

Proof. Let Ω ⊂ Rn be bounded, f ∈Mp(·),ω(·)(Ω). In [1] was proved

M ](Iαf)(x) ≤ CMαf(x), (3.2)

where C > 0 is independent of x ∈ Ω.
The proof Theorem 3.2, by the Theorem 3.1 and inequality (3.2).
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Now we consider the commutators

[b, Iα(x)]f(x) =

∫
Ω

[b(x)− b(y)]f(y)|x− y|α(x)−ndy.

The following statement holds:

Lemma 3.1 [10] Let b ∈ BMO(Ω), 1 < s <∞. Then

M ]([b, Iα(·)]f(x)) ≤ C‖b‖BMO

[(
M |Iα(·)f(x)|s

) 1
s
+
(
Msα(·)|f(x)|s

) 1
s

]
,

where C > 0 is independed of f and x.

Proposition A.(see [8], Lemma 3.5) Let p ∈ P log(Rn) satisfy the conditions (2.1), (2.9). Then for all
f ∈ Lp(·)(Rn) and g ∈ Lp

′(·)(Rn) there holds∣∣∣∣∫
Rn
f(y)g(y)dy

∣∣∣∣ ≤ C ∣∣∣∣∫
Rn
M ]f(y)Mg(y)dy

∣∣∣∣
with a constant C > 0 not depending on f .

Theorem 3.3 [19] Let p ∈ P log(Rn) satisfy the conditions (2.1), (2.9), thenM is bounded fromLp(·),ϕ(Rn)
to Lp(·),ϕ(Rn) if and only if ϕ ∈ Ap(·)(Rn).

The following lemma is valid.

Lemma 3.2 Let Ω be bounded and p ∈ P log(Ω) satisfy assumption (2.1), ϕ ∈ Ap(·)(Ω). Then

‖fϕ
1
p(·) ‖Lp(·)(Ω) ≤ C‖ϕ

1
p(·)M ]f‖Lp(·)(Ω)

with a constant C > 0 not depending on f .

Proof. By (2.11) we have

‖fϕ
1
p(·) ‖Lp(·)(Ω) ≤ C sup

‖g‖
Lp
′(·)(Ω)

≤1

∣∣∣∣∫
Ω

f(y)g(y)ϕ
1

p(y) (y)dy

∣∣∣∣ .
According to Proposition A,

‖fϕ
1
p(·) ‖Lp(·)(Ω) ≤ C sup

‖g‖
Lp
′(·)(Ω)

≤1

∣∣∣∣∫
Ω

M ]f(y)M(gϕ
1
p(·) )(y)dy

∣∣∣∣ .
By the Hölder inequality and Theorem 3.3, we derive

‖fϕ
1
p(·) ‖Lp(·)(Ω) ≤ C sup

‖g‖
Lp
′(·)(Ω)

≤1
‖ϕ

1
p(·)M ]f‖Lp(·)(Ω)‖ϕ

− 1
p(·)M(gϕ

1
p(·) )‖Lp′(·)(Ω)

≤ C sup
‖g‖

Lp
′(·)(Ω)

≤1
‖ϕ

1
p(·)M ]f‖Lp(·)(Ω)‖g‖Lp′(·)(Ω) ≤ C‖ϕ

1
p(·)M ]f‖Lp(·)(Ω).

Lemma 3.3 Let Ω be bounded and p ∈ P log(Ω) satisfy assumption (2.1), ω(x, r) be a non-negative
measurable function. Then the following inequality holds

‖f‖Mp(·),ω(·) ≤ C
∥∥∥M ]f

∥∥∥
Mp(·),ω(·)

.

where C > 0 is independent of x ∈ Ω.



J.J. Hasanov, S.S. Aliyev and Y.Y. Guliyev 81

Proof. If 0 < θ < 1, ϕ(x) = (Mχ
B̃(x,r)

)θ ∈ Ap(·)(Ω), by the Lemma 3.2 we have

‖f‖
Lp(·)(B̃(x,r))

≤ ‖fϕ
1
p(·) ‖Lp(·)(Ω) ≤ C‖ϕ

1
p(·)M ]f‖Lp(·)(Ω) ≤ C‖M

]f‖
Lp(·)(B̃(x,r))

.

Thus

‖f‖Mp(·),ω(·) = sup
x∈Ω,r>0

r
− n
p(x)

ω(x, r)
‖f‖

Lp(·)(B̃(x,t))

≤ C sup
x∈Ω,r>0

r
− n
p(x)

ω(x, r)
‖M ]f‖

Lp(·)(B̃(x,t))
= C‖M ]f‖Mp(·),ω(·) .

The Lemma has been proved.

Theorem 3.4 Let Ω be bounded, p ∈ P log(Ω) satisfy assumption (2.1), α(x) fulfill the conditions in
(2.12) and let ω(x, t) satisfy condition (2.16). Then the operator [b, Iα(·)] is bounded fromMp(·),ω(·)(Ω)

toMq(·),ω(·)(Ω), where b ∈ BMO(Ω).

Proof. Let f ∈Mp(·),ω(·)(Ω) and b ∈ BMO(Ω). By the Lemma 3.3, we have

‖[b, Iα(·)]f‖Mq(·),ω(·) ≤ C1‖M ]([b, Iα(·)]f)‖Mq(·),ω(·) .

From Lemma 3.1, we have

‖M ]([b, Iα(·)]f)‖Mq(·),ω(·) ≤ C2‖b‖BMO

∥∥∥∥(M |Iα(·)f |s) 1
s
+
(
Mα(·)s|f |s

) 1
s

∥∥∥∥
Mq(·),ω(·)

≤ C3‖b‖BMO

[∥∥∥∥(M |Iα(·)f |s) 1
s

∥∥∥∥
Mq(·),ω(·)

+

∥∥∥∥(Mα(·)s|f |s
) 1
s

∥∥∥∥
Mq(·),ω(·)

]
.

By the Theorem 2.2 and Theorem 2.3 (in the case ω1 = ω2), we have

∥∥∥∥(M |Iα(·)f |s) 1
s

∥∥∥∥
Mq(·),ω(·)

=
∥∥∥M |Iα(·)f |s∥∥∥ 1

s

M
q(·)
s
,ω(·)

≤ C
∥∥∥|Iα(·)f |s∥∥∥ 1

s

M
q(·)
s
,ω(·) = C

∥∥∥Iα(·)f∥∥∥
Mq(·),ω(·)

≤ C ‖f‖Mp(·),ω(·) .

Similar we can proved

∥∥∥∥(Mα(·)s|f |s
) 1
s

∥∥∥∥
Mq(·),ω(·)

≤ C ‖f‖Mp(·),ω(·) .

Therefore

‖[b, Iα(·)]f‖Mq(·),ω(·) ≤ C2‖b‖BMO ‖f‖Mp(·),ω(·) .

The theorem has been proved.
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4 Commutators of the singular integral operators

The following statement holds:
Proposition B. [3] Let T be a Calderon-Zygmund operator. Then for arbitrary s: 0 < s < 1, there

exists a constant Cs > 0 such that

[(|Tf |s)]]
1
s (x) ≤ CsMf(x)

for all f ∈ C∞0 (Rn) and for all x ∈ Rn.

Lemma 4.1 [10] Let 1 < s < ∞, b ∈ BMO(Rn), then there exists C > 0 such that for all x ∈ Rn, the
following inequality holds

M ]([b, T ]f)(x) ≤ C‖b‖BMO

((
M |Tf |s

) 1
s (x) +

(
M |f |s

) 1
s (x)

)
.

Theorem 4.1 [21] Let p ∈ WL(Rn) under conditions (2.1), (2.9), then the operator [b, T ] is bounded
from Lp(·)(Rn) to Lp(·)(Rn), where b ∈ BMO(Rn).

The following Theorem is valid.

Theorem 4.2 Let Ω ⊂ Rn be bounded, p ∈ P log(Ω) satisfy condition (2.1) and ω(x, t) fulfill condition
(2.15). Then the operator [b, T ] is bounded fromMp(·),ω(·)(Ω) toMp(·),ω(·)(Ω), where b ∈ BMO(Ω).

Proof. Let f ∈Mp(·),ω(·)(Ω) and b ∈ BMO(Ω). By the Lemma 3.3, we have

‖[b, T ]f‖Mp(·),ω(·) ≤ C1‖M ]([b, T ]f)‖Mp(·),ω(·) .

From Lemma 4.1, we get

‖M ]([b, T ]f)‖Mp(·),ω(·) ≤ C2‖b‖BMO

∥∥∥(M |Tf |s) 1
s +

(
M |f |s

) 1
s

∥∥∥
Mp(·),ω(·)

≤ C3‖b‖BMO

[∥∥∥(M |Tf |s) 1
s

∥∥∥
Mp(·),ω(·)

+
∥∥∥(M |f |s) 1

s

∥∥∥
Mp(·),ω(·)

]
.

Then by the Theorem 2.2, we have∥∥∥(M |Tf |s) 1
s

∥∥∥
Mp(·),ω(·)

=
∥∥M |Tf |s∥∥ 1

s

M
p(·)
s
,ω(·)
≤ C

∥∥|Tf |s∥∥ 1
s

M
p(·)
s
,ω(·)

= C ‖Tf‖Mp(·),ω(·) ≤ C‖f‖Mp(·),ω(·) .

Therefore

‖[b, T ]f‖Mp(·),ω(·) ≤ C1‖b‖BMO‖f‖Mp(·),ω(·) .

The theorem has been proved.
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35. Kufner, A., John, O., Fuçik, S.: Function Spaces. Noordhoff International Publishing: Leyden, Publishing House

Czechoslovak Academy of Sciences: Prague (1977).
36. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43, 126-166

(1938).
37. Samko, S.: Convolution and potential type operators in the space Lp(x). Integr. Transform. and Special Funct., 7 (3-4),

261-284 (1998).
38. Samko, S.: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,

Integr. Transf. and Spec. Funct, 16 (5-6), 461-482 (2005).
39. Samko, S.G.: Differentiation and integration of variable order and the spaces Lp(x). Proceed. of Intern. Conference

Operator Theory and Complex and Hypercomplex Analysis, 1217 December (1994), Mexico City, Mexico, Contemp.
Math., 212, 203-219 (1998).

40. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press,
Princeton, NJ (1993).

41. Sharapudinov, I.I.:The topology of the space Lp(t)([0, 1]). Mat. Zametki 26 (3-4), 613–632 (1979).
42. Xu, Jing-shi: The boundedness of multilinear commutators of singular integrals of Lebesgue spaces with variable expo-

nent. Czech. Math. J., 57 (132), 13 -27 (2007).


