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Abstract. In this paper we prove the boundedness of the p(x)-admissible sublinear singular operators
on generalized Morrey spaces Mp(·),ω(Rn) with variable exponent.
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1 Introduction

Nowadays there is an evident increase of investigations, last two decades related to both
the theory of variable exponent function spaces and operator theory in these spaces. We
refer for instance to the surveying papers [2], [4], [19], [22], on the progress in this field,
including topics of Harmonic Analysis and Operator Theory, see also references therein.
Variable exponent Morrey spaces Lp(·),λ(·), were introduced and studied in [1] in the Eu-
clidean setting. In [1] the boundedness of the maximal operator was proved in variable
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exponent Morrey spaces Lp(·),λ(·) under the log-condition on p(·) and λ(·), and for poten-
tial operators a Sobolev type Lp(·),λ(·) → Lq(·),λ(·)- theorem was proved under the same
log-condition in the case of bounded sets. Hästö in [18] used his new ”local-to-global” ap-
proach to extend the result of [1] on the maximal operator to the case of the whole space
Rn.

The generalized variable exponent Morrey spaces were introduced and studied in [12]
in the case of bounded sets. In [12] the boundedness of the maximal operator, potential op-
erators and singular integral operators in variable exponent Morrey spaces under the certain
conditions were proved.

The paper is organized as follows. In Section 2 we provide necessary preliminaries on
the topics. In Section 3 we give the main results in Theorems 3.1 and 3.2. We find the condi-
tion on the function ω(x, r) for the boundedness of the p(x)-admissible sublinear singular
operators T in generalized Morrey space Mp(·),ω(Rn) with variable exponent under the
log-condition on p(·).

2 Preliminaries

We recall the definition of the variable exponent Lebesgue spaces Lp(·)(Rn): Let p(·) be
a measurable function on Rn with values in [1,∞). We mainly suppose that

1 < p− ≤ p(x) ≤ p+ < ∞,

where p− := ess inf
x∈Rn

p(x) > 1, p+ := ess sup
x∈Rn

p(x) < ∞. We denote by Lp(·)(Rn) the

space of all measurable functions f(x) on Rn such that

Ip(·)(f) =

∫
Rn

|f(x)|p(x)dx < ∞.

Equipped with the norm

∥f∥p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

Lp(·)(Rn) is a Banach function space. For the basics on variable exponent Lebesgue spaces
we refer to [19], [26].

The generalized variable exponent Morrey spaces is defined as follows.

Definition 2.1 Let ω(x, r) be a non-negative measurable function on Rn × (0,∞) and
1 ≤ p < ∞. The generalized variable exponent Morrey spaces Mp(·),ω(Rn) is defined by
the norm

∥f∥Mp(·),ω = sup
x∈Rn,r>0

1

ω(x, r)
∥f∥Lp(·)(B(x,r)).

According to this definition, we recover the space Lp(·),λ(·)(Rn) under the choice ω(x, r) =

r
λ(x)
p(x) :

Lp(·),λ(·)(Rn) = Mp(·),ω(·)(Rn)

∣∣∣∣∣
ω(x,r)=r

λ(x)
p(x)

.
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Everywhere in the sequel we assume that

inf
x∈Rn,r>0

ω(x, r) > 0

which makes the space Mp(·),ω(Rn) nontrivial. Note that when p is constant, in the case of
ω(x, r) = r

n
p , we have the space L∞(Rn).

Within the frameworks of the spaces Mp(·),ω(Rn), we consider the Hardy-Littlewood
maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

and the Calderon-Zygmund singular operator

Tf(x) =

∫
Rn

K(x, y)f(y)dy,

where K(x, y) is a ”standard singular kernel”, that is, a continuous function defined on
{(x, y) ∈ Rn × Rn : x ̸= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x ̸= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit sphere in Rn equipped with the Lebesgue
measure dσ. Suppose that Ω satisfies the following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(tx) = Ω(x), for any t > 0, x ∈ Rn \ {0}.

(b) Ω has mean zero on Sn−1, that is,∫
Sn−1

Ω(x′)dσ(x′) = 0.

(c) Ω ∈ Lipγ(S
n−1), 0 < γ ≤ 1, that is, there exists a constant C > 0 such that,

|Ω(x′)−Ω(y′)| ≤ C|x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [24] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =

(∫ ∞

0
|FΩ,t(f)(x)|2

dt

t3

)1/2

,

where

FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.

The continuity of Marcinkiewicz operator µΩ has been extensively studied in [20], [25] and
[27]. Recall that if T is a sublinear operator, then |T (f + g)| ≤ |Tf |+ |Tg|.
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Definition 2.2 (p(x)-admissible singular operator). A sublinear operator T will be called
p(x)-admissible singular operator, if:

1) T satisfies the size condition of the form

χ
B(x,r)

(z)
∣∣∣T(fχRn\B(x,2r)

)
(z)

∣∣∣ ≤ Cχ
B(x,r)

(z)

∫
Rn\B(x,2r)

|f(y)|
|y − z|n

dy (2.1)

for x ∈ Rn and r > 0;
2) T is bounded in Lp(·)(Rn).

Let P(Rn) be the set of bounded measurable functions p : Rn → [1,∞) and P log(Rn)

be the set of exponents p ∈ P(Rn) satisfying the local log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
x, y ∈ Rn, (2.2)

|p(x)− p(∞)| ≤ A∞
ln(2 + |x|)

, x ∈ Rn, (2.3)

where A = A(p) > 0 does not depend on x, y and p∞ = lim
x→∞

p(x) > 1.

Further, let Plog
∞ (Rn) be the set of exponents p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞

satisfying the conditions (2.2) and (2.3).

We will also make use of the estimate provided by the following lemma ( see [5], Corol-
lary 4.5.9).

∥χB(x,r)(·)∥p(·) ≤ Crθp(x,r), x ∈ Rn, p ∈ Plog
∞ (Rn), (2.4)

where θp(x, r) =

{
n

p(x) , if r ≤ 1,
n

p(∞) , if r ≥ 1.

Theorem A. ([3], [4]) Let p ∈ Plog
∞ (Rn). Then the maximal operator M is bounded in

Lp(·)(Rn).

Theorem B. ([6]) Let p ∈ Plog
∞ (Rn). Then the singular integral operator T is bounded

in Lp(·)(Rn).

We will use the following statement on the boundedness of the weighted Hardy operator

H∗
wg(t) :=

∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
Theorem C. ([9]) Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside

a neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t) (2.5)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ)
< ∞.

Moreover, the value C = B is the best constant for (2.5).
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3 p(x)-admissible sublinear singular operators in the spaces Mp(·),ω(·)(Rn)

Everywhere in the sequel the functions ω(x, r), ω1(x, r) and ω2(x, r) used in the body
of the paper, are non-negative measurable function on Rn × (0,∞).

Theorem 3.1 Let p ∈ Plog
∞ (Rn) and f ∈ Lp(·)(B(x, r)) for every r ∈ (0,∞). Then for the

p(x)-admissible singular integral operator T the following inequality is valid

∥Tf∥Lp(·)(B(x,t)) ≤ Ctθp(x,t)
∫ ∞

t
r−θp(x,r)−1∥f∥Lp(·)(B(x,r))dr, (3.1)

where C does not depend on f and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χRn\B(x,t)(y) f2(y) = f(y)χB(x,t)(y)

and have
∥Tf∥Lp(·)(B(x,t)) ≤ ∥Tf1∥Lp(·)(B(x,t)) + ∥Tf2∥Lp(·)(B(x,t)).

Since f1 ∈ Lp(·)(Rn), Tf1 ∈ Lp(·)(Rn) and from the boundedness of T from Lp(·)(Rn)

to Lp(·)(Rn) it follows that:

∥Tf1∥Lp(·)(B(x,t)) ≤ ∥Tf1∥Lp(·)(Rn) ≤ C∥f1∥Lp(·)(Rn),

so that
∥Tf1∥Lp(·)(B(x,t)) ≤ C∥f∥Lp(·)(B(x,2t)).

Taking into account the inequality

∥f∥Lp(·)(B(x,t)) ≤ Ctθp(x,t)
∫ ∞

2t
r−θp(x,r)−1∥f∥Lp(·)(B(x,r))dr,

we get

∥Tf1∥Lp(·)(B(x,t)) ≤ Ctθp(x,t)
∫ ∞

2t
r−θp(x,r)−1∥f∥Lp(·)(B(x,r))dr. (3.2)

To estimate ∥Tf2∥Lp(·)(B(x,t)), by the equation (2.1) we have

|Tf2(z)| ≤ C

∫
Rn\B(x,2t)

|f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x−z| ≤ t, |z−y| ≥ 2t imply 1
2 |z−y| ≤ |x−y| ≤

3
2 |z − y|, and therefore

∥Tf2∥Lp(·)(B(x,t)) ≤ C

∫
Ω\B(x,2t)

|x− y|−n|f(y)|dy∥χB(x,t)∥Lp(·)(Rn).

Hence by estimate (2.4), we get

∥Tf2∥Lp(·)(B(x,t)) ≤ Ctθp(x,t)
∫ ∞

2t
r−θp(x,r)−1∥f∥Lp(·)(B(x,r))dr. (3.3)

From (3.2) and (3.3) we arrive at (3.1).
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Corollary 3.1 [14] Let p ∈ Plog
∞ (Rn) and for every r ∈ (0,∞), f ∈ Lp(·)(B(x, r)).

Then for the maximal operator M , singular integral operator T and Marcinkiewicz integral
operator µΩ the inequality (3.1) are valid.

Theorem 3.2 Let p ∈ Plog
∞ (Rn) and ω1(x, t) and ω2(x, t) fulfill condition∫ ∞

r
t−θp(x,t) ess inf

t<s<∞
ω1(x, s)

dt

t
≤ c1 r

−θp(x,r)ω2(x, r). (3.4)

Then a p(x)-admissible singular integral operator T is bounded from the space Mp(·),ω1(Rn)

to the space Mp(·),ω2(Rn).

Proof. Let f ∈ Mp(·),ω1(Rn) we have

∥Tf∥Mp(·),ω2 (Rn) = sup
t>0

t−θp(x,t)

ω2(x, t)
∥TfχB(x,t)∥Lp(·)(Rn),

we estimate ∥TfχB(x,t)∥Lp(·)(Rn) by means of Theorems C and 3.1, we obtain

∥Tf∥Mp(·),ω2 (Rn) ≤ C sup
t>0

1

ω2(x, t)

∫ ∞

t
r−θp(x,r)−1∥f∥Lp(·)(B(x,r))dr

≤ C sup
t>0

t−θp(x,t)

ω1(x, t)
∥f∥Lp(·)(B(x,t))

= C∥f∥Mp(·),ω1 (Rn).

Corollary 3.2 [14] Let p ∈ Plog
∞ (Rn) and ω1(x, t) and ω2(x, t) fulfill condition∫ ∞

r
t−θp(x,t) ess inf

t<s<∞
ω1(x, s)

dt

t
≤ c1 r

−θp(x,r)ω2(x, r).

Then the maximal operator M , singular integral operator T and Marcinkiewicz integral
operator µΩ are bounded from the space Mp(·),ω1(Rn) to the space Mp(·),ω2(Rn).

The following Corollary is new.

Corollary 3.3 Let p ∈ Plog
∞ (Rn) and 0 ≤ λ− ≤ λ+ < n. Then the p(x)-admissible

sublinear singular operator T is bounded from Lp(·),λ(·)(Rn) to Lp(·),λ(·)(Rn).

Note that the case of the constant exponent p in Theorems 3.1 and 3.2 were proved in
[10] (see also [11]).

Acknowledgements The authors would like to express their gratitude to the referee for
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