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Abstract. In this work we consider the initial-boundary value problem for one fourth order semilinear
hyperbolic equation with memory operator. We prove the existence of a bounded absorbing set for this
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1 Introduction

The equations with memory operator, especially the equations with hysteresis have
a great importance among the nonlinear partial differential equations. Hysteresis relations
appear in friction, ferromagnetism, superconductivity. The research of solutions of partial
differential equations with hysteresis nonlinearities is a nontrivial problem. The equations,
when hysteresis operator is under the operator of differentiation with respect to the time
variable, have special difficulties.

From a practical point of view, the research of an asymptotic behavior of the dynamic
system which is originated by the corresponding initial-boundary value problem, have a
special significance. Such problems were researched, for example, in [10].

In this work the initial-boundary value problem for one semilinear fourth order hyper-
bolic equation with memory operator is considered and the existence of a bounded absorb-
ing set for this problem is proved.
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2 Problem statement. Basic results

Let 2 € RY (N > 1) be a bounded, connected set with a smooth boundary I". We
consider the following problem:

2
%—i—%[u+F(u)]+A2u+|u|pu:hinQ:Qx(O,T), 2.1
u=0, Au=0, (z,t) € I x[0,T], (2.2)
[w+ F ()] |,mg = u® + 0, % )t:o =u in £, 2.3)

where p > 0 and nonlinear operator F acts from M (£2; C° ([0,T7)) to M (£2;C° ([0, T7)).
Here M (£2;C° ([0, T7)) is a space of measurable functions, which act from §2 to C° ([0, T7).
We assume that the operator F' is a memory operator, which is applied at each point x €
{2 independently, that is the output [F'(u (z,))] (¢) depends on u (x,-)[j 4, but not on
u (y, ‘)|[o,t] for any y # x (see [10]).

We assume that, it holds the following conditions for operator F:

if for arbitrary vy, vy € M (£2;C°([0,T])) and for arbitrary ¢ € [0, 7] 2.4)

v =wvg in [0,t], then [F(v1)](:,t) =[F (v2)](-,t) ae. in (2 ’
if v, € M (£2;C°([0,T])) and v, — v uniformly, 25)
then F (v,) — F(v) uniformly in [0,7] , a.e. in §2; '

there exist L > 0, g € L?(£2) such that , for arbitrary v € M (£2;C° ([0,T]))
IF )] (@Yl eoqon < Lo @ Mlosqor +9 (), ae. in 2;
(2.6)
if ve M (£2;C°([0,T])) and for arbitrary [t1,t2] C [0, 7]
v(z,-) is affine in [t1,t2], ae. in £2,
then {[F (v)](x,t2) — [F (v)] (z,t1)} [v(x,t2) —v(x,t1)] >0, ae. in 2,
2.7)
there exists 0 < Ly < 1 such that, for arbitrary v € M (£2;C°([0,7])) and for
Y [t1,t2] C [0,T], ifv(x,-) is affine in [t;,t2] ae. in §2, then
| [F (v)] (z,t2) — [F (v)] (z,t1) |< Li|v(x,ta) —v(x,t1)| ae. in 2.

(2.8)
As an example we can represent the Bouc operator (see [10] or [2] ).
Let V = HZ (2)( L2 (£2). We assume that
u® eV, w® e L2 (2),uV e L2(0), (2.9)
h e L*(0). (2.10)

Definition 2.1 A function w € L*(0,T;V)(H* (0, T; L*(£2)) is said to be a solution of
problem (2.1)-(2.3) if F (u) € L? (Q) and

/Q{—g?;-g?— [u—}—F(u)]th)—i—Au-Av—i—WWuv} dxdt
= / hvdzdt + / {u(o) (z) + w® (z) + u(l)(az)} v (z,0)dz,
Q %)

foreveryv € L (0,T; V) H' (0,T; L*(£2)) (v (-,T) =0 a.e. in 12).
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Well posedness of problem (2.1)-(2.3) without F’ (u), was studied by different authors (see,
for example [9]). The corresponding problem for the parabolic equation without nonlinear
term |u|” u and with Au was studied in [10]. Analogous problems were investigated in
[31-[6].

In this work, we study the existence of a bounded absorbing set for problem (2.1)-(2.3).
It is proved (see [4]) the theorem about the existence and uniqueness of solutions of problem
(2.1)-(2.3) under conditions (2.4)-(2.10),

< — > .
p_N_Q,N_B, (2.11)
and for Vu,v € M (2, W1 (0,T))
0 [F(u) = F(v)] < L a (u—w) (2.12)
ot = ot ' '

By the condition (2.11): V = HZ (2) (N LP™2 () = HE (2). We set E = HE (2) x
L? (£2) x L?(£2). Since under the conditions (2.4)-(2.12), the problem (2.1)-(2.3) has a
unique solution, by well-known scheme (see, for example [1]) we can prove that the prob-
lem (2.1)-(2.3) generates the semigroup {S (¢)},~, in E by the formula:

S () (u®, u®,w®) = (u,u,w),

where u is a unique solution of this problem.
We introduce the following functional

1. 5 1 ) 1 T 1.
2, (5) = 3 lall*+ 5 12wl w4 (12 1) 4 |G a) + 5l (Pl D) |
where y = (u, F'(u),q) , n is some positive constant. We denote by ||-|| and (-, -) the
norm and scalar product in L2 (£2) .

We divide [0, 7] by points ¢, = nk, n = 0,1,...,m into m parts and introduce the
following notations:

() R €S S B OB D)

(Y 0o _,,0
=), wm—w(),um s Upy

up () =u(z,nk), n=2,..,m,
wpy (x) = [F (um)] (x,nk), n=1,...,m, ae. in §2,
where

Um (x,-) = linear time interpolate of u (x, nk) forn =1,...,m a.e. in (2.
We define wy, (z, -) similarly. Setting

u
noo__ n n m m _ .
P = Pp (um,wm,k> ,mn=1,...m, ae. in §2,

consider the problem
n n—1 n—2 n n—1
Uy, — Uy, +up, Uy, — U

k2 k

n—1
MM A% 4 W P u, =hinV, n=1,..,m, (2.13)
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Jul = u® + ku), u,l = u® — gV, (2.14)
and functional

n—

112
B = 3B A% 7 = () + 2 (a2 ) +

p+2
(2.15)

n _,n—1
| (s S ) 4 e+ (i, )]
Lemma 2.1 Assume that (2.4)-(2.12) hold and let u]', (x) be a solution of problem (2.13)-

(2.14). Then there exists a natural number m 1 such that, for arbitrary m > my it holds
the following inequality

" _@nfl
STy s < Con=1,2,.m, (2.16)

where C' is a positive constant independent of m .

Proof. By (2.13), (2.15) we have

Do = o 1w
k 2k k k ’ k k
+i (Au” — Au™ Au? + Au"_l) — l (h ul — u”_l) + ;

n n—1 n—1 n—2
n |p+2 n—1|p+2 n n Um = Uy n-1 Um = — Unp
X (’um’ - ‘um ‘ 1)+ % U, L —\Um

1 n _ ,,n—1
5 (i — g ) + (wm — 1)]
_1 <um 2w gt - uw)
2 k2 ’ k k k
1/ Au — Ayt _
+5 <mkm, 2Aupy, — Ault + Augy 1)

o W W 1 it 5 (A
’ k p+2 k ’

_ ul, — 2ul 42 oyl — ot
k2 ’ k
1 (ul, —2un=t =2yt — 2"t 2
2 k2 ’ k
n
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_ 2
p o\ 1 (P ot = 2t
- 9 k +p +9 Lk ’ +77 U ]{72
(e u —anY  C— u
7 E k 2
n

’ , 2up, —u’,ﬁl%—u”_l)

m

—2un e gy — u”m_1>
k2 ’ k

+ (A (“7’}1 _k”T’T) , Al B = B

~ 513 |um, — 2um 4

m

n—21|2 1 n n—1|[2
w2 - [ Au, - 2wz

b (e
m» L2 L » Ym
+77< R Vi VLA i _u%—u%fl +u”,,jl—u% 2)
k ’ k k k
n 9 wh —1
—%Huz—ufnlﬂ —I—n( o k m ,1>
un_un12 wn_wnlu _un—l 1 1 o2
1 n —11|2 wy, _wnil n 2 2
g, - P (MRS ) Al - ()
_1112 _ _ _
n _ ,,n—1
—ﬁ(\u%—um}ﬁn(wm — ,1>. @.17)
Let
6<n (2.18)
Then by (2.7), (2.8) we obtain from (2.17):
P _QS’”—l u — 1
nm nm _
k +(5@Zm = — ||

1
m
o = 2 = L, — s

o w%_wnl no_ 1) Au™ 2 np+21 h. u™
U o Um 1 | Awg, |7 =7 ( | + 1 (h,uyy,)
112 _ _ _
) up, — up ! T up — up gy — 2upt 4w _luun_un—l‘f

k k ' k 2k ™ m
§llur, —unt)® 6 )

b AW 112 —

g B S g

5 (hyu™)

r'm
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n _ un—l

o (a4 a4 o ) < ()

1 n _ -~
+(*% + 27:2) l|up, — 2w+ ?|” +

477 677L n 12 d n 12 0 n |p+2
(24 Y Bl + o+ D IAGIE + (- S (2.1)

2 2

u™ _un—l 577 9 577 u™ _un—l
i R L e

m

k

m

ny N
= 8) (hy ) + -

on o1 o7
S+ Sl + (204 5 ) 1P

n n—12
U — Uy

o nlw 1 @)
2 k

< (-1 -+
< (Cldnt g+ =+ 5

nk—1
2k3

+ Hu%—Zu”m_leu"m_QH2+(<zm+> chH—n+

v(n—6)cg, 2 ny2 J n |p+2
TG oney) 1A + (n ) (1)
n—29 2 5j 2 §
+, |RI” + 5 lgll” + <2+ 5 nmes{2. (2.19)

We choose the numbers 1, 7, §, v such that, it holds the following inequalities ( we add
them inequality (18)):

J L 0
“l+n+5+552+3+5 <0,
nk—1<0,n—6>0,

dn oL\ §  v(n—9d)ch 2
— 4+ — -+~ LS <0
<V0+ 9 cH 77+2+ 5 +oncy <0,
4]
—-n+ —— <0.
n P2 =
After elementary transformations in last inequalities we have:
vy > 20?27
< mi 2 1
mm-<s§ ———,
K 3+ Ly kJ
2-n(3+L 4an (v — 2¢
5<m1n 7, 77( i 11/0)7 277(0 Q) 2 )
n+1 Luvgncyg, + 2nvy (1 + 27709)

n (4vo + (8 + 6Lwy)c?, — 26vy — Andrycy,)
2(n—10)
Thus from (2.19) we obtain that, for arbitrary m > m; it holds the inequality

i =08, 19 01 5
% + 69y, < 50 |h]|” + ?HgH2 + <2 + 2) nmesf2, n=1,2,...m,
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where m; = % k1 = %
Let ||h]|> < m and ||g||2 < 7. Then
@n _ Ppn— 1
%+(5@n <C7n:1,2,...,m

on _
where C' = ”Tfm + ?nm + (24 $) nmes2.

Lemma 2.1 is proved.

Now we consider the existence of a bounded absorbing set for problem (2.1)-(2.3).
Note that, a bounded set By C F is said to be absorbing, if for arbitrary bounded set
B C E, there exists t1 (B) such that S (t) B C By for all t > t1 (B) (see. [7]).

Theorem 2.1 Problem (2.1)-(2.3) has a bounded absorbing set By C E when the condi-
tions (2.4)-(2.12) hold.

Proof. Let
b= |{y=wrw.oerioe= 1)

where [M] denotes a closure of set M.
1. We prove at first that a set By is bounded.

_le 1 2 1 p+2 LT
¢n<y>—2uqn +2HAuII <h,u>+p+2(1u\ ) | () + 5

1 1 n 2
- A — — A 1 ( p+2 7 1) _
> 5 lall + 5 14l = 5 1B = Sl + — (ju 5 lul
771/2 1 2, 1 2
lal* + 7 llull® = 5 (1 = n2) +5HAuH
1 p+2
wy (o= L)l = o IBIP +— (P 1) @20

We choose v, 15 such that.

1—nre >0, —V1—Q+77>0,
V2

that is
1 1
l<wy<—, m<nll-—].
n )
Let
1
ngmin{l—nyg; —1/1—17—1—77}.
2 1)
Then by (2.20) we have

1 1
2 2 2 2 2 _
@, () 2 vs (Jlall® + 1Al + ul?) = 510 > s [l — 5,-m*

whence we obtain that,

1 m2 1 2C m?2

2
< —9 < — . —
Iyl < Vs n () + s = s 0 ST
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that is By is bounded.

2. Now we prove that By is absorbing. We put an arbitrary bounded set B C E: B =
{yeE: |lylg < x} Lety® = (u(o), w®), u(l)) € B. We have to find ¢ (B) = t1 (x)
such that, y = S (t)y° or (u, F(u),us) = S (t) (u(o), w®, u(l)) belongs to set By for
arbitrary t > t1 (). Since u is a solution of problem (2.1)-(2.3) with initial data ", then
it holds inequality (2.16) for solution w, () = w (z,nk) of problem (2.13)-(2.14), by

multiplying which by €’ ™*, we have

Pn _@nfl
nm p nm eénk_i_é@:;meénk < C€5nk
or
n ,onk n—1,0(n—1)k n—1,0(n—1)k n—1_0nk
Dyt — Dy e (n=1) Drne (n—1) B Dy €
k k k

+88L,, < el

or
Qggmednk _ an_@led (n—1)k - ¢n—1566nk — S (n=1)k
k nm ok

+OPP R < Ced Rednm R, (2.21)

It is evident that
onk _ e(i(nfl)k

ok

_ (&
eé(n Nk _

+a(k),
where a (k) — 0 ask — 0.
By last relation we have from inequality (2.21):

P Snk _ pn—1,0 (n—1)k
nm knm 445 <¢Zme(5nk o @n_led (n—l)k) +da (k) @77717;1

nm

dnk _ 6(n—-1)k
< Sk e e
< Ce ( 5k + a (k)

or
n onk n—1_,0(n—1)k
Dpme L (n—1)
k
onk _ e5(n71)k

ok

(1+ 6k) + da (k) ot

§C’e‘5ke +Ceka k),

whence we obtain that,
C C — o1
onk -1 _6(n—1)k onk d(n—1)k nm
oy, Ok — gnled (1) <= (e nk _ g (n=1) )+71+5k ka (k).

We sum the last inequality forn = 1, ..., [ for arbitrary [ € {1,...,m } . Then we have

ka (k) «
1_‘_5]{7;1(0_5@77771 )’

C
@i}meélk g0 < = (eélk _ 1) i

whence
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Since ||y°|| ; < x. it is evident that, &0, < ¢(x), where ¢(x) is a positive constant
which depends on x. Therefore from the last inequality we have

l
o< §+ <C(X) ¢ ) e Otk (2.22)
‘We choose [ such that
l
C | ka(k) n—1 o1k C
_ — _ < .
<c(x) ; +1+6k;(c oo ))e <= (2.23)
or
C\ _sin_C
— <
(c00-5) C o)
Since C' = ”2— , then we choose v such that,
C
- =<
c(x) 5 =0
that is _
moon
< -——1).
Y= (x) (5 >

Then (2.23) holds for arbitrary [ € {1,...,m } . Therefore from (2.22), (2.23) we obtain
that,

2C
@iim < 5 for arbitrary [ € {1,....,m } ,

that is
1flal, —ul=t)? 1 2 1 p+2
I l l
O = g || gt = () + g (™)
l -1
— 1 2 2C
(st ") g ] < 5 @29

for arbitrary € {1,....m }.

Let

Um (2, t) =up (), if (n—1)k<t<nk, n=1,2,....m; ai. in {2,

m

and define 0,,, similarly. Then from (2.24) we have

8um 2 1 . p+2
2’(% *HAUmH —(h 7um)+m(|um’ 71)
_ Oup 1 20
o | T )+ M| < % .25

Since as m — oo

Um — u weakly star in H' (0,T; L* (2)) (L™ (0,T; Hy (£2)) ,
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iy, — u weakly star in L (0, T Hj (£2))

then passing to the limit in inequality (2.25), when m — oo, we have

2

1 2 1 p+2 ou 1 2 2C
— _ _ s _ <
g 1l = () o (Jul2,1) [(u +5 lul?| <

1o
2 || Ot
or

Dy (u, F(u),us) <

s

that is
y € By.

Theorem 2.1 is proved.
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