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Abstract. In the considered article we investigate the structure of real algebraic sets, i. e. sets which are
defined by the system of algebraic equations with real coefficients. In the paper one made a new approach
for this purpose. Our considerations based on the methods of mathematical analysis.
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1 Introduction

The structure of the real algebraic varieties is important, up to the end not studied question
of Algebra and Analysis. Many problems of Mathematical Analysis lead to the study of such
varieties ([3-7]). The case delivers many difficulties for the methods of modern algebraic
geometry ([10-12]). These difficulties are two types. First of them consisted in the fact that
the field of real numbers is not algebraically closed. The second one is more substantive and
consisted in the use of Zarisskiy topology (see [11]).

Mentioned above difficulties we overcome by consideration of differential calculus in
the Banach algebras. We will consider the field of complex numbers as a Banach algebra
R × R in which the norm defined as a modulus of a complex number. For us at first it is
necessarily to show that the differentiation over complex pares is agreed with the differen-
tiation over real parameters. Note that the addition and multiplication of pairs is defined by
a standard way:(
ξ′, η′

)
+

(
ξ′′, η′′

)
=

(
ξ′ + ξ′′, η′ + η′′

)
,
(
ξ′, η′

)
·
(
ξ′′, η′′

)
=

(
ξ′ξ′′ − η′η′′, ξ′η′′ + ξ′′η′

)
.

The norm is defined as ∥(ξ, η)∥ =
√

ξ2 + η2. Let λ = (ξ, η), µ = (σ, ω). Then, we have:

d(λµ)

dλ
= lim

h→0

(λ+ h)µ− λµ

h
= µ.
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d(λµ)

dξ
=

∂(ξσ − ηω, ξω + ησ)

∂ξ
= (σ, ω) = µ.

It is obvious that
d(λµ)

dξ
=

d(λµ)

dλ

dλ

dξ
= µ · (1, 0) = µ.

From the formulas (3.1) now it is clear that at the calculation of derivatives real and complex
variables are equal in rights.

In the present article the solution of this problem in a sufficient generality is given by
attraction of methods of the mathematical analysis ([13, p. 80]).

2 Preliminary results

In [13, p. 80] it was shown that the algebraic equation

zn − a1z
n−1 + a2z

n−2 + · · ·+ (−1)nan = 0

with complex coefficients in every domain of change of a vector ā = (a1, ..., an) in which
the discriminant of the equation is non-zero defines roots as smooth functions of coeffi-
cients. A real analogue of this statement takes place. For proving our main results we need
some preliminary results from Algebra and Analysis. We bring them as auxiliary lemmas.

Lemma 2.1 Let the function f(x) be continuous on the segment [a, b] and differentiable on
(a, b). Then there exist a point c ∈ (a, b) for which f(a)− f(b) = f ′(c)(a− b).

This theorem is known as a theorem of Lagrange on finite increments and its proof can
be found in [1,9].

The following theorem is an easy consequence of the lemma 2.1.

Lemma 2.2 Let the function f(x) be differentiable on (a, b) and its derivateve be bounded
on this interval |f ′(c)| ≤ m when c ∈ (a, b). Then there exist the limits lim

x→a
f(x) and

lim
x→b

f(x).

The following lemma is known as a theorem on implicit functions. We use the formula-
tion of this result as in [3, p. 68].

Lemma 2.3 Let a function z = Φ(x, y) : (E ⊂ X)× (F ⊂ Y ) → Z mapping a neighbor-
hood W = {(x, y) : |x− a| < r, |y − b| < ρ} of the point {a, b}, a ∈ E ⊂ X, b ∈ F ⊂ Y

from the direct product of normed spaces X, Y into the normed space Z be given. Let
Φ(a, b) = 0 and the operator ∂Φ(x,y)

∂y (of the partial derivative through the space Y ) ex-
ists, is continuous and invertible in indicated neighborhood W . Then there exist a ball
Uδ = {x ∈ E :, y) : |x− a| ≤ δ ≤ r} and a function y = f(x) : E → F , defined and
continuous in the ball Uδ such that b = f(a) and Φ(x, f(x)) ≡ 0 for all x ∈ Uδ. The re-
quired function y = f(x) is unique in the sence: if there exist two functions f1(x) and f2(x)

satisfying the indicated above conditions, and defined correspondingly on neighborhoods
Uδ1 and Uδ2of the point a then in the intersection U = Uδ1

∩
Uδ2 they are coincident.
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3 Basic results

Theorem 3.1 Let we are given with an algebraic equation

zn − a1z
n−1 + a2z

n−2 + · · ·+ (−1)nan = 0,

with real coefficients and discriminant ∆(ā). Then in every one-connected domain D ⊂
{ā ∈ Rn|∆(ā) ̸= 0} where the discriminant of the equation differs from zero and there
exists a0 ∈ D such that the considered algebraic equation has s(1 ≤ s ≤ n) real roots
the given equation uniquely defines exactly s real smooth implicit functions of coefficients
satisfying this equation.

Proof. The proof of the theorem based on a method used in [13, p. 80] applied to algebraic
equations with real coefficients. We will prove it in the form: under theorem’s conditions
the given algebraic equation defines n = s + 2r number of such real smooth functions of
coefficients that the first s from them will be roots of the given equation.

Suppose that the given equation at some ā0 ∈ D has real roots λ0
1, ..., λ

0
s , s ≥ 0. Under

the basic theorem of algebra it has in addition r (r ≥ 0) complex roots ξ01 ± iη01, ..., ξ
0
r ± η0r

so that n = s+ 2r. Nonsider Viet formulas

a1 = λ1 + λ2 + · · ·+ λn,

a1 = λ1λ2 + λ2λ3 + · · ·+ λn−1λn, (3.1)

· · · · · · · · ·

an = λ1λ2 · · ·λn,

where λs+2j−1 = ξj+ iηj , λs+2j = ξj− iηj ; j = 1, ..., r. On the given roots these formulas
uniquely define the point ā = (a1, ..., an) ∈ Rn. Conversely, each point ā = (a1, ..., an) ∈
Rn on which the discriminant of the equation is distinct from zero (i.e. roots are distinct in
pairs) defines the roots uniquely (not counting their order). Hence, if to allocate small area
around some root λ̄ = (λ1, ..., λs, ξ1, η1, ..., ξr, ηr), correspondence will be one to one.
Following the work specified above, we should establish that the formulas (3.1) define in
some neighborhood of the point ā0 one to one mapping

(a1, ..., an) ↔ λ̄ = (λ1, ..., λs, ξ1, η1, ..., ξr, ηr)

with nonzero Jacobean
∂ (a1, ..., an)

∂ (λ1, ..., λs, ξ1, ..., ηr)
.

(at the point ā0 we put λ̄ = λ̄0 =
(
λ0
1, ..., λ

0
s, ξ

0
1 , η

0
1, ..., ξ

0
r , η

0
r

)
). Thus, the equalities (3.1)

we consider as a mapping of the normed space Rs × R2r to real space Rn considering the
complex number ξ + iη as a pare(ξ, η), and we will use the lemma 2.3.

Let’s apply now a method of a mathematical induction. At n = 1 the theorem is true.
Let it is fair for all polynomials of degree ≤ n − 1. Consider now the case of polynomials
of degree n.
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Let’s separately consider case s = 0 when everywhere in D the equation has not real
roots. But there are complex roots ξ01 ± iη01, ..., ξ

0
r ± iη0r . By an induction we will prove that

in some neighborhood of the point λ̄0 =
(
ξ01 , η

0
1, ..., ξ

0
r , η

0
r

)
we have:

∂ (a1, ..., an)

∂ (ξ1, ..., ηr)
̸= 0.

For r = 2 this statement is known from an elementary course of algebra. Let our state-
ment be fair for polynomials of even degree 2r − 2. From the Viet formulas we derive:

a1 = λ1 + λ2 + c1,

a2 = λ1λ2 + (λ1 + λ2)c1 + c2,

a3 = λ1λ2c1 + (λ1 + λ2)c2 + c3,

· · · · · · · · ·

an−1 = λ1λ2cn−3 + (λ1 + λ2)cn−2,

an = λ1λ2cn−2,

Where real numbers c1, ..., cn−2 are defined by equalities:

c1 = λ3 + · · ·+ λn,

c2 = λ3λ4 + · · ·+ λn−1λn,

· · · · · · · · ·

cn−2 = λ3 · · ·λn.

We have:

∂ (a1, ..., an)

∂ (ξ1, ..., ηr)
=

∂ (a1, ..., an)

∂ (λ1, λ2, c1, ..., cn−2)

∂ (λ1, λ2)

∂ (ξ1, η1)
· ∂ (λ1, λ2, c1, ..., cn−2)

∂ (λ1, λ2, ξ3, ..., ηr)
.

Due to the inductive assumption

∂ (λ1, λ2, c1, ..., cn−2)

∂ (λ1, λ2, ξ3, ..., ηr)
=

∂ (c1, ..., cn−2)

∂ (ξ3, ..., ηr)
̸= 0,

and the first Jacobean on the right part we will write in as follows

∂ (a1, ..., an)

∂ (λ1, λ2, c1, ..., cn−2)
=

∂ (a1, ..., an)

∂ (λ1, b1, b2, ..., bn−1)
· ∂ (λ1, b1, b2, ..., bn−1)

∂ (λ1, λ2, c1, ..., cn−2)
,

where complex numbers b1, b2, ..., bn−1 are already defined by equalities (*) below. The
first determinant is equal

λn−1
1 − b1λ

n−2
1 + · · ·+ (−1)n−1bn−1,

and the second looks like

λn−2
2 − c1λ

n−3
2 + · · ·+ (−1)n−2cn−2.
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As roots are in pairs different, both determinants on the right part are distinct from

zero. Clearly, that ∂(λ1,λ2)
∂(ξ1,η1)

=

∣∣∣∣1 1

1 −1

∣∣∣∣ ̸= 0. So, we have shown, that ∂(a1,...,an)
∂(ξ1,...,ηr)

̸= 0. Then

the vector ā0 ∈ D with real components defines, under the lemma 2.3, n = 2r complex
functions of a kind ξ1 + iη1, ..., ξr + iηr. Owing to a continuity, probably increasing of
a number of real roots during continuous variation of a real vector ā0 ∈ D occurs only
when some of functions η = η1, ..., ηr continuously varying vanishes in some real point ā0.
Then, in the considered point we get a multiple zero ξ = ξ ± iη that contradicts theorem’s
condition. Hence, the given equation has no real roots at all real ā0 ∈ D. Thus, consideration
of the case s = 0 is finished.

Let’s consider now a case when there is at least one real root. By lemma’s condition, at
some ā0 ∈ D the equation has real rootsλ0

1, ..., λ
0
s, thus, s ≥ 1, and in addition r (r ≥ 0)

complex roots ξ01 ± iη01, ..., ξ
0
: ±η0r . Define numbers b01 = λ0

2+ · · ·+λ0
n, b02 = λ0

2λ
0
3+ · · ·+

λ0
n−1λ

0
n,. . . , b0n−1 = λ0

2 · · ·λ0
n. These numbers are real, because their complex conjugate

leads to permuting of numbers on the right side. As the polynomials standing on the right
part are symmetric then they do not change. Hence, the numbers λ0

2, ..., λ
0
n are roots of the

polynomial
zn−1 − b01z

n−2 + b02z
n−3 − · · ·+ (−1)n−1b0n−1 = 0,

with real coefficients. All of these roots are different, i.e. the discriminant of last equation is
distinct from zero. It remains unchanged in some neighborhood of the point (b01, ..., b

0
n−1).

In this neighborhood we will consider the system:

b1 = λ2 + · · ·+ λn,

b2 = λ2λ3 + · · ·+ λn−1λn, (∗)
· · · · · · · · ·

bn−1 = λ2 · · ·λn.

Under the inductive assumption, the following determinant is distinct from zero in some
neighborhood of the point (b01, ..., b

0
n−1):

∂ (b1, ..., bn−1)

∂ (λ2, ..., ηr)
̸= 0.

We have [3, p. 82]:
a1 = λ1 + b1,

a2 = λ1b1 + b2,

· · · · · · · · · (3.2)

an = λ1bn−1.

Further, as λ0
1 is distinct from all other zeros we have:

det
∂ (a1, ..., an)

∂ (λ1, b1..., bn−1)
=

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0

b1 λ1 1 · · · 0

b2 0 λ1 · · · 0
...

...
...

. . .
...

bn−1 0 0 · · · λ1

∣∣∣∣∣∣∣∣∣∣∣
=
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= λn−1
1 − b1λ

n−2
1 + · · ·+ (−1)n−1bn−1 ̸= 0

at the point (λ0
1, b

0
1, ..., b

0
n−1). This relation remains unchanged in some neighborhood of

the point (λ0
1, b

0
1, ..., b

0
n−1) where the following relation will be carried out also:

det
∂ (a1, ..., an)

∂ (λ1, λ2, ..., ηr)
= det

∂ (a1, ..., an)

∂ (λ1, b1, ..., bn−1)
det

∂ (λ1, b1, ..., bn−1)

∂ (λ1, λ2, ..., ηr)
=

= det
∂ (a1, ..., an)

∂ (λ1, b1, ..., bn−1)
det

∂ (b2, ..., bn−1)

∂ (λ2, ..., ηn−1)
̸= 0.

By the theorem on implicit functions, in some neighborhood of the point ā0 ∈ D, the system
(2) defines numbers λ1, b1, ..., bn−1 as smooth functions of numbers a1, a2, ..., an. Further,
under the inductive assumption the algebraic equation of degree n− 1

zn−1 − b1z
n−2 + b2z

n−3 − · · ·+ (−1)n−1bn−1 = 0

defines the roots as smooth functions of coefficients.
Hence, the given equation defines n real smooth functions of coefficients from which

the first s will be demanded solutions of the equation.
Now we take any other point ā′ ∈ D and connect the points ā0 and ā′ by some contin-

uous curve in the domain D. It is best known the way of one-valued continuation of these
solutions along this curve into a smooth function. As any two curve connecting these points
are homotopic (see [2, p. 90] and [2, p. 496]), the continued function is unique in the domain
D.

As above, we notice, that the number s can vary (to increase or decrease) in D only by
even number when for some j, coefficients of imaginary parts - numbers ηj - continuously
varying, will vanish at some point ā ∈ D. Then ξj stands a multiple root that contradicts
the condition ∆(ā) ̸= 0. Hence, s does not vary in D. The theorem 1 is proved.

Theorem 3.2 Consider in the space Rn any polynomial equation

f (x̄) = 0

of degree k in any bounded parallelepiped. Then the set of solutions of this equation (if
is not empty) consists in the union of finite number of the closed surfaces of a dimension
k−1, and the number of these surfaces bounded by a number depending only on equation’s
degree.

Proof. We will consider at first a case of two independent variables. The theorem’s state-
ment is true for a polynomial of the first degree. We will apply the method of mathematical
induction with respect to the degree of polynomial. Let we are given with any polynomial

f(x, y) = a0(x)y
r + a1(x)y

r−1 + · · ·+ ar(x)

of degree d in some rectangular area C =
{
(x, y) ∈ R2|u1 ≤ x ≤ u2, v1 ≤ y ≤ v2

}
, and

the statement of the theorem is satisfied for all bivariate polynomials of two variable of
smaller degrees. The discriminant of the polynomial f(x, y) considered as a polynomial on
y is some polynomial ∆(x) of the variable x, where (−1)r(r−1)/2a0(x)∆(x) = R(f, f ′

y),
of a degree not exceeding d2r−1 (here R(f, f ′

y) means the resultan of polynomials f and
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f ′
y). Let ξ1, ..., ξl - be various real roots of ∆(x) and a0(x). The segment [u1, u2] will

be dissected by these roots into no more than l + 1 segments in the interior of which
∆(x) ̸= 0. We will consider one of such open intervals δ. Let at some x0 ∈ δ, the equa-
tion f(x0, y) = 0 has s the real roots (with respect to y). Then, by the theorem 2.1, the
algebraic equation yr + a−1

0 a1y
r−1 + · · · + a−1

0 ar = 0 in some one-connected domain D

of changing of coefficients (the high coefficient is fixed) defines r smooth real functions
φi(a

−1
0 a1, ..., (−1)ra−1

0 ar), i = 1, ..., r say the first s of which will be real roots of the
equation. Hence, the vector ā(x) = (a1(x)/a0(x), ..., (−1)rar(x)/a0(x)) defines a one-
dimensional subvariety in D, for x ∈ δ (owing to simple connectivity of area D), i.e. a line
which is passing through the point ā(x0), and we receive a one-valued solutions

yi = φi (a1(x)/a0(x), ..., (−1)rar(x)/a0(x)) , i = 1, ..., s

of the equation f(x, y) = 0. Since the roots are in pairs various, different solutions yi,
owing to uniqueness, cannot intersect each other in the interval (v1, v2) and cannot have
self-intersection, because an interval is passed by x only once. Thus, according to the lemma
1, s does not vary with changing of x in δ.

Let now f(x, y) = 0 at some fixed x ∈ δ. Then, at the point y where the pair (x, y)
satisfies the considered equation we should have f ′

y(x, y) ̸= 0. Otherwise y should be a
multiple root that contradicts the condition. Under the inductive assumption the lemma is
true for polynomials f ′

x(x, y) ± f ′
y(x, y). Therefore, the considered area of changing of

the pair (x, y) always can be dissected into closed Jordan subsets having intersections only
by their boundaries in each of which the absolute value of some partial derivative of the
function f(x, y) takes on maximal values among them. In each such subarea it is possible
to accept that the derivative y′i(x) = −f ′

x/f
′
C of implicit function yi(x) is bounded with its

absolute value on a considered open interval. The lemma 2.2 show that the function yi(x)

tends to a limit on the interval ends that makes possible to receive connected solution of the
given equation in the considered domain beginning from given piece yi(x) of the solution.

Straight lines y = v1, v2 can intersect the graph of each solution yi in no more than d−r

points. Therefore, in the rectangle δ× [v1, v2] there are no more than finite (depending only
ond) number of the graph of solutions. Thus, the formulated statement is true for the system
containing one equation of two variables.

The general case of n variables easily can be considered now by means of a method of
mathematical induction with respect to the number of components of the variable x consid-
ering it as a vector in the equation f(x, y) = 0: x = (x1, ..., xn−1), y = xn. It is necessarily
to notice only that the mapping y : W → Y ⊂ R of one-connected domain W of change
of the variable x (defined by the inductive assumption) defined by the fixed solution y, and
where the discriminant of equation f(x, y) = 0 does not vanish, is continuous and, hence,
an image of this domain also is one-connected. Therefore, there exists s one-valued smooth
solutions

yi = φi (a1(x)/a0(x), ..., (−1)rar(x)/a0(x))

of the equation f(x, y) = 0, x = (x1, ..., xn−1), y = xn which have no intersections (and
dissects the cylinder domain

{
(x, y)|x ∈ W̄ , y ∈ [v1, v2]

}
into no more than finite number

of one-connected closed subdomains). The theorem 3.2 is proved.
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Consequence 3.1 Let in the space Rn the system of polynomial equations

f1 (x̄) = 0, ..., fk (x̄) = 0; k < n (3.3)

be given. Then in each closed rectangular domain Π ⊂ Rn located in one-connected open
domain where Jacoby matrix of the system (3.1) has maximal rank the set of solutions of
the system (3.1) consists of the unuion of finite number of closed surfaces of a dimension
n− k.

The consequence’s proof can be spent by an induction with respect to the number of
equations of the system (3.1). Let’s consider, for example, system containing two equations

f1(x, y, z) = 0,

f2(x, y, z) = 0.

Not breaking a generality it is possible to assume that some of minors of Jacoby matrix of

the given system, for example the minor
∣∣∣∣∂f1/∂x ∂f1/∂y

∂f2/∂x ∂f2/∂y

∣∣∣∣ accepts everywhere the maxi-

mal values for its module among all minors of the second order. Then, under the theorem of
implicit functions the given system in some neighborhood of the given root has a solution
x = φ1(z), y = φ2(z), and derivatives of these functions are bounded. Then, as it noted
above, from the Lagrange theorem it follows that these functions have limit values at the
ends of an interval of continuous changing of z.

Let’s consider the area where the maximal minor is defined as above the resultant of
the polynomials of the system (3.3) with respect to z (i.e. polynomials of the system are
considered as polynomials of z). Then we receive a condition of compatibility of a kind
R(x, y) = 0, where Ris a resultant. In the considered parallelepiped the pare (x, y) varies
in a rectangle. According to, the theorem 1, we find a finite number of solutions of the
equation R(x, y) = 0 of a kind x = u(y) or y = v(x). Then, the set of solutions of the
system (3.3) found above represents the finite number of connected solutions of the system.
The consequence is proved.
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