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Abstract. In this paper we consider eigenvalue problems for the fourth order differential equations with
sign-changing weight. We use the Ljusternik-Schnirelmann theory in C1-manifolds show that there exists
two series of positive and negative eigenvalues of this problem. The first positive and negative eigenvalues
are simple, and the corresponding eigenfunctions do not vanish in the interval (0.1).
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1 Introduction

In this paper we consider the following spectral problem for the fourth order Sturm-
Liouville equation

(τ(x)y′′(x))′′ = λr(x)y(x), x ∈ (0, 1), (1.1)

together with the Navier boundary conditions (used in the case of a beam supported at the
ends)

y(0) = y(1) = y′′(0) = y′′(1) = 0, (1.2)

where λ ∈ R is a spectral parameter, the weight function τ(x) is positive and has abso-
lutely continuous derivative on [0, 1], r(x) is real-valued continuous sign-changing weight
function on [0, 1].

The eigenvalue problem (1.1)-(1.2) were studied by Janczewsky [19] (see also [6]) for
the case where r(x) > 0, x ∈ [0, 1]. It is proved that the eigenvalues of (1.1)-(1.2) for
r(x) > 0, x ∈ [0, 1], are all real and simple and form a sequence 0 < µ1 < µ2 < ... <
µk 7→ +∞. Moreover, the k-th eigenfunction vk(x), corresponding to the k-th eigenvalue
µk, has precisely k − 1 simple zeros in (0, 1).
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It is known that eigenvalue problems of the p-Laplacian and p-biharmonic operators
have been studied extensively; we mention, for example, the works [2, 5, 7-18, 20, 21,
23, 24]. When dealing with eigenvalue problems of the p-Laplacian with indefinite weight
was studied in [2, 5, 15, 21], of the p-biharmonic operator was studied in [10-12]. The
oscillatory properties of eigenfunctions of p-Laplacian with indefinite weight well studied.
But the oscillatory properties of eigenfunctions of p-biharmonic operator with indefinite
weight we can say that has not yet been studied.

The purpose of this work is to study the spectrum of the boundary value problem (1.1)-
(1.2) for the case where r(x) is indefinite weight in [0, 1] (i.e. for ν ∈ {+ , −} we have
meas { Iνr } > 0 where Iνr = {x ∈ Ī : ν r(x) > 0}). We prove that this spectral prob-
lem has two sequences of positive and negative eigenvalues tending to infinity and no other
eigenvalues. Moreover, the least positive and negative eigenvalues are simple and their cor-
responding eigenfunctions have no zeros in the interval (0, 1).

2 On critical points of smooth functionals on C1-manifold

Let M be a C1 Banach manifold (without boundary). Denote the tangent bundle of M by
T (M) and the tangent space of M at x by Tx(M). Let || · || : T (M) → [0,+∞ be a
continuous function such that

(i) for each x ∈ M, the restriction of || · || to Tx(M), denoted by || · ||x is an admissible
norm on Tx(M);

(ii) for each x0 ∈M and k > 1 there is a trivializing neighborhood U of x0 such that

1

k
‖ · ‖x ≤ ‖ · ‖x0 ≤ k ‖ · ‖x , x ∈ U.

The function || · || is called Finsler structure for T (M). A regular manifold together with
a Finsler structure for T (M) is called Finsler manifold. Every paracompact C1 Banach
manifold admits a Finsler structure [24].

Let M is Finsler manifold and f ∈ C1(M,R). Denote the differential of f at x by df(x).
Then df(x) is an element of the cotangent space of M at x, Tx(M)∗. A point x ∈M is said
to be critical point of f if df(x) = 0. The corresponding value c = f(x) will be called a
critical value.

If M is Finsler manifold, then cotangent bundle T (M)∗ has a dual structure given by

||w|| = sup{ 〈w, v〉 : v ∈ Tx(M), ||v||x = 1},

where w ∈ Tx(M)∗ and 〈 · , · 〉 is the duality pairing between Tx(M)∗ and Tx(M). It
follows that the mapping ||x 7→ df(x)|| will is defined and continuous for f ∈ C1(M,R).
A function f ∈ C1(M,R) is said to satisfy the Palais-Smale condition at the level c, c ∈ R
((PS)c in short) if each sequence {xn}∞n=1 ⊂ M such that f(xn) → c and ||df(xn)|| → 0
as n→∞ has convergent subsequence.

Let E is a real Banach space and
∑

the collection of all symmetric subset of E\{0}
which are closed in E (Y ⊂ E is symmetric if Y = −Y ). A nonempty set Y ∈

∑
is said to

be of genus k (denoted γ(Y ) = k) if k is smallest integer with the property that there exists
an odd continuous mapping from Y to Rk\{0}. If there is no such k, γ(Y ) = +∞, and if
Y = ∅, γ(Y ) = 0 (see [24]).

To solve eigenvalue problem (1.1)-(1.2), we employ the Ljusternik-Schnirelmann theory
on C1-manifolds which provides a method for proving the existence of one or several critical
points of a functional, with the aid of a concept of the genus. We will use the following
results proved by Szulkin [24].
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Theorem 2.1 [24; § 4, Corollary 4.1]. Suppose that M is a closed symmetric C1-submanifold
of E and 0 /∈ M. Suppose also that f ∈ C1(M,R) is even and bounded below. Define

cj = inf
Y⊂Γj

sup
x∈Y

f(x),

where Γj = {Y ⊂ M : Y ∈
∑
, γ(Y ) ≥ j and Y is compact}. If Γk 6= ∅ for some

k ≥ 1 and if f satisfies (PS)c for all c = cj , j = 1, 2, ... k, then f has at last k distinct
pairs of critical points.

A function f : E → R is said to be Gâteaux differentiable if each u ∈ E there exists a
linear mapping f ′(u) ∈ E∗ such that

d

dt
f(u+ tv)

∣∣∣∣
0

= 〈f ′(u), v〉, ∀v ∈ E. (2.1)

Let us remark that there is a different-weaker-definition of Gâteaux differentiability in
which it is not required that the left-hand side of (2.1) by linear inv (see e.g. [6]). A function
f : E → R, where M is Finsler manifold, will be called Gâteaux differentiable if each
u ∈M and each chart φ : U → Tx(M) at x, f ◦φ−1 is Gâteaux differentiable. The Gâteaux
derivative df is strong−to−weak∗ continuous if for each x ∈M, each sequence un → u
as n→∞ and each chart φ : U → Tx(M) at x(

f ◦ ϕ−1
)′

(ϕ(un))→
(
f ◦ ϕ−1

)′
(ϕ(u)) as n→∞

in the weak topology of Tx(M)∗

3 Existence of eigenvalues of problem (1.1)-(1.2)

Let I = (0, 1) and W k, p, τ (I) be the weighted Sobolev space that consist of all measurable
real-valued functions u defined in I for which

||u||k, p, τ =


k−1∑
m=0

∫
I

|u(m)(x)|pdx+

∫
I

τ(x)|u(k)(x)|pdx


1/p

<∞

and W 1, p
0 (I) is the closure of C∞0 (I) in W 1, p(I) = W 1, p, 1

1 (I).
We denote X = W 1, 2

0 (I) ∪W 2, 2, τ (I) with the norm

||u||X =


∫
I

p (x)|u′′(x)|2dx


1
2

,

which by a weighted Friedrichs inequality is equivalent to the norm ||u||2, 2, τ of the space
W 2, 2, τ (I). Further, we denote by X∗ and 〈 · , · 〉 the dual space to X and the pairing
between X and X∗. It is clear that X is a nonempty, well defined and closed subspace of
W 2, 2, τ (I). However, it is easy to see that X is reflexive separable space with the induced
norm of W 2, 2, τ (I) and uniformly convex. For simplicity we write un ⇀ u and un → u as
n→∞ to denote the weak convergence and strong convergence of sequence {un}∞n=1 ⊂ X
in X, respectively (see [1]).

Firstly, we recall the definition of weak solution. A function u ∈ X is said to be a weak
solution of problem (1.1)-(1.2) if∫

I

p(x)u′′(x)ϕ′′(x) dx+

∫
I

q(x)u′(x)ϕ′(x) dx = λ

∫
I

r(x)u(x)ϕ(x) dx (3.1)
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for any φ ∈ X .
For the regularity of weak solution, we have the following result.

Theorem 3.1. Any weak solution u ∈ X of problem (1.1)-(1.2) is also a classical solution
of this problem, i.e., u ∈ C2(I), pu′′ ∈ C2(I) and u′′(0) = u′′(1) = 0.

The proof of this theorem is similar to that of [12, Proposition 2.1].
Let us introduce the operators L, H : X → X∗ by

〈L(u), v 〉 =

∫
I

pu′′v′′dx,

〈H(u), v 〉 =

∫
I

ruvdx

for all u, v ∈ X .
Remark 3.1. The operatorsL, G are linear. Moreover,L continuously invertible and ||L(u)||X∗ =
||u||X for any u ∈ X , where || · ||X∗ is the dual norm associated with || · ||X .

We define on X the following two functionals by

F (u) =
1

2

∫
I

p |u′′|2dx,

G(u) =
1

2

∫
I

r|u|2dx.

LetM = {u ∈ X : 2G(u) = 1}. It is easy to see that F and G are Gâteaux differentiable
with

F ′ = L and G′ = H.

By Theorem 3.1 problem (1.1)-(1.2) for λ > 0 can be can be written in the equivalent form

F ′(u) = λG′(u), u ∈M, (3.2)

or
L(u) = λH(u), u ∈M. (3.3)

It is known that (λ, u) solves (3.1) if and only if u is a critical point of F with respect to
M. Hence, for the proof the existence of eigenvalues of the problem (3.1), we will apply
Theorem 2.1.
Lemma 3.1. L : X → X∗ is an hemicontinuous, bounded monotonous and coercive oper-
ator.
Proof. It is obvious that the functional F (u) is a convex. Then, by virtue of [22; Ch. 2,
§ 1.2, Proposition 1.1] it follows that L : X → X∗ is an hemicontinuous and monotonous
operator. The boundedness, continuity and coercivity of operator L are obvious. The proof
of Lemma 2.1 is complete.
Remark 3.2. By [22; Ch. 2, § 2.2, Theorem 2.6] it follows from [22; Ch. 2, § 2.2, Proposition
2.2] that the operator L : X → X∗ is strictly monotone.
Remark 3.3. It follows from Hölders inequality that

(L(u), v) = (L(v), u) =
∫
I

p(x)u′′(x) v′′(x) dx

≤
(∫
I

p(x)u′′2(x) dx

) 1
2
(∫
I

p(x) v′′2(x) dx

) 1
2

= ||u||X ||v||X .
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which imply

(L(u)− L(v), u− v) = ‖u‖2X + ‖v‖2X − 2 (Lu, v)

≥ ‖u‖2X + ‖v‖2X − 2 ‖u‖X ‖v‖X = (‖u‖X − ‖v‖X)2 .
(3.4)

Then the monotonicity (strongly monotonicity) of the operator L should also from (3.4).
Let T a mapping acting fromX intoX∗. T is said to belong to the class (S+), if for any

sequence {un}∞n=1 ⊂ X with un converges weakly to u ∈ X and lim sup
n→∞

〈Tun, un−u〉 ≤

0, it follows that un converges strongly to u in X . In this we write T ∈ (S+) (see, for
example, [10, 24]).
Lemma 3.2. (i) The functionals F,G : X → R are even, and are of class C1 on X; (ii)M
is a closed C1-manifold.
Proof. (i) It is clear from the definitions that that F and G are even, and are of class C1 in
X . (ii) Since M = G−1

(
1
2

)
, so M is closed. For any u ∈ M we have G′(u) 6= 0 (i.e.

G′(u) is onto for any u ∈ M), hence G is a submersion. ThenM is a C1-manifold. The
proof of Lemma 3.1 is complete.

The following lemma is the key to prove the existence of the eigenvalues of problem
(1.1)-(1.2).
Lemma 3.3. (i) G′ : X → X∗ is completely continuous; (ii) The functional F satisfies
the Palais-Smale condition onM, i.e., if each sequence {un}∞n=1 ⊂M such that A(un) is
bounded and

γn = F ′(un)− gnG′(un)→ 0 as n→∞, (3.5)

where gn = 〈F ′(un),un〉
〈G′(un),un〉 , then {un}∞n=1 has a convergent subsequence in X .

Proof. (i) Step 1: Definition of G′. By the Sobolev embedding theorem (see [6]), it follows
that X ↪→ C(Ī). Then for all u, v ∈ X we obtain∣∣∣∣∣∣

∫
I

r(x)u(x)v(x)dx

∣∣∣∣∣∣ ≤ |r|∞|u|∞|v|∞ ≤ c̃2| r |∞||u||X ||v||X ,

where c̃ is the constant of Sobolev’s embedding and | · |∞ is the max norm in Ī . Hence G′
is well defined.

Step 2: G′ : X → X∗ is completely continuous. Let {un}∞n=1 ⊂ X be a sequence such
that un ⇀ u as n→∞. We have to show that G′(un)→ G′(u) in X , i.e.,

sup
v∈X, ||v|| ≤ 1

∣∣∣∣∣∣
∫
I

r (un − u) v dx

∣∣∣∣∣∣→ 0, as n→∞.

By X ↪→ C(Ī), we have

sup
v∈X, ||v|| ≤ 1

∣∣∣∣∣∣
∫
I

r (un − u) dx

∣∣∣∣∣∣ ≤ c | r |∞ sup
Ī

|un − u| .

It’s obvious that
sup
Ī

|un − u| → 0 as n→∞.

Consequently, G′ is completely continuous in X .
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(ii) Let {un}∞n=1 is bounded in X . Then, without loss of generality, we can assume that
un converges weakly in X for some function u ∈ X and ||un||X → α as n→∞. Consider
two possible cases: α = 0 and α 6= 0.

In the case α = 0 it follows that un → 0 in X .
Let now α 6= 0. Applying γn of (3.5) to u, we get

σn = 〈F ′(un), u〉 − 〈F ′(un), un〉 〈G′(un), u〉 → 0 as n→∞. (3.6)

By (3.6) we have

〈F ′(un), un − u〉 = 〈F ′(un), un〉 (1− 〈G′(un), u〉)− σn,

which implies that

lim sup
n→∞

〈F ′(un), un − u〉 ≤ c0α
2 lim sup

n→∞
〈G′(un), u〉 (3.7)

where c0 = max{ |p |∞, |q|∞}. Since 2G(un) = 1 for all n ∈ N, it follows that 2G(u) = 1.
Hence, by statement (i), we have 〈G′(u), u〉 = 1. This yields that

1− 〈G′(un), u〉 = 〈B′(u), u〉 − 〈G′(un), u〉 ≤ ||G′(u)− G′(un)||X∗ ||u||X . (3.8)

By statement (i) it follows from (3.7) and (3.8) that

lim sup
n→∞

〈F ′(un), un − u〉 ≤ 0. (3.9)

We show that F ′ ∈ (S+), which completes proof of the statement (ii). By (3.4) we have

〈F ′(un)− 〈F ′(u), un − u〉 ≥ (||un||X − ||u||X)2 ≥ 0. (3.10)

Since un ⇀ u as n→∞ it follows from (3.9) and (3.10) that

lim
n→∞

〈F ′(un)− F ′(u), un − u〉 = 0,

which implies that ||un||X → ||u||X as n → ∞. Therefore, since space X is uniformly
convex, un ⇀ u implies that un → u as n→∞ in X . The proof of lemma is complete.

As above, we denote

Γn = {K ⊂M : K is symmetric, compact and γ(K) ≥ n} .

Lemma 3.4. For all k ∈ N we have Γk 6= ∅.
Proof. Since X is separable, there exist system {yj}∞j=1 ⊂ X linearly dense in X such that
supp yi ∩ supp yj = ∅ if i 6= j. By meas{ I+

r } > 0 we can assume that yj ∈ M, i.e.∫
I

r(x)|yj(x)|2dx = 1 for any j ∈ N.

For k ∈ N we define Φk = span {y1, y2, ... , yk}. It is clear that Φk is a vectorial
subspace of X and dimΦk = k. Then for any u ∈ Φk there exists (β1, β2, ... , βk) ∈ Rk

such that u =
k∑
i=1

βiyi. Thus

F (u) =
k∑
i=1

|βi|2F (yi) =
1

2

k∑
i=1

|βi|2.

It follows that the following map

u 7→ (2F (u))1/2 = ||u||ΦK
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defines a norm on space Φk. Consequently, there exists a positive constant d such that

d||u||X ≤ (2F (u))1/2 ≤ 1

d
||u||X .

Let Sk−1 = Φk ∩ {u ∈ X : (2F (u))1/2 = 1}. The set Sk−1 is the unit sphere of
Φk. Hence Sk−1 is closed, compact and symmetric. Then by [24, Prop. 2.3], Γ (Sk−1) = k
which implies that Sk−1 ∈ Γk. Hence Γk 6= ∅.

Now we have our main result formulated as follows.
Theorem 3.2. For any integer k ∈ N we have

λ+
k = inf

K⊂Γk

max
u∈K

2F (u)

is a critical value of F restricted onM. More precisely, there exists u+
k ∈ Kk ⊂ Γk such

that
λ+
k = 2F (uk) = sup

u∈Kk

2F (u)

and (λ+
k , u

+
k ) is a solution of problem (1.1)-(1.2) associated with the positive eigenvalue

λ+
k . Moreover, λ+

k → +∞ as k →∞.
Proof. By Lemmas 3.1-3.4 and Theorem 2.1 we need only to prove that λ+

k → +∞ as k →
∞. Let the system {vj}∞j=1 ⊂ X∗ is conjugate to the system {yj}∞j=1 ⊂ X , i.e. 〈yi, vj〉 =
δi,j where δi,j is the Kronecker delta. The vj , j ∈ N, are total for X∗.

For k ∈ N, we denote Φ⊥k = span {yk+1, yk+2, ...}. It follows by [24; Proposition 2.3
(g)] that for any A ∈ Γk we have A ∩ Φ⊥k−1 6= ∅. Then

tk = inf
A∈Γk

sup
u∈A∩Φ⊥k−1

2F (u)→ + ∞.

Indeed, otherwise, for sufficiently large k there exists uk ∈ Φ⊥k−1 with ||uk||L2 = 1, where
|| · ||2 denotes the L2(I) -norm, and positive constant K̃ such that

tk ≤ 2F (yk) ≤ K̃.

Thus ||uk||X ≤ K̃, i.e. {uk}∞k=1 is bounded in X . For a subsequence still denoted by
{uk}∞k=1 , we have uk ⇀ u in X and uk → u in L2(I). By virtue of our choice of Φ⊥k−1

we have uk ⇀ 0 in X . Hence 〈yk, vj〉 = 0 for any k ≥ j. This contradicts the assumption
||uk||L2 = 1 for any sufficiently large k ∈ N. Then it follows by inequality λk ≥ tk that
λ+
k → +∞ as k →∞. The proof of theorem is complete.

Remark 3.4. It is a trivial fact that

λ+
1 = inf


∫
I

pu′′2dx : u ∈ X and

∫
I

ru2dx = 1

 . (3.11)

Corollary 3.1. The following relation holds:

0 < λ1 ≤ λ2 ≤ ... λk 7→ + ∞.

Proof. For all i ≤ j (i, j ∈ N) we have Γi ⊃ Γj . Hence from the definition of eigenvalues
we get λi ≤ λj . This completes the proof.
Corollary 3.2. The problem (1.1)-(1.2) has a decreasing sequence of the negative eigenval-
ues {λ−k }

∞
k=1, such that lim

k→∞
λ−k = −∞.
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Proof. It is clear that I−r = − I+
−r . Then we have meas{I+

−r} = meas{I−r } > 0. The
problem (1.1)-(1.2) can be rewritten in the following equivalent form

(τ(x)u′′(x))′′ = λ̂ r̂(x)u(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(3.12)

where λ̂ = −λ and r̂(x) = − r(x), x ∈ Ī . By Theorem 3.2 the problem (3.12) has an
increasing sequence of the positive eigenvalues λ+

k, ∗ such that λ+
k, ∗ → +∞. If we put λ−k =

−λ+
k, ∗ then we obtain that {λ−k }

∞
k=1 is decreasing sequence of the negative eigenvalues of

problem (1.1)-(1.2) such that lim
k→∞

λ−k = −∞. The proof of corollary is complete.

4 Properties of principal eigenvalues of problem (1.1)-(1.2)

Now we investigate the existence of principal eigenvalues, i.e., eigenvalues corresponding
to eigenfunctions which does not vanish in the interval I .
Theorem 4.1. The eigenvalue λ+

1 is simple and the corresponding eigenfunction u+
1 do not

vanish in the interval I .
Proof. Let Jλ(u) = F (u) − λG(u). It is obvious that u+

1 is an eigenfunction associated to
λ+

1 if and only if

Jλ+1
(u1) = F (u1)− λ+

1 G(u1) = 0 = inf
u∈X\{0}

{F (u)− λ+
1 G(u)}.

Since Jλ+1 (u1) = Jλ+1
(|u1|) it follows that all eigenfunctions corresponding to λ+

1 do not
change sign in I .

Let r1(x) is continuous function on Ī such that r(x) + r1(x) > 0 for all x ∈ Ī . Then
(λ+

1 , u
+
1 ) is a solution of following eigenvalue problem

(τ(x)u′′(x))′′ + h(x)u(x) = λτ(x)u(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(4.1)

where h(x) = λ+
1 r1(x) and τ(x) = r(x) + r1(x), x ∈ Ī . Note that h(x), τ(x) ∈ C[0, 1]

and τ(x) > 0, x ∈ Ī . By [4; Theorem 1] (see also [3]) the eigenvalues of the boundary
value problem (4.1) are real, simple and form an infinitely increasing sequence {µk}∞k=1,
moreover the eigenfunction vk(x) corresponding to the eigenvalue µk has k − 1 simple
zeros in the interval I . Since u+

1 (x) do not change sign in I it follows that λ+
1 = µ1 and

u+
1 (x) = Cv1(x) where C = const 6= 0. Thus all eigenfunctions corresponding to λ+

1 are
positive or negative in I .

Let u and v be eigenfunctions corresponding to the eigenvalue λ+
1 . Then functions

M(t, x) = max{u(x), t v(x)} and M(t, x) = min{u(x), t v(x)} belong to X and satisfy
the following relation

Jλ+1
(M(t, ·)) + Jλ+1

(m(t, ·)) = Jλ+1
(u) + Jλ+1

(tv) = 0.

(see [23]). Consequently, by virtue of (3.11) we have

Jλ+1
(M(t, ·)) = Jλ+1

(m(t, ·)) = 0.
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Thus M(t, x), x ∈ Ī , be the solution of problem (1.1)-(1.2) and by weight Sobolev embed-
ding X ↪→ C1,α we have M(t, ·) ∈ C1,α where α ∈ (0, 1

2). For any x0 ∈ (0, 1) we put
t0 = u(x0)

v(x0) > 0. Since M(t0, x0) = u(x0) = t0v(x0) it follows that

u(x0 +∆)− u(x0) ≤M (t0, x0 +∆)−M (t0, x0) .

for all sufficiently small number ∆. Dividing this inequality by ∆ > 0 and ∆ < 0
and letting ∆ tend to ±0 we obtain u′(x0) = M ′x(t0, x0). Similarly we can find that
M ′x(t0, x0) = t0v

′(x0). It follows from the last two equalities that
(
u
v

)′
(x0) = 0 which

implies that u(x)
v(x) ≡ const in I . Thus the eigenvalue λ+

1 is simple. The proof of this lemma
is complete.
Corollary 4.1. The eigenvalue λ−1 is simple and the corresponding eigenfunction v−1 do not
vanish in the interval I .
Remark 4.1. λ+

1 (λ−1 ) is a unique positive (negative) principal eigenvalue of the problem
(1.1)-(1.2).
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