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Abstract. The main purpose of this article is to improve the cross-section idea in the cotangent bundle
T*M™ which is given in [5], [7]. We investigate horizontal and diagonal lifts of tensor fields of type (1,1)
on a cross-section in the cotangent bundle 7% M™ and we find some relation for them.
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1 Introduction

The cross-section idea is very useful tool for physics and mathematic. On the differential
geometry, vector fields and 1-forms can be regarded as cross-sections of the tangent bundle
and the cotangent bundle, respectively. In [5] Yano study the behaviour of the lifts of tensor
fields and connections on the cross-section in the cotangent bundle 7" M™. In [4] Salimov
et al show that the complete lift of almost complex structure when restricted to the cross-
section determined by an almost analytic 1-form w on M™", is an almost complex structure.
The lifts of tensor fields and connections are studied along the cross-section in the tangent,
cotangent and tensor bundles [1], [2], [3], [6], [7]. In this study we investigate horizontal
and diagonal lift of tensor fields of type (1,1) on the cross-section in the cotangent bundle
and obtain some relation for them.

Let T*M™ be the cotangent bundle of (M", g) Riemannian manifold and 7 the nat-

ural projection T*M"™ — M™. A system of local coordinates (U,gci),i = 1,...,n on
M™ induces on T*M™ a system of local coordinates (7~ *(U), 2", 2" = p;), i :== n +i
(i = 1,...,n), where 2! = p; are the components of the covector p in each cotangent

space T M™, = € U with respect to the natural coframe {dz'}, i = 1, ...,n. We denote by
QT(T*M™) the set of all tensor fields of type (r, s) on T*M™.

Now, consider the complete and horizontal lifts © X, 7 X € J§(T*M™) of vector field
X € S§(M™) and the vertical lift Yw € SL(T*M™) of covector field (1-form) w €
S9(Mm)
0

C i
X=X - —
ox*

thaiXhi, (1.1)
- ox?
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Ax = XZ XJ (1.2)
Vi = Y
w = Zwla:ﬁ’ (1.3)
with respect to the natural frame { agi’ ai where Fh are the components of the Levi-

Civita connection V, on M"™ and X ¢ and w; are local components of X and w (see [7] for
more details). ‘

Let § € SY(M™) be a 1-form whose local expression in U C M™ is § = 6;dx". Then
the correspondence = — 6, 6, being the value of § at x € M", determines a mapping
Bo : M™ — T*M™, such that w o B9 = Ipm and the n-dimensional submanifold Sy(M™)
of T*M™ is called the cross-section determined by . The cross-section [g(M™) is locally
expressed by

:L'h — :L'h,
{ph = Gh(:rl,...,:r"), (1'4)

with respect to the coordinates (z", pp,) in T* M™.
Differentiating (1.4) by z*, we find that the tangent vector B;) to 3(M") have compo-
nent

oz h
B = (Bi") :(;pi) (ggh> (1.5)

. o o .
with respect to the natural frame {577, 8?} inT*M".
Thus, we have

for any X € S§(M™) which is defined along By(M™) in T* M™.
On the other hand, the fibre is locally represented by

zh = const., pp = pPp- (1.6)

Thus, on differentiating (1.6) with respect to p;, we find the tangent vector C'; to the
fibre have components

Cly = (C) = (gi) , (1.7)

with respect to the natural frame {%, %} in T*M™.
Thus, we denote by Cw the vector field with local components for any w € 39(M™)

which is tangent to the fibre along Sy (M™) in T*M™.
2n local vector fields By;) and C'; are linearly independent and form a frame along the
cross-section [3p(M™). We call this the adapted (B,C)-frame along the cross-section [7].
We now, from equations (1.1), (1.2), (1.3), (1.5) and (1.7) see that CX, H X and Vw have

respectively components
Cy _ Xh
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Hy _ Xp
X = <—Xme9h>’ (1.8)

Vi = <gh>, (1.9

with respect to the adapted (B,C)-frame on the cross-section of the cotangent bundle.

2 Horizontal lift of a symmetric affine connection on a cross-section in the cotangent
bundle

The horizontal lift 7V of V to T*M" has components Fﬁ given by

H rk k Hpk _ Hpk _ Hpk _ Hpk

Iy =1, I="1%="15="15;=0,

H ik ‘ H rk /

I = =L, I3 = —Ti @b

HF]ki = pa(_aj[‘ﬁc + Fl?tF;z + Fz%[’lgj)v

with respect to the induced coordinates where I fi are components of V in U [7].

The affine connection 'V induced on Sy (M™) from the horizontal lift 'V of an affine
connection V in M"™ has components of the form

Bk = (0;B* +"IgpB;B;%)B" 4 (2.2)
where B* 4 are defined by
(B 4,C" ) = (Bz‘A, CiA)fl
and hence
(B¥a) = (6,0),  (C*a) = (—0ifk. 5}). (2.3)
Using (1.5), (1.7), (2.1) and (2.3) in (2.2), we find
=1
where F]ki are components of V in M™.
From (2.2), we have
0;B* + "I1gpB;“B® — ;B = H,CA (2.4)

1.e., the left hand side is a linear combination of CSA. To find the coefficient H%

jio we put
A = hin (2.4) and hence obtain

HJS = V;Viby.

The coefficient H JEZ in (2.4) define the second fundamental tensor of the submanifold

Bo(M™) with respect to the normals C;. When H ho— 0, Be(M™) is said to be totall
p (4) ji y
geodesic in T*M™ [7].

Theorem 2.1 The cross-section Bg(M™) in T*M™ is totally geodesic in T* M™ with the
horizontal lift 'V of V if and only if 0 satisfy V;Vib = 0, 0, being local components of
6.
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3 Horizontal and Diagonal Lifts of Tensor Fields of Type (1,1) on a Cross-Section

Let ¢ € 31(M™). Then the diagonal lift ¢ of o to T*M™ has local components of the
form

h
D,_ . (D, Ay _ ©; 0 31
2 (o) <Fiss02+ﬂmsof —%) G-D

with respect to the induced coordinates (2", py,) [7].
From (1.5), (1.7), (2.3) and (3.1), % has components Dcﬁg given by

Ogf =P B = o,

Pek =PogCPBF 4 =0,

Dop =PogBPCr 4 = (0] Vi + 0pV10y),
Dok~ PGP CH s =

i.e. P has components

k
D ~ . D ~A _ 2 0 32
IR (—(so?vhak + olV0,) —so%) G2

with respect to the adapted (B,C)-frame on the cross-section [3p(M™) in T*M™.
Using (1.8), (1.9) and (3.2) we have

Do x)=H(pX), X eSjMm), (3.3)

D~(V

% V(woy), wedY(Mm), (3.4)

w) =
which characterize P @, where w o ¢ € SY(M™).
The horizontal lift 7/ of  has components

h
H, . (H_ Ay _ i 0
o= (Crut s o)

with respect to the induced coordinates in 7™ M™.
Then using same calculation, has components

k
Ho Hol — el 0 35
LR <—90?Vh9k AU @2) )

with respect to the adapted (B,C)-frame on the cross-section 3p(M™) in T*M™.
From (1.8), (1.9) and (3.5) we find

HoHX) =H(pX), X eJHMm), (3.6)

H~V

p(Vw)="(woyp), weY(Mm), (3.7)

which characterize 7 ¢, where w o p € I9(M™).
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Proposition 3.1 [7] Let S and T be tensor fields in T*M" of type (0,s) or (1,s), where
s > 0, such that

S(X,, .., X)) =T(X,,..., X1)
for all vector fields X1, oy X, which are of the form Vw or 1 Z where w € 39(M™) and

Z € S§(M™). Then S =T.

Theorem 3.1 If , ¢ € 31 (M™), then with respect symmetric affine connection ¥ in M™,
we have

Dl + PP e =H (g + dyp)
Do+ PoH e =HpP g+ HGP o =P (g + ¢p) (3.8)

Moo+ 161 g =M + op) (3.9)
with respect to the adapted (B,C)-frame of Bg(M™) in T*M™".

Proof. If ¢, ¢ € S%(M”), then we have by (3.2), (3.3), (3.4), (3.5), (3.6), (3.7) and Propo-
sition1

(PePo+ PP o) (" X) =Pt (¢X) + Po (pX)
=T((pp + ¢) X) = " (00 + )" X,

(PEP9+P97@)(Yw) = L@ (wo d) = P4  (wo )
=V(wopp)+ " (wopp) =" (wo (pp+ dp))
= (oo + o) w

which imply
PEPo+PoPe = M(po + dp).
Same calculation we can prove (3.8) and (3.9).

Then putting ¢ = ¢ in Theorem 2, we have

Pele="(pp),  (P@)?="(o?.

Since X (idpm) = idg1(prny, from (3.8), we have

Theorem 3.2 If v is almost complex structure in M, then the diagonal lift P $ of ¢ along
the cross-section 3g(M™) is an almost complex structure in T* M™.

Then we see, for ¢ = (5 in Theorem 2,

So we have

Theorem 3.3 Let © be an almost complex structure in M™ then the horizontal lift ' § of ¢
along the cross-section Bg(M™) is an almost complex structure in T* M™.
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It is well know that [7, p.238, p.277]
i)WV f =0, i) TXV =" (X)),
i) [ XY w] =Y (Vxw), iv)[Vw,Y 6] =0, (3.10)
XY= X Y]+ R(XY) =1 (X Y]+ (pR(X,Y))
forany X,Y € S§(M™), w, 0 € SY(M™), where pR(X,Y) = (pi(R(X,Y)})).
The Nijenhuis tensor N, of ¢ € I} (M™) defined by
No(X,Y) = [pX, Y] = 0[pX, Y] — o[ X, Y] + 0*[X, Y].
where X, Y € S (M™).
We now consider Nijenhuis tensor of D . Taking account of (3.3), (3.4) and (3.10), we
have the following formulas:
Nog(Yw,” 0) =0,
Nog("X,V w) =V (=(Vexp)w — o(Vxp)w),
Nogs("X7Y) =" (Ny(X,Y))
+ (PR(0 X, 9Y) + o(pR(9X,Y)) + o(pR(X, ¢Y)) + ¢*(pR(X,Y)))

forany X, Y € S{(M"), w,0 € SY(M™).

Remark. Let (¢, g) be a Kéhlerian structure in /™ and V be the Riemannian connec-
tion determined by the metric g. Then we see that
i) 0 is an almost complex structure in M", i.e. p? = —1I;
ii) Vo = 0;
iii) The curvature tensor R of V satisfies R(p X, ¢Y) = R(X,Y) forany X,Y € S (M™)
[7].

From (iii), we write R(pX,Y) = —R(X, ¢Y) and

R(pX, oY)+ R(pX,Y)o + R(X,0Y)p + R(X,Y)p* =0

since p? = —1I.
Thus from (31) and (ii), we have

Nog(Yw,” 6) =0,
Nogs (H xV ) 0,
Vo ("X HY) =0
foranyXYEC‘l(M”) w,0 € IY(M™).

By Proposition 1, ND - is zero, since N is skew-symmetric so P is necessarly inte-
grable. Hence we have

Theorem 3.4 Let (¢, g) be a Kiihlerian structure in M™ and ¥V be the Riemannian connec-
tion determined by the metric g. Then the diagonal lift P $ of © to T* M™ along Bo(M™) is
an complex structure in T M™.

Now we use same calculation for horizontal lift 7 @ of . From (3.6), (3.7) and (3.10) we
have

Nug(Vw,” 0) =0,
Nug("X,V w) = (Vexp)w — o(Vxp)w),
Nug("XTy) =1 (Ny(X,Y))

(
+V(pR(0X, Y ) — o(pR(¢X,Y)) + ¢(pR(X,9Y)) + ¢*(pR(X.Y)))
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forany X,Y € S{(M™) and w, 6 € IY(M™).
Let (¢, g) be a Kihlerian structure in M™ and V be the Riemannian connection deter-
mined by the metric g. Hence, from (32) and Remark (ii), we have

Nug("X"Y)=0
forany X, Y € S§(M™) and w, 6 € SY(M™). So & is integrable.

Theorem 3.5 Let (¢, g) be a Kiihlerian structure in M™ and NV be the Riemannian connec-

tion determined by the metric g. Then the horizontal lift ' ¢ of v to T* M™ along Bo(M™)
is an complex structure in T* M™.

Let now we consider the curvature tensor R of the horizontal lift /' V of symmetric affine
connection V in M™ to T*M™. Then ¥ R is determined by

H h h H h i
Ryji" = Ryji™s Ry;i" = —Rijn',
H h t t
Riji" = pa(Ipy Riji” + T Rijn')

the remaining components being zero, with respect to the induced coordinates [7, p.288].
Then ¥ R has components 7 R,, ﬁwo given by

Rt =1 Rapc?BiAB;®B,°B'p = R,
HRijkl =H RABCDBiABjBBkCClD = —Rijkhvleh — Rijlhvkeh,
HRijI_gl :H RABCDBiABjBCkCClD — *Rijlk

and the others is zero with respect to the adapted (B,C)-frame on the cross-section Sg(M™)
inT*M™.

Theorem 3.6 Ragye is tangent to the cross-section o(M™) in T* M™ if and only if R =
0ie M" is flat.
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