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On stability of the solutions of matrix game and the capital preservation
problem to the perturbations of initial data
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Abstract. The stability of the solution of the capital preservation problem to the perturbations of initial
data given by the matrix of rates of profits of assets is proved in terms of the semi-continuous multi-
valued maps. It is also shown that the solution of the corresponding matrix game is also stable to the
perturbations. Finally, it is proved that solutions of both perturbed problems are the same.
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1 Introduction

This article focuses on the issue of equality of solutions of the capital preservation problem
[3] and corresponding matrix game [1], and also with the problem of stability of solutions to
the perturbations of initial data given by the matrix of rates of return of assets. Research will
be carried out in two stages. The first phase takes place if the second player’s (the economic
environment) optimal strategies are completely mixed [1]. In this case, we will define the
main constraints to the initial data necessary for the existence of such strategies, and show
that the solution of capital preservation problem coincides with the matrix game solution.

Obviously, the question of whether the solutions (of the capital preservation problem
and matrix game) are equal requires research even if the second player’s optimal strate-
gies are not completely mixed. That is why the purpose of this study is also to determine
whether the solutions of perturbed capital preservation problem and perturbed matrix game
are equal (second stage). We will show that in the perturbed situation, there is continuous
dependence of the solution of the capital preservation problem on the initial data given by
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the matrix of rates of return. We will check the solution of capital preservation problem for
stability to perturbations of the initial data. Required proof will be carried out in terms of
semicontinuous multivalued mappings. We will also show that solution of corresponding
matrix game is stable to the perturbation of initial data. The proof will be carried out on the
basis of the method for solving matrix games by using differential equations [2].

2 Unperturbed case

Let m be amount of risky assets, E = (e1, ..., en) be the set of states of economic envi-
ronment, gj be a priori probability distribution of occurrence of state j (j = 1, n), rij be
the rate of return of i-type asset provided economic environment is in state j (i = 1,m),
R = {rij} be matrix of rates of return. Consider one-criterion capital preservation problem
(problem of risk minimization for the portfolio on the set of allowable portfolios):

D = D(R) =
m∑
i=1

m∑
l=1

xixlσil → min
X
, (2.1)

m∑
i=1

xi = 1, (2.2)

xi ≥ 0, i = 1, ...,m, (2.3)

where random variable R is asset portfolio with the structure X = (x1, ..., xm) ∈ Sm,

Sm =

{
x ∈ ỹm :

m∑
i=1

xi = 1; xi ≥ 0, i = 1,m

}
is m-dimensional simplex in which op-

timization is carried out, R =
m∑
i=1

xiRi, Ri – i-throw of matrix R of rates of return, D is

the appropriate risk, xi is the share of capital invested in i-th asset; σil = cov(Ri, Rl) =
n∑
j=1

gj(rij − Ei)(rlj − El), i, l = 1,m.

Consider now the capital preservation problem as pair game (economic environment
plays the role of second player) with zero sum and payoff matrix R under the assumption
that this game has no saddle point. Solving matrix game in mixed strategies, we obtain
optimal strategies for both players and the price of the game, that is (P ∗, Q∗), P ∗ ∈ Sm,
Q∗ ∈ Sn, and V ∗, respectively.

Statement 2.1 Let (P ∗, Q∗) be solution of pair zero-sum game with matrix R = {rij},
i = 1,m, j = 1, n. Let optimal strategy Q∗ of second player be completely mixed, that is
q∗j > 0, ∀j = 1, n. Then
(i) P ∗ = X∗ (in the sense of p∗i = x∗i , i = 1,m), where X∗ is a solution of the capital
preservation problem (2.1)-(2.3);

(ii) for portfolio R∗ =
m∑
i=1

p∗iRi equality D∗ = D(R∗) = 0 is valid.

Proof. If q∗j0 > 0 for some j0 in optimal strategyQ∗ of second player, then
m∑
i=1

rij0p
∗
i = V ∗.

According to conditions of statement 2.1 optimal strategyQ∗ of second player is completely

mixed, that is q∗j > 0, ∀ j = 1, n. Therefore ∀ j = 1, n equality
m∑
i=1

rijp
∗
i = V ∗ is valid.

Remind that each row Ri of matrix R is discrete (by assumption) random variable with

values from the set {ri1, ..., rin}. Hence portfolio R∗ =
m∑
i=1

p∗iRi is random variable with
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possible values
{

m∑
i=1

ri1p
∗
i , ...,

m∑
i=1

rinp
∗
i

}
. It is easy to see that random variable R∗ takes

values {V ∗, ..., V ∗}, that is it is constant. On the other hand for any portfolio with the
structure X = (x1, ..., xm) its variance is D(R) ≥ 0, so min

X∈Sm

D(R) = 0 = D(R∗). Thus,

portfolio with the structure P ∗ = X∗ has the smallest (zero) risk. The statement is proved.
So we have established the following. If optimal strategy Q∗ of second player is com-

pletely mixed in pair zero-sum matrix game then solution of games theory problem for first
player and the structureX∗ of portfolio (whereX∗ is the solution of the capital preservation
problem (2.1)-(2.3)) coincide.

Remark 2.1 In order for optimal strategy Q∗ of the second player to be completely mixed
the following conditions are necessary:

(i) column of matrix R which dominates any other column or some convex combination
of other columns of matrix R is missing, that is ∃̄ j = 1, n that rij ≥ rik (k = 1, n, k 6= j)
for all i = 1,m, and rij > rik at least for one i = 1,m;

(ii) n− 1 ≤ rang(R) ≤ m− 1.

Remark 2.2 The assumption about zero sum in matrix game with matrix R is not obliga-
tory. It is easy to see that by selection k > 0 and l ∈ R you can always get zero price of
game with matrix R′, where r′ij = krij + l. For games with matrices R and R′ the sets of
optimal strategies of players coincide.

3 Solution of capital preservation problem and its stability to the perturbations of
initial data

Consider a more general case. Assume that in solution (P ∗, Q∗) of matrix game with matrix
R the optimal strategyQ∗ of second player is not completely mixed. Assume also that there
exists a family {Rε} of matrices m × n for which conditions of remark 2.1 are satisfied.
Let for all ε optimal strategy Qε∗ of second player be completely mixed in game with
matrix Rε. If matrices {Rε} are such that Rε → R, ε → 0 (in terms of element-by-
element convergence) then forR solutions of capital preservation problem and matrix game
coincide.

Really, on the basis of matrix Rε capital preservation problem can be solved for all
ε on the set of allowable portfolios. Denote solution of problem (2.1)-(2.3) by Xε∗ =
(xε∗1 , ..., x

ε∗
m) for every ε. On the other hand define optimal strategies (P ε∗, Qε∗) of both

players and the price V ε∗ of the game with payoff matrixRε. Within the assumptions above
and according to statement 1 we get P ε∗ = Xε∗, ∀ε.

Let us show that if ε → 0, then the solution of capital preservation problem for Rε
converges to the solution of a similar problem for R, that is actually there is continuous
dependence of this solution on initial data given by the matrix of rates of return of assets.
Thus, we obtain the following problem for every ε:

Dε = D(Rε) =
m∑
i=1

m∑
l=1

xεiσ
ε
il
xεl = XεCε(Xε)T → min

Xε
, (3.1)

m∑
i=1

xεi = 1, (3.2)

xεi ≥ 0, i = 1, ...,m, (3.3)
where Cε is a covariance matrix with elements which are determined from matrix Rε by
using formula σε

il
= cov(Rεi , R

ε
l ).
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For ε = 0 we get corresponding problem based on matrix R:

D = D(R) =
m∑
i=1

m∑
l=1

xiσilxl = XC(X)T → min
X
, (3.4)

m∑
i=1

xi = 1, (3.5)

xi ≥ 0, i = 1, ...,m, (3.6)

where C is a covariance matrix with elements which are determined from matrix R.
Consider the general optimization problem. Let f : X → ỹ be continuous function,

X ⊂ ỹn, T ⊂ ỹs. Let also C : T → X be multi-valued mapping. We obtain the following
problem:f(x, t) → max

x
; x ∈ C(t); C(t) 6= ∅, t = (t1, ..., ts) ∈ T ; T ⊂ ỹs is the set of

parameters.

Lemma 3.1 (Berge’s maximum theorem [3], [1]). Let function f : X × T → ỹ be contin-
uous in all arguments and let multi-valued mapping C : T → X (which determines the set
of constraints) be continuous. Then:

(i) function M : T → ỹ determined by M(t) = max{D(x, t) : x ∈ C(t)} is continu-
ous;

(ii) mapping m : T → X determined by m(t) = {x ∈ C(t) : D(x, t) = M(t)} is
upper semicontinuous.

Consider optimization problem (3.4)-(3.6) it terms of mappings:

D(x, t)→ min
x
, x ∈ C(t), C(t) ⊂ Sm, C(t) 6= ∅, t ∈ T.

The set T of parameters is the set of matrices of norms of returns and the element t ∈ T is a
given matrixR. It is easy to see that objective functionDΠ : X×T → ỹD : X×T → R of
that problem is continuous in all arguments. A non-empty set of constraints does not visibly
depend on parameter, corresponding mapping C : T → X is continuous. So problem (3.4)-
(3.6) satisfies the conditions of lemma 1. Consequently mapping m : T → X that puts
the set of vectors (minimizing the objective function) in accordance to matrix R is upper
semicontinuous.

Next consider the sequence {Xε∗} of solutions of problem (3.1)-(3.3) for each ε. Since
Xε∗ ∈ Sm, ∀ε , and the set Sm is compact then convergent subsequence can be separated
from the sequence {Xε∗}. Denote the limit of that subsequence by X∗. Then from upper
semicontinuity of mapping m : T → X we get the following statement.

Statement 3.1 (i) Rε → R when ε→ 0;
(ii) Xε∗ → X∗, where Xε∗ ∈ m(Rε), ∀ε, ε→ 0;
(iii) X∗ is the solution of problem (3.4)-(3.6), X∗ ∈ m(R).

4 Stability of solution of matrix game to the perturbations of initial data

It remains to show that the set of optimal strategies in matrix game is also upper semi
continuous mapping of payoff matrices. Of course, this can be done as described above by
using Berge’s theorem since matrix game is reduced to linear programming problem. But
we will use the method for solving of matrix games by using differential equations [2].

Note that searching for optimal strategies one can be restricted by symmetric games
(with skew-symmetric payoff matrix). Really, there are methods of representation of arbi-
trary game as a symmetric game with V ∗ = 0 [1].
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LetA be a skew-symmetric n×nmatrix and let P = (p1, ..., pn) be arbitrary strategy of
one player (obviously sets of optimal strategies of both players are the same). Denote uk =
n∑
j=1

akjpj , k = 1, n, ϕ(uk) = max {0, uk}, Φ(P ) =
n∑
k=1

ϕ(uk), Ψ = Ψ(P ) =
n∑
k=1

ϕ2(uk).

Consider the system of differential equations

dpk
dt

= ϕ(uk)− Φ(P )pk, k = 1, n, (4.1)

under certain initial conditions

pk(t0) = p0k, k = 1, ..., n, P 0 = (p01, ..., p
0
n) ∈ Sn. (4.2)

Cauchy problem for the system (4.1) with initial conditions (4.2) has a unique continu-
ous solution. Existence of such a solution follows from the fact that ∀k functions
fk(t, p1, ..., pn) ≡ ϕ(uk) − Φ(P )pk are continuous in all arguments and satisfy the Lip-
schitz condition. It is easy to make sure that number L = 4nmax{aij}

i,j

can be a Lipschitz

constant.
Establish two important properties of that solution. If p0k ≥ 0, then pk(t) ≥ 0 for all t >

0. Really, if pk(t′) = 0, then dpk
dt = ϕ(uk) ≥ 0, function pk grows. Let now

n∑
k=1

p0k = 1. Let

show that
n∑
k=1

pk(t) = 1 for all t > 0. Assume that
n∑
k=1

pk(t
′) > 1 ∀t′. Then there exists t′′ ∈

[0, t′) such that
n∑
k=1

pk(t
′′) = 1 and

n∑
k=1

pk(t) > 1 for all t ∈ (t′′, t′]. Since for these values

t
n∑
k=1

pk(t) >
n∑
k=1

pk(t
′′), then d

dt

n∑
k=1

pk(t
′′′) > 0 at least for one t′′′ ∈ (t′′, t). By adding all

the equations of system (4.1) we obtain d
dt

n∑
k=1

pk(t) = Φ(P )

(
1−

n∑
k=1

pk(t
′′′)

)
≤ 0, that

leads to contradiction. The case of
n∑
k=1

pk(t) < 1 is refuted by similar explanation. Hence,

by taking value 1 for some t = t0, the sum
n∑
k=1

pk(t) will still remain equal to 1. So if vector

P 0 is a strategy, then given property is kept for P (t) for all t.

Next, if ϕ(uk) = uk > 0 we obtain dϕ(uk)
dt =

n∑
l=1

akl
dpl
dt =

n∑
l=1

aklϕ(ul)− Φ(P )ϕ(uk).

Therefore

dϕ2(uk)

dt
= 2ϕ(uk)

dϕ(uk)

dt
= 2ϕ(uk)

(
n∑
l=1

aklϕ(ul)− Φ(P )ϕ(uk)

)
. (4.3)

If uk ≤ 0 then ϕ(uk) is constant and equals zero, so the derivatives
dϕ(uk)

dt
= 0 and

dϕ2(uk)

dt
= 0. Hence equality (4.3) remains true. It follows that for all k

n∑
k=1

dϕ2(uk)

dt
=
dΨ(P )

dt
= 2

n∑
k=1

ϕ(uk)

(
n∑
l=1

aklϕ(ul)− Φ(P )ϕ(uk)

)
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= 2

n∑
k=1

n∑
l=1

aklϕ(uk)ϕ(ul)− 2Φ(P )

n∑
k=1

ϕ2(uk),

and using the fact that matrix A is skew-symmetric

dΨ(P )

dt
= −2Φ(P )Ψ(P ). (4.4)

Since summands of Φ(P ) are not negative, then it is easy to see that
√
Ψ(P ) ≤ Φ(P ).

By substituting obtained assessment for Φ (·) in (4.4) we get dΨ(P )
dt ≤ −2 (Ψ(P ))3/2 or

d
dt

(
Ψ−1/2(P )

)
≥ 1.

By integrating obtained inequality in an arbitrary interval (0, t), in which Ψ (·) > 0, we
get Ψ−1/2(P ) ≥ t + Ψ−1/2(P 0) or Ψ(P ) ≤ Ψ(P 0)(

1+t
√
Ψ(P 0)

)2 . Since ϕ2(uk) ≤ Ψ(P ), then

we get uk ≤ ϕ(uk) ≤
√
Ψ(P 0)

1+t
√
Ψ(P 0)

. Hence lim
t→∞

uk(t) ≤ lim
t→∞

√
Ψ(P 0)

1+t
√
Ψ(P 0)

= 0 for k = 1, n,

that is

lim
t→∞

n∑
j=1

akjpj(t) ≤ 0 = V ∗A. (4.5)

Consider unlimited growing sequence of values t1, t2, ... and corresponding sequence
of strategies P (t1), P (t2), .... Since the set Sn of mixed strategies is compact, then con-
vergent subsequence can be always separated from the given sequence. Let P ∗ be its limit.

From (4.5) it follows that
n∑
j=1

akjp
∗
j ≤ 0 = V ∗, ∀ k = 1, ..., n, that is P ∗ is optimal strategy

of second player (and also of first player due to symmetry of the game).
Let us turn directly to the issue of stability of solution of matrix game. First of all since

the solution of Cauchy problem (4.1)-(4.2) has the property of uniqueness, then this solution
is stable to the perturbations of initial data and right part fk(t, p1, ..., pn) ≡ ϕ(uk)−Φ(P )pk.

In the given problem the perturbations in the right part are represented by payoff ma-
trices or rather by matrices obtained from Rε and R by symmetrizating the games. Since
right part is continuous in all parameters, then it follows from Rε → R, ε → 0, that
f εk(t, p1, ..., pn) → fk(t, p1, ..., pn), ε → 0. So the solution of (4.1)-(4.2) with parameter
Rε (vector function P ε(t) = (pε1(t), ..., p

ε
n(t))) converges to the solution of correspond-

ing unperturbed system, that is to vector function P (t) = (p1(t), ..., pn(t)) with ε → 0 if
Rε → R.

Next on the basis of continuous functions P (t) and P ε(t), ∀ε, we can construct con-
vergent sequences {P (t1), P (t2), ...} and {P ε(t1), P ε(t2), ...}, ∀ε, which converge to the
optimal strategies P ∗ and P ε∗, ∀ε, respectively.

Remark 4.1 In terms of set of the functions depending on parameter ε and due to the stabil-
ity of the solution of problem (4.1)-(4.2) to the perturbations of initial data, P (t) uniformly
converges to P ε(t) with ε → 0, t ∈ ỹ (P (t) ⇒ P ε(t)). On the other hand the mapping
P ε(t) ≡ P (t, ε) can be considered as a set of functions depending on parameter t. So,
∀ε ∈ ỹ P (t, ε) → P (ε) ≡ P ε∗, t → ∞, where P ε∗ is an optimal mixed strategy. Hence
P ε(t) → P ε∗ when ε ∈ ỹ and t → ∞. An important property of the set of functions
depending on parameter is represented by the following lemma.

Lemma 4.1 (about permutation of limits). Consider f⇒
X
ϕ, t → τ , and f→

T
ψ, x → a,

where f : T ×X → ỹn, ϕ : X → ỹn, ψ : T → ỹn, a ∈ X , τ ∈ T . Then:
(i) ∃ lim

x→a
ϕ(x);
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(ii) ∃ lim
t→τ

ψ(t);

(iii) lim
x→a

ϕ(x) = lim
t→τ

ψ(t).

Due to lemma 4.1 and remark 4.1 we obtain the following statement.
Statement 4.1 (i) ∃ lim

t→∞
P (t), furthermore lim

t→∞
P (t) = P ∗, where P ∗ is an optimal

strategy of first player;
(ii) ∃ lim

ε→0
P ε∗;

(iii) lim
ε→0

P ε∗ = lim
t→∞

P (t).

Remark 4.2 From the statement 4.1 we get that P ε∗ → P ∗ with ε→ 0, that is the solution
of matrix game is stable to the perturbations of initial data.
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