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Lp,ν-boundedness of the vector-valued B-square functions
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Abstract. The classical square functions play important role in Harmonic analysis and have a very direct
connections L2−estimates and Littlewood-Paley theory. In this paper we consider the generalized shift
operator associated with the Laplace-Bessel differential operator

∆B =

n−1∑
k=1

∂2

∂x2k
+
(
∂2

∂x2n
+

2ν

xn

∂

∂xn

)
, ν > 0

and the relevant square functions. We introduce B− square functions and then prove boundedness of
newly defined B− square functions from Lp,ν(Rn+, H1) to Lp,ν(Rn+), for all 1 < p <∞ and H1 separa-
ble Hilbert space.
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1 Introduction

The classical square functions are defined as follows. Let S ≡ S (Rn) be the Schwartzian
test function space, Φ ∈ S and

∫
RnΦ(x)dx = 0. Denote

Φt(x) = t−nΦ
(x
t

)
, t > 0.

The ( non- linear) operator

SΦ (f) (x) =

(∫ ∞
0
|f ∗ Φt(x)|2

dt

t

) 1
2
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is called a square function generated by Φ. Here ∗ denotes the usual convolution. Together
with the maximal functions and singular integrals, the square function plays important role
in Harmonic Analysis and have a very direct connection with L2 estimates and Littlewood-
Paley theory ( see [26]; p. 26-27, [27]). There are a lot of diverse variants of square functions
and their various applications; see [4],[11],[17],[23],[1] and references therein.

Note that the Laplace- Bessel differential operator ∆B is known as an important oper-
ator in analysis and its applications. The relevant harmonic analysis has been the research
area for many mathematicicians as B. M. Levitan, B. Muckenhoupt, E. M. Stein, I. A.
Kipriyanov, M. I. Klyunchantsev, J. Löfström, J. Peetre, A. D. Gadjiev, I. A. Aliev, V. S.
Guliyev, B. Rubin, S. Uyhan, I. Ekincioglu, J. J. Hasanov, S. Keles, S. Bayrakci, M. N.
Omarova and others. ( see, [6], [7], [18], [19], [20], [22], [24], [2], [8], [21], [12], [3], [5],
[9], [10], [13], [14], [15], [16]).

The structure of the paper is as follows. In section 2, we present some definitions and
auxiliary results. In section 3, we give square function associated with Laplace- Bessel
differential operator and prove its boundedness on Lp,ν

(
Rn+
)
.

2 Some Definitions and Auxiliary

Let Rn is n- dimensional Euclidean space, Rn+ = {x = (x1, ..., xn) ∈ Rn : xn > 0} and

|x| =
(

n∑
i=1

x2i

) 1
2

and define

Lp,ν(Rn+) := Lp(Rn+, x2νn dx) =
{
f : ‖f‖Lp,ν(Rn+) =

(∫
Rn+
|f(x)|px2νn dx

) 1
p
<∞

}
,

where ν > 0 is a fixed parameter, 1 ≤ p <∞ and dx = dx1dx2...dxn.
For x ∈ Rn+ and r > 0, we denote by E(x, r) = {y ∈ Rn+ : |x − y| < r} the open

ball centered at x of radius r, by
{
E(x, r) = Rn+ \ E(x, r) denote its complement. For any

A ⊂ Rn+, |A|ν =
∫
A x

2ν
n dx and |E(0, r)|ν = Crn+2ν . Denote by T y the generalized shift

operator ( B- shift operator) acting according to the law

T yf(x) =
Γ (ν + 1

2)

Γ (ν)Γ (12)

∫ π

0
f
(
x′ − y′,

√
x2n − 2xnyn cosαn + y2n

)
(sinα)2ν−1 dα

where x = (x′, xn), y = (y′, yn) and x′, y′ ∈ Rn−1.
We remark that T y is closely connected with the Bessel differential operator

Bxn =
∂2

∂x2n
+

2ν

xn

∂

∂xn
, xn > 0

(see [21] for details).
For ϕ ∈ Lp,ν(Rn+)

‖T yϕ‖Lp,ν(Rn+) ≤ C ‖ϕ‖Lp,ν(Rn+) .

The T y shift operator generates the corresponding ”B − convolution”

(ϕ⊗ ψ) (x) =
∫
R+
n

ϕ(y)T yψ(x)y2νn dy

for which the Young inequality holds:

‖ϕ⊗ ψ‖Lr,ν(Rn+) ≤ ‖ϕ‖Lp,ν(Rn+) ‖ψ‖Lq,ν(Rn+) ; 1 ≤ p, q, r ≤ ∞, 1
p
+

1

q
=

1

r
+ 1.
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We note the following property (needed below) of the ”B − convolution” :

ϕ⊗ ψ = ψ ⊗ ϕ

is valid. The Fourier-Bessel transform is defined as follows [12]

Fνϕ(z) =

∫
Rn+
ϕ(x)e−ix

′z′jν− 1
2
(xnzn)x

2ν
n dx

where jν− 1
2

is the normalized Bessel function that is defined as for t > 0, ν > −1
2 ;

jν (t) = 2νΓ (ν + 1)
Jν (t)

tν
=

Γ (ν + 1)
√
πΓ
(
ν + 1

2

)∫ 1

−1

(
1− u2

)ν− 1
2 cos (tu) du.

Here Jν (t) is the first kind of Bessel function. The normalized Bessel function jν is the
eigenfunction of the Bessel differential operator satisfying the conditions for all t ∈ R,
|jν (t)| ≤ 1, jν (0) = 1, j′ν (0) = 0 and for λ ∈ C

jν (λx) jν (λy) = T x (jν (λ ·)) (y) .

The influence of the Fourier- Bessel transform to B- convolution is as follows

Fν(ϕ⊗ ψ)(z) = (Fνϕ) (z) (Fνψ)(z).

3 Vector-valued function and its some properties

Let H be a separable Hilbert space. Then a function f (x), from Rn+ to H is measurable if
the scalar valued functions 〈f (x) , ϕ〉 are measurable, where 〈·, ·〉 denotes the inner product
of H , and ϕ denotes an arbitrary vector of H. If f (x) is such a measurable function, then
‖f (x)‖H is also measurable ( as a function with non-negative values), where ‖·‖H denotes
the norm of H. Thus Lp,ν

(
Rn+, H

)
is defined as the equivalence classes of measurable

functions f (x) from Rn+ to H,with the property that the norm

‖f‖Lp,ν(Rn+,H) =

(∫
Rn+
‖f (x)‖pH x

2ν
n dx

) 1
p

, 1 ≤ p <∞

is finite. When p =∞ there is a similiar definition, except

‖f‖L∞(Rn+,H) = ess sup
x∈Rn+

‖f(x)‖H .

Now, let H1 and H2 be two separable Hilbert spaces, and let B(H1, H2) be the Banach
space of bounded linear operators from H1 to H2, with the usual oeprator norm. We say
that a function f (x) , from Rn+ to B(H1, H2) is measurable if f (x)ϕ is an H2−valued
measurable function for every ϕ ∈ H1.In this case ‖f(x)‖B(H1,H2)

is also measurable and
we can define the space Lp,ν

(
Rn+, B(H1, H2)

)
, as before; ( here again ‖·‖B(H1,H2)

denotes
the norm, this time inB(H1, H2)). The usual facts aboutB-convolution hold in this setting.
For example, suppose g ∈ Lq,ν(Rn+, B(H1, H2)) and f ∈ Lp,ν(Rn+, B(H1, H2)), 1 ≤ p,
q ≤ ∞. Then

(f ⊗ g)(x) =
∫
Rn+
g(y)T yf(x)y2νn dy
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converges in the norm of H2 almost every x, and

‖(f ⊗ g)(x)‖H2
≤
∫
Rn++
‖g(y)‖B(H1,H2)

‖T yf(x)‖H1
y2νn dy.

Also, when 1
r = 1

p +
1
q − 1 with 1 ≤ r ≤ ∞,

‖f ⊗ g‖Lr,ν(Rn+,H2) ≤ ‖g‖Lq,ν(Rn+,B(H1,H2))‖f‖Lp,ν(Rn+,H1).

Now, we suppose that f ∈ L1,ν(Rn+, H). Then we can define its H-valued Fourier-Bessel
transform

(Fνf)(x) =

∫
Rn+
f(y)e−ix

′y′jν− 1
2
(xnyn)y

2ν
n dy,

which is an element of L∞(Rn+, H). If f ∈ L1,ν(Rn+, H) ∩ L2,ν(Rn+, H), then Fνf ∈
L2,ν(Rn+, H). The Fourier- Bessel transform can then be extended by continuity to a unitary
mapping of the Hilbert space L2,ν(Rn+, H) to itself (see for details [25]; p. 45-46, [28]; p.
307-309).

Definition 3.1 [16] We say that a function K on Rn+ whose values are bounded operators
from H1 to H2 is vector valued B− singular integral kernel provided that

1) K is measurable and integrable on compacts sets not containing the origin,
2) There existsM > 0 for all ε : 0 < ε < r,

∥∥∥∫E(0,r)\E(0,ε)K (x)x2νn dx
∥∥∥
B(H1,H2)

≤M

and for each h in H1,
[∫
E(0,r)\E(0,ε)K (x)x2νn dx

]
h converges as ε→ 0 ,

3) For each h in H1 with ‖h‖H1
≤ 1∫

E(0,4r)\E(0,r)
|x| ‖K (x)h‖H2

x2νn dx ≤M,

4) ∫
cE(0,4|y|)

‖T yK (x)−K (x)‖B(H1,H2)
x2νn dx ≤M ; |y| < 1

4
.

Theorem 3.1 [16] LetK ∈ Lloc1,ν(Rn+, B(H1, H2)) be a vector valuedB− singular integral
kernel. For f ∈ Lp,ν

(
Rn+, H1

)
, 1 < p <∞ suppose

(Tεf) (x) =

∫
cE(0,ε)

K (y)T yf (x) y2νn dy, ε > 0.

Then there exists a constant Cp,ν > 0 such that for all f ∈ Lp,ν
(
Rn+, H1

)
the inequality

‖Tεf‖Lp,ν(Rn+,H2) ≤ Cp,ν ‖f‖Lp,ν(Rn+,H1)

is valid and
Tf (x) = lim

ε→0+
(Tεf) (x)

exists in Lp,ν
(
Rn+, H2

)
and also the following inequality is valid

‖Tf‖Lp,ν(Rn+,H2) ≤ Cp,ν ‖f‖Lp,ν(Rn+,H1)

where the constant Cp,ν > 0 is independent of f.
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4 Boundedness of Square Functions

We let H1 = C, the complex numbers, and H2 = L2

(
R+, dtt

)
the Hilbert space of square

integrable functions on the positive half-line with respect to the measure dt
t and norm

‖h‖H2
=

(∫ ∞
0
|h (t)|2 dt

t

) 1
2

.

Definition 4.1 We say that a scalar valued function ϕ on Rn+ is a Littlewood- Paley function
provided it satisfies

1)

ϕ ∈ L1,ν

(
Rn+
)

and
∫
Rn+
ϕ (x)x2νn dx = 0;

2)
|ϕ (x)| ≤ C (1 + |x|)−(Q+α) ; ∃α > 0, Q = n+ 2ν;

3) ∫
Rn+

∣∣∣T hϕ (x)− ϕ (x)
∣∣∣x2νn dx ≤ C |h|γ ; ∃γ > 0.

Proposition 4.1 Suppose ϕ is a Littlewood- paley function. Then there exists a C constant
for all z ∈ Rn+ such that

‖Fνϕ (· z)‖H2
≤ C.

Proof. We begin by showing that

|(Fνϕ) (z)| ≤ Cmin
{
|z|

α
Q+α+1 , |z|−γ

}
,

where C is independent of z. Now, we investigate |(Fνϕ) (z)| .

(Fνϕ) (z) =

∫
Rn+
ϕ (x) e−ix

′z′jv− 1
2
(xnzn)x

2ν
n dx

=

∫
Rn+
ϕ (x)

(
e−ix

′z′jv− 1
2
(xnzn)− 1

)
x2νn dx.

We get

|(Fνϕ) (z)| ≤
∫
Rn+
|ϕ (x)|

∣∣∣e−ix′z′jv− 1
2
(xnzn)− 1

∣∣∣x2νn dx
≤ 2

∫
Rn+
|ϕ (x)|min {|x| |z| , 1}x2νn dx

≤ 2

∫
E(0,η)

|ϕ (x)| |x| |z|x2νn dx+ 2

∫
cE(0,η)

|ϕ (x)|x2νn dx

= I + J,

where

I = 2

∫
E(0,η)

|ϕ (x)| |x| |z|x2νn dx ≤ 2c |z| ηQ+1
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and

J = 2

∫
cE(0,η)

|ϕ (x)|x2νn dx ≤ 2c

∫
cE(0,η)

|x|−(Q+α) x2νn dx ≤ 2cη−α.

Using I and J, we write

|(Fνϕ) (z)| ≤ 2c
(
|z| ηQ+1 + η−α

)
.

Now, we take minimizing with respect to η > 0. Let

g (η) = |z| ηQ+1 + η−α, η > 0.

We have

g
′
(η) = |z| (Q+ 1) ηQ − αη−α−1

= η−α−1
(
|z| (Q+ 1) ηQ+α+1 − α

)
.

For g
′
(η) = 0, η =

(
α

|z|(Q+1)

) 1
Q+α+1

. Let

c0 =

(
α

|z| (Q+ 1)

) 1
Q+α+1

.

For 0 < η < c0, g
′
(η) < 0 and for η > 0, g

′
(η) > 0. Then min

η>0
g (η) = g (c0) . We obtain

that

g(c0) = |z|
(

α

|z| (Q+ 1)

) Q+1
Q+α+1

+

(
α

|z| (Q+ 1)

) −α
Q+α+1

= |z|1−
Q+1

Q+α+1

(
α

(Q+ 1)

) Q+1
Q+α+1

+ |z|
α

Q+α+1

(
α

(Q+ 1)

) −α
Q+α+1

= |z|
α

Q+α+1 C (α,Q) .

min
η>0

g (η) = |z|
α

Q+α+1 C (α,Q) .

We get
|(Fνϕ) (z)| ≤ |z|

α
Q+α+1 C (α,Q) . (4.1)

Fν

(
T hϕ

)
(z) =

∫
Rn+

(
T hϕ

)
(x) e−ix

′z′jv− 1
2
(xnzn)x

2ν
n dx

=

∫
Rn+
ϕ (x)T h

(
e−ix

′z′jv− 1
2
(xnzn)

)
x2νn dx

=

∫
Rn+
ϕ (x) e−i(x

′−h′)z′T hn
(
jv− 1

2
(xnzn)

)
x2νn dx

= eih
′z′
∫
Rn+
ϕ (x) e−ix

′z′T hn
(
jv− 1

2
(xnzn)

)
x2νn dx

= −
∫
Rn+
ϕ (x) e−ix

′z′jv− 1
2
(xnzn)x

2ν
n dx

= −Fνϕ (z)
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for h = (h′, hn) , where h′ = πz′

|z′|2 and hn = 0.

We can write

2 (Fνϕ) (z) =

∫
Rn+

[
ϕ (x)− T hϕ (x)

]
e−ix

′.z′jν− 1
2
(xnzn)x

2ν
n dx

and

|(Fνϕ) (z)| ≤
1

2

∫
Rn+

∣∣∣T hϕ (x)− ϕ (x)
∣∣∣x2νn dx ≤ 1

2
|h|γ .

Here h = (h′, hn), h′ = πz′

|z′|2 and hn = 0, we have

|(Fνϕ) (z)| ≤ C |z|−γ . (4.2)

From 4.1 and 4.2, we obtain that.

|(Fνϕ) (z)| ≤ Cmin
{
|z|

α
Q+α+1 , |z|−γ

}
.

To complete the proof we estimate

‖Fνϕ (· z)‖2H2
=

∫ ∞
0
|Fνϕ (tz)|2 dt

t
≤ C

∫ ∞
0

min
{
|tz|

α
Q+α+1 , |tz|−γ

}2 dt

t
≤ C.

The proof is completed.
Let now K (x) ∈ L

(
C, L2

(
R+, dtt

))
be given by

K (x) a = t−Qϕ
(x
t

)
a = ϕt (x) a

where x ∈ Rn+, a is a complex scalar and ϕ is a Littlewood- Paley function. Corresponding
to K we consider the singular integral operator

Tf (x) = lim
ε→0

∫
cE(0,ε)

K (y)T yf (x) y2νn dy = lim
ε→0

∫
cE(0,ε)

ϕt (y)T
yf (x) y2νn dy.

We want to show that T falls with Theorem 2.3. and thus obtain its Lp,ν continuity, 1 <
p <∞. To get a feeling for the situation we do the L2,ν case first.

Proposition 4.2 Defined by

Tf (x) = lim
ε→0

∫
cE(0,ε)

K (y)T yf (x) y2νn dy

T operator is bounded from L2,ν

(
Rn+, H1

)
into L2,ν

(
Rn+, H2

)
.
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Proof. Observe that for f inL2,ν

(
Rn+, H1

)
and account of the Fubuni Theorem, Plancherel’s

identity and Proposition 3.2. we have

∫
Rn+
‖K ⊗ f (x)‖2H2

x2νn dx

=

∫
Rn+

(∫ ∞
0
|ϕt ⊗ f (x)|2

dt

t

)
x2νn dx

=

∫ ∞
0

∫
Rn+
|Fν (ϕt ⊗ f) (x)|2 x2νn dx

dt

t

= C

∫ ∞
0

(∫
Rn+
|Fνϕt (x)|2 |Fνf (x)|2 x2νn dx

)
dt

t

≤ C
∫
Rn+

(
sup
x∈Rn+

∫ ∞
0
|Fνϕ (tx)|2 dt

t

)
|Fνf (x)|2 x2νn dx

≤ C sup
x∈Rn+

‖Fνϕ (.z)‖2H2
‖Fνf‖2L2,ν(Rn+,H1) ≤ C ‖f‖

2
L2,ν(Rn+,H1) .

We obtain

‖Tf‖L2,ν(Rn+,H2) ≤ C ‖f‖L2,ν(Rn+,H1) .

Theorem 4.1 Suppose T is given by

Tf (x) = lim
ε→0

∫
cE(0,ε)

ϕt (y)T
yf (x) y2νn dy.

Then there exists a constantC = Cp > 0 such that for all f ∈ Lp,ν
(
Rn+, H1

)
the inequality

‖Tf‖Lp,ν(Rn+,H2) ≤ C ‖f‖Lp,ν(Rn+,H1) , 1 < p <∞

is valid.

Proof. We verify that (1)− (4) in Definition 3.1. are satisfied. (1) is immediate. As for (2),
observe that since ∫

E(0,R)
ϕ (x)x2νn dx = −

∫
cE(0,R)

ϕ (x)x2νn dx

by property (2) of Definition 3.1

∣∣∣∣∣
∫
E(0,R)

ϕ (x)x2νn dx

∣∣∣∣∣ ≤ CRQ

(1 +R)Q+α
.



20 Lp,ν -boundedness of the vector-valued B- square functions

Now, we must show that
∥∥∥∫E(0,R) ϕt (x)x

2ν
n

∥∥∥ dxH2 ≤ C.∥∥∥∥∥
∫
E(0,R)

ϕt(x)x
2ν
n dx

∥∥∥∥∥
H2

=
(∫ ∞

0

∣∣∣ ∫
E(0,R)

ϕt(x)x
2ν
n dx

∣∣∣2dt
t

) 1
2

=
(∫ ∞

0

∣∣∣t−Q ∫
E(0,R)

ϕ(
x

t
)x2νn dx

∣∣∣2dt
t

) 1
2

=
(∫ ∞

0

∣∣∣ ∫
E(0,R

t
)
ϕ(u)u2νn du

∣∣∣2dt
t

) 1
2

≤
(∫ ∞

0

( C(Rt )
Q

(1 + R
t )
Q+α

)2dt
t

) 1
2

≤ C
(∫ ∞

0

R2Qt2(Q+α)

t2Q(t+R)2(Q+α)

dt

t

) 1
2

≤ CRQ
(∫ ∞

0

t2α−1

(t+R)2(Q+α)
dt
) 1

2 ≤ C.

We can write ∥∥∥∫
E(0,R)

ϕt(x)x
2ν
n dx

∥∥∥
H2

≤

 C
(∫∞

R

(
R
t

)2Q
dt
) 1

2
;R ≤ t

C
( ∫ R

0

(
R−t
tα−1

)2
t2α−1dt

) 1
2
;R > t

≤ C.

We obtain ∥∥∥∥∥
∫
E(0,R)

ϕt (x)x
2ν
n dx

∥∥∥∥∥
H2

≤ C

which gives (2) . For (3), since

|ϕ (x)| ≤ C (1 + |x|)−(Q+α) ; ∃α > 0, Q = n+ 2ν

|ϕt (x)| ≤
Ctα

(t+ |x|)Q+α

we have ∫
E(0,4r)\E(0,r)

|x| ‖ϕt (x)‖H2
x2νn dx ≤ Cr.

Finally to show that∫
cE(0,4|y|)

‖T yϕt (x)− ϕt (x)‖H2
x2νn dx ≤M ; |y| < 1

4
.
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Let 0 < ε < min {α, γ,Q} and observe that∫
cE(0,4|y|)

‖T yϕt (x)− ϕt (x)‖H2
x2νn dx

=

∫
cE(0,4|y|)

|x|−(
Q+ε
2 )
(
‖T yϕt (x)− ϕt (x)‖H2

|x|(
Q+ε
2 )
)
x2νn dx

≤
(∫

cE(0,4|y|)
|x|−(Q+ε) x2νn dx

) 1
2
(∫

cE(0,4|y|)
‖T yϕt (x)− ϕt (x)‖2H2

|x|(Q+ε) x2νn dx
) 1

2

≤ C |y|
−ε
2

(∫
cE(0,4|y|)

|x|(Q+ε)
(∫ ∞

0
|T yϕt (x)− ϕt (x)|2

dt

t

)
x2νn dx

) 1
2

≤ C |y|
−ε
2

(∫
cE(0,4|y|)

|x|(Q+ε)
(∫ ∞

0

∣∣∣T y
t ϕ
(x
t

)
− ϕ

(x
t

)∣∣∣2 dt

t2Q+1

)
x2νn dx

) 1
2

≤ C |y|
−ε
2

(∫ ∞
0

t−2Q
(∫

cE(0,4|y|)
|x|(Q+ε)

∣∣∣T y
t ϕ
(x
t

)
− ϕ

(x
t

)∣∣∣2 x2νn dx)dtt ) 1
2
.

We use the following inequality∣∣∣T y
t ϕ
(x
t

)
− ϕ

(x
t

)∣∣∣ ≤ ∣∣∣T y
t ϕ
(x
t

)∣∣∣+ ∣∣∣ϕ(x
t

)∣∣∣
≤ cν

∫ ∞
0

∣∣∣∣∣ϕ
(
x′ − y′

t
,

√
x2n + y2n − 2xnyn

t

)∣∣∣∣∣ (sinα)2ν−1 dα+
∣∣∣ϕ(x

t

)∣∣∣
≤ K

(
t

|x|

)Q+ε

,

we obtain∫
cE(0,4|y|)

∥∥∥T yϕt (x)− ϕt (x) ∥∥∥
H2

x2νn dx

≤ C |y|
−ε
2

(∫ ∞
0

t−2Q
(∫

cE(0,4|y|)
|x|Q+ε

∣∣∣T y
t ϕ
(x
t

)
− ϕ

(x
t

)∣∣∣2 x2νn dx)dtt ) 1
2

≤ C |y|
−ε
2

(∫ ∞
0

t−Q+ε
(∫

cE(0,4|y|)

∣∣∣T y
t ϕ
(x
t

)
− ϕ

(x
t

)∣∣∣x2νn dx)dtt ) 1
2

≤ C |y|
−ε
2

(∫ ∞
0

t−Q+ε
(∫

Rn+

∣∣∣T y
t ϕ
(x
t

)
− ϕ

(x
t

)∣∣∣x2νn dx)dtt
) 1

2

≤ C |y|
−ε
2

(∫ ∞
0

t−Q+εmin

{
2tQ ‖ϕ‖L1,ν(Rn+)

, tQC1

(
|y|
t

)γ} dt

t

) 1
2

≤ C |y|
−ε
2

(∫ |y|
0

t−Q+ε2tQ ‖ϕ‖L1,ν(Rn+)
dt

t
+

∫ ∞
|y|

t−Q+εtQC1

(
|y|
t

)γ dt
t

) 1
2

≤ C |y|
−ε
2 |y|

ε
2 = C

and (4) also holds. From Theorem 2.3. in section 2, we have

‖Tf‖Lp,ν(Rn+,H2) ≤ C ‖f‖Lp,ν(Rn+,H1) .
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Definition 4.2 For ϕ− Littlewood- Paley function and 1 ≤ p <∞, f ∈ Lp,ν(Rn+, H1) put

F (x, t) = (f ⊗ ϕt) (x)

and let

g(F ) (x) =

(∫
[0,∞)

|F (x, t)|2 dt
t

) 1
2

denote the square function generated by Littlewood- Paley ϕ functions.

Corollary 4.1 Let ϕ− Littlewood- Paley function, f ∈ Lp,ν
(
Rn+, H1

)
(1 ≤ p <∞) and

g(F ) (x) =

(∫
[0,∞)

|F (x, t)|2 dt
t

) 1
2

where F (x, t) = (f ⊗ ϕt) (x) . Then g(F ) is bounded fromLp,ν
(
Rn+
)

intoLp,ν
(
Rn+, H1

)
.

Proof. The proof of corollary is obviously from Theorem 3.4. Since F (x, t) = (f ⊗ ϕt) (x)
and F (·, ·) ∈ Lp,ν

(
Rn+, H2

)
, ‖F (x, ·)‖H2

= g(F ) (x) . So we have

‖g(F )‖ Lp,ν(Rn+) =

(∫
Rn+
|g(F ) (x)|p x2νn dx

) 1
p

≤

(∫
Rn+
‖F (x, ·)‖pH2

x2νn dx

) 1
p

= ‖F (·, ·)‖Lp,ν(Rn+,H2) ≤ c ‖f‖ Lp,ν(Rn+,H1) .
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