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Abstract. In the paper an inverse value problem for the parabolic equations of the second order with
non-classic boundary conditions is investigated. For this reason, first of all the initial problem is reduced
to the equivalent problem, for which the theorem of existence and uniqueness is proved. Then using these
facts the existence and uniqueness of the classical solution of initial problem is proved.
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1 Introduction

It is accepted to call the problem of definition of coefficients or the right hand side of
differential equation simultaneously with its solution, the inverse problems of mathematical
physics.

Inverse problems arise in different areas of human activity such as seismology, prospect-
ing of mineral resources,biology, medical visualization, computer tomography, remote sound-
ing of the Earth, spectral analysis, nondestructive control and so on. Solvability of various
inverse problems for parabolic equations was studied in many papers (see e.i.[1]-[4])

In the paper the existence and uniqueness of the solution of a inverse boundary value
problem is studied for second order parabolic equation with nonclassical boundary condi-
tions.

2 Problem statement and reducing it to equivalent problem

Let us consider for the equation

a1(t)ut(x, t) + a0(t)u(x, t) = uxx(x, t) + f(x, t) (2.1)

in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} an inverse boundary value problem
with the nonlocal condition

u(x, 0) + δu(x, T ) = ϕ(x) (0 ≤ x ≤ 1) , (2.2)
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the boundary condition
u(0, t) = 0 (0 ≤ t ≤ T ) , (2.3)

nonlocal boundary condition

ux(1, t) + duxx(1, t) = 0 ( 0 ≤ t ≤ T ), (2.4)

and extra condition
u(x0, t) = h(t) (0 ≤ t ≤ T ), (2.5)

where x0 ∈ (0, 1) , d > 0, δ ≥ 0 are the given numbers, a1(t) > 0, f(x, t), ϕ(x), h(t)
are the given functions, u(x, t) and a0(t) are the sought for functions.

Definition 2.1 Under the solution of inverse boundary value problem (2.1)-(2.5) we will
understand the pair of functions {u(x, t), a0(t)}, if u(x, t) ∈ C2,1(DT ), a0(t) ∈ C [0, T ]
and relations (2.1)- (2.5) are fulfilled.

At first problem (2.1)-(2.5) will be reduced to the equivalent problem. To this end, we
consider the following spectral problem

y′′(x) + λy(x) = 0 (0 ≤ x ≤ 1), y(0) = 0, y′(1) = dλ y(1), d > 0. (2.6)

This problem has only eigen functions yk(x) =
√
2 sin(

√
λkx), k = 0, 1, 2, ..., with posi-

tive eigen values λk from the equation ctg
√
λ = d

√
λ. We assign a zero index to any eigen

function, and enumerate the remaining ones in the order of increase of eigen numbers.
The following lemma is valid.

Lemma 2.1 Let f(x, t) ∈ C(DT ), ϕ(x) ∈ C[0, 1], h(t) ∈ C1 [0, T ], h (t) 6= 0 for t ∈
[0, T ],

ϕ(1) +
1

d sin
√
λ0

∫ 1

0
ϕ(x) sin(

√
λ0x)dx = 0, (2.7)

f(1, t) +
1

d sin
√
λ0

∫ 1

0
f(x, t) sin(

√
λ0x)dx = 0, 0 ≤ t ≤ T, (2.8)

and agreement conditions
ϕ (x0) = h (0) + δh (T ) . (2.9)

be fulfilled. Then the problem of finding of classic solution of problem (2.1)-(2.5) is equiv-
alent to the problem of definition of functions u(x, t) ∈ C2,1(DT ) and a0(t) ∈ C [0, T ],
satisfying equation (2.1), condition (2.2), (2.3) and the conditions

u(1, t) +
1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx = 0, 0 ≤ t ≤ T, (2.10)

a1(t)h
′(t) + a0(t)h(t) = uxx(x0, t) + f(x0 , t) (0 ≤ t ≤ T ) (2.11)

Proof. Let {u(x, t), a0(t)} be any solution of problem (2.1)-(2.5). Then allowing for (2.8),
from equation (2.1), we have:

a1(t)

[
ut(1, t) +

1

d sin
√
λ0

∫ 1

0
ut(x, t) sin(

√
λ0x)dx

]

+a0(t)

[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
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=

[
uxx(1, t) +

1

d sin
√
λ0

∫ 1

0
uxx(x, t) sin(

√
λ0x)dx

]
(0 ≤ t ≤ T ). (2.12)

Integrating twice by parts, allowing for (2.3), by simple transformations we find:∫ 1

0
uxx(x, t) sin(

√
λ0x)d x = −ux(1, t) sin

√
λ0 −

√
λ0u(1, t) cos

√
λ0

−λ0
∫ 1

0
u(x, t) sin(

√
λ0x)d x (0 ≤ t ≤ T ) .

Hence we have:

uxx(1, t) +
1

d sin
√
λ0

∫ 1

0
uxx(x, t) sin(

√
λ0x)dx =

1

d
(ux (1, t) + duxx (1, t))

−λ0
[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
. (2.13)

Substituting (2.13) in (2.12) we get:

a1(t)

[
ut(1, t) +

1

d sin
√
λ0

∫ 1

0
ut(x, t) sin(

√
λ0x)dx

]

+a0(t)

[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
=

1

d
(ux (1, t) + duxx (1, t))

−λ0
[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
. (2.14)

From (2.14) by (2.4) we find:

a1(t)ω
′ (t) + (a0 (t) + λ0)ω (t) = 0 (0 ≤ t ≤ T ) , (2.15)

where

ω (t) ≡
[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
(0 ≤ t ≤ T ) . (2.16)

Further, by (2.2) and allowing for (4.8), we finf:

ω (0) + δω (T ) = ϕ(1) +
1

d sin
√
λ0

∫ 1

0
ϕ(x) sin(

√
λ0x)dx = 0, (2.17)

Obviously, the general solution of (2.15) has the form:

ω(t) = ce
−

∫ t
0
a0(τ)+λ0
a1(τ)

dτ
(0 ≤ t ≤ T ). (2.18)

Hence, allowing for (2.12), we get:

c(1 + δe
−

∫ T
0

a0(τ)+λ0
a1(τ)

dτ
) = 0. (2.19)

By δ ≥ 0, from (2.19) we get c = 0. Substituting the last one in (2.18) we deduce that
ω(t) = 0 (0 ≤ t ≤ T ). Consequently, from (2.16) it is clear that condition (2.10) is also
fulfilled.
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Further, from (2.5) it is

ut(x0, t) = h′(t) (0 ≤ t ≤ T ). (2.20)

Substituting x = x0 in equation (2.1), we have

a1(t)ut(x0, t) + a0(t)u(x0, t) = uxx(x0, t) + f(x0, t) (0 ≤ t ≤ T ). (2.21)

Hence allowing for (2.5) and (2.20), we arrve at fulfillment of (2.11).
Now, suppose that {u(x, t), a0(t)} is the solution of problem (2.1)-(2.3), (2.10), (2.11),

and the argeement condition (2.9) is fulfilled.
Then , allowing for (2.10), from (2.14) we arrive at fulfilment of (2.4).
Further, from (2.11) and (2.21), we get:

a1(t)
d

dt
(u(x0, t)− h(t)) + a0(t)(u(x0, t)− h(t)) = 0 (0 ≤ t ≤ T ). (2.22)

By (2.2) agreement condition (2.9), we have:

u (x0, t)− h(0) + δ(u (x0, T )− h(T )) = ϕ(x0)− δ (h(0) + δh(T )) = 0. (2.23)

From (2.22) and (2.23) we deduce that condition (2.5) is fulfilled. The lemma is proved.

3 Information from theory of spectral problems and introduction of some spaces

Solving a homogeneous problem corresponding to problem (2.1)-(2.3), (2.10), (2.11), by
the method of separation of variables we arrive at the spectral problem

y′′(x) + λy(x) = 0 (0 ≤ x ≤ 1), y(0)

= 0, y(1) +
1

d sin
√
λ0

∫ 1

0
y(x) sin(

√
λ0x)dx = 0. (3.1)

It is known that spectral problem [5] is equivalent to spectral problem (2.6) without an
eigen function corresponding to the eigen value λ0. Consequently spectral problem (3.1) has
only eigen functions yk(x) =

√
2 sin (

√
λkx) k = 1, 2, ..., with possitive eigen numbers

λ k, defined from the equation ctg
√
λ = d

√
λ, ennumerated in increasing order.

The following statements were formulated and justified in the papers [5,6].

Lemma 3.1 Beginning with some number N it holds the estimation

0 <
√
λk − πk < (dπk)−1 . (3.2)

Corollary 3.1 Let vk(x) =
√
2 sin(

√
µkx), where

√
µk = πk, k = 1, 2, 3, ... . Then the

following inequalities are valid:

‖yk(x)− vk(x)‖C[0,1] ≤
√
2(dπk)−1, k ≥ N,

∞∑
k=N

‖yk(x)− vk(x)‖2L2(0,1)
≤ 1/(9d2). (3.3)

Lemma 3.2 The system {zk(x)} biorthogonally conjugated to the system {yk(x)}, k =
1, 2, 3, ..., is determined by the formula

zk(x) =
√
2(sin(

√
λkx)− sin

√
λk(sin

√
λ0x)/(sin

√
λ0))/(1 + d sin2

√
λk). (3.4)
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Theorem 3.1 The systems {yk(x)} k = 1, 2, ..., form the Riesz basis in space L2(0, 1).
Now let ηk(x) =

√
2 cos(

√
λkx), ξk(x) =

√
2 cos(

√
µkx), k = 1, 2, 3, ... . then simi-

lar to (3.3), the following inequalities are valid

‖ηk(x)− ξk(x)‖C[0,1] ≤
√
2(dπk)−1, k ≥ N,

∞∑
k=N

‖ηk(x)− ξk(x)‖2L2(0,1)
≤ 1/(9d2). (3.5)

Assume that g(x) ∈ L2(0, 1). Then allowing for (3.3), we get

∞∑
k=1

(∫ 1

0
g(x)yk(x)dx

)2

≤
N∑
k=1

∫ 1

0
g2(x)dx ·

∫ 1

0
y2k(x)dx

+2
∞∑
k=N

(∫ 1

0
g(x)vk(x)dx

)2

+ 2
∞∑
k=N

∫ 1

0
g2(x)dx ·

∫ 1

0
(yk(x)− vk(x))2dx

or ( ∞∑
k=1

(∫ 1

0
g(x)yk(x)dx

)2
)1/2

≤M ‖g(x)‖L2(0,1)
, (3.6)

where

M =

[
N∑
k=1

∫ 1

0
y2k(x)dx+ 2/

(
9d2
)
+ 2

]1/2
. (3.7)

Allowing for (3.6), similar to (3.5), we find:( ∞∑
k=1

(∫ 1

0
g(x)ηk(x)dx

)2
)1/2

≤M ‖g(x)‖L2(0,1)
. (3.8)

As the functions {yk(x)}, k = 1, 2, 3, ..., form the Riesz basis in space L2(0, 1), then it
is known [7] that for any function g(x) ∈ L2(0, 1) it is valid

g(x) =
∞∑
k=1

gk · yk(x), (3.9)

where

gk =

∫ 1

0
g(x)zk(x)dx. (k = 1, 2, ....)

Further, it is easy to see that

gk =

√
2

αk

[∫ 1

0
g(x) sin (

√
λkx)dx−

cos
√
λk

d
√
λk sin

√
λ0

∫ 1

0
g(x) sin

√
λ0xdx

]
, (3.10)

where
αk = 1 + d sin2

√
λk > 1.

Hence, allowing for (3.6) we find:( ∞∑
k=1

g2k

)1/2

≤M0 ‖g(x)‖L2(0,1)
, (3.11)



A.N.Safarova 161

where

M0 =

M +
1

d
∣∣sin√λ0∣∣

( ∞∑
k=1

1

λk

)1/2
√2. (3.12)

Assume that g(x) ∈ C[0, 1], g′(x) ∈ L2(0, 1), g(0) = 0 and

J(g) ≡ g(1) + 1

d sin
√
λ0

∫ 1

0
g(x) sin(

√
λ0x)dx = 0.

Then from (3.10), we have:

gk =

√
2

αk

1√
λk

∫ 1

0
g′(x) cos

(√
λkx

)
dx. (3.13)

Hence, allowing for (3.5) we find:( ∞∑
k=1

(
√
λk |gk|)2

)1/2

≤M
∥∥g′(x)∥∥

L2(0,1)
. (3.14)

Let g(x) ∈ C1[0, 1], g′′(x) ∈ L2(0, 1), g(0) = 0 and J(g) = 0. Then from (3.13) we
have:

gk = −
√
2

αk

[
1

λk

∫ 1

0
g′′(x) sin(

√
λkx)dx−

cos
√
λk

dλk
√
λk
g′ (1)

]
. (3.15)

Hence we find:( ∞∑
k=1

(λk |gk| )2
)1/2

≤ m
∣∣g′(0)∣∣+√2M ∥∥g′′(x)∥∥

L2(0,1)
, (3.16)

where

m =

√
2

d

( ∞∑
k=1

1

λk

)1/2

.

Now suppose that g(x) ∈ C2[0, 1], g′′′(x) ∈ L2(0, 1), g(0) = 0, J(g) = 0, g′′(0) =
0 and dg′′(2.1) + g′(2.1) = 0.. then from (3.15) , we have:

gk = −
√
2

αk

1

λk
√
λk

∫ 1

0
g′′′(x) cos(

√
λkx)dx.

Hence, allowing for (3.5) we get:( ∞∑
k=1

(λk
√
λk |gk| )2

)1/2

≤M
∥∥g′′′(x)∥∥

L2(0,1)
. (3.17)

1 Denote by B3/2
2,T [8], the totality of all functions u(x, t) of the form

u(x, t) =
∞∑
k=1

uk(t)yk(x),
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considered in DT , where each of the functions uk(t) is continuous on [0, T ] and{ ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

}1/2

< +∞.

We determine the norm on this set as:

‖u(x, t)‖
B

3/2
2,T

=

{ ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

}1/2

.

2 Denote by E3/2
T a space consisting of topological product

B
3/2
2,T × C[0, T ].

The norm of the element z = {u, a} is determined by the formula

‖z‖
E

3/2
T

= ‖u(x, t)‖
B

3/2
2,T

+ ‖a0(t)‖C[0,T ] .

It is known B3/2
2,T and E3/2

T are Banach spaces.

4 Studying the existence and uniqueness of classic solution to inverse boundary value
problem

Taking into account lemma 3 and theorem 1, we will look for the first component u(x, t) of
the solution {u(x, t), a(t)} of problem (2.1)-(2.3), (2.10), (2.11) in the form:

u(x, t) =
∞∑
k=1

uk(t)yk(x), (4.1)

where

uk(t) =

∫ 1

0
u(x, t)zk(x)dx (k = 1, 2, ...).

Apply the method of separation of variables for determining the sought -for functions
uk(t) (k = 1, 2, ...; ). Then, from (2.1) and (2.2) we have:

a1(t)u
′
k(t) + λkuk(t) = Fk(t;u, a0) (k = 1, 2, ...; 0 ≤ t ≤ T ), (4.2)

uk(0) + δuk(T ) = ϕk(k = 1, 2, ...), (4.3)

where

Fk(t;u, a0) = fk(t)− a0(t)uk(t), fk(t) =
1∫

0

f(x, t)zk(x)dx,

ϕk =

1∫
0

ϕ(x)zk(x)dx (k = 1, 2, ...).
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Solving problem (4.2), (4.3), we find:

uk(t) =
ϕke

−
t∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

+

t∫
0

Fk(τ ;u, a0)

a1(τ)
e
−

t∫
τ

λkds

a1(s)dτ

− δe
−
T∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λ
k
ds

a1(s)

∫ T

0

Fk(τ ;u, a0)

a1(τ)
e
−

t∫
τ

λkds

a1(s)dτ (k = 1, 2, ...). (4.4)

After substituting the expressions uk(t) (k = 1, 2, . . .) from (4.4) in (4.1) we have:

u(x, t) =

∞∑
k=1


ϕke

−
t∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

+

∫ t

0

Fk(τ ;u, a0)

a1(τ)
e
−

t∫
τ

λkds

a1(s)dτ

− δe
−
T∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λ
k
ds

a1(s)

T∫
0

Fk(τ ; a0, u)

a1(τ)
e
−

t∫
τ

λkds

a1(s)dτ

 yk(x). (4.5)

Now, allowing for (4.1), from (2.11),we get :

a0(t) = h−1(t)

{
h′(t)− f(x0, t)−

∞∑
k=1

λkuk(t)yk(x0)

}
. (4.6)

In order to obtain an equation for the second component a0(t) of the solution {u(x, t), a(t)}
of problem (2.1)-(2.3), (2.10) , (2.11) we substitute the expression (4.4) in (4.6):

a0(t) = h−1(t)

a1(t)h′(t)− f(x0, t)−
∞∑
k=1

λk

 ϕke
−

∫ t
0

λkds

a1(s)

1 + δe
−
T∫
0

λkds

a1(s)

+

∫ t

0

Fk(τ ;u, a0)

a1(τ)
×

×e
−

t∫
τ

λkds

a1(s)dτ − δe
−
T∫
0

λkds

a1(s)

1 + δe
−
T∫
0

λ
k
ds

a1(s)

∫ T

0

Fk(τ ; a0, u)

a1(τ)
e
−

t∫
τ

λkds

a1(s)dτ

 yk(x0)

 . (4.7)

Thus, the solution of problem (2.1)-(2.3), (2.10) , (2.11) is reduced to the solution of
system (4.5), (4.7) with respect to the unknown functions u(x, t) and a0(t).

The following lemma lays an important role for studying the uniqueness of the solution
of problem (2.1)-(2.3), (2.10) , (2.11)

Lemma 4.1 If {u(x, t), a0(t)} is any solution of problem (2.1)-(2.3), (2.10) , (2.11), then
the functions

uk(t) =

∫ 1

0
u(x, t)zk(x)dx(k = 1, 2, ...)

satisfy on [0, T ] the system (4.4).
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Obviously, if uk(t) =
1∫
0

u(x, t)zk(x) dx (k = 1, 2, ...) is the solution of the system

(4.4), then the pair {u(x, t), a0(t)} of functions u(x, t) =
∞∑
k=0

uk(t)yk(x) and a0(t) is the

solution to the system (4.5), (4.7).

The folloving corollary follows from lemma 4.1

Corollary 4.1 Let the system (4.5), (4.7) have a unique solution. Then problem (2.1)-(2.3),
(2.10) , (2.11) may have at most one solution i.e. if problem (2.1)-(2.3), (2.10) , (2.11) has
a solution, then this solution is unique.

Now let us consider in the space E3/2
T the operator

Φ(u, a0) = {Φ1(u, a0), Φ2(u, a0)},

where

Φ1(u, a0) = ũ(x, t) ≡
∞∑
k=1

ũk(t)yk(x),

Φ2(u, a0) = ã0(t),

while ũk(t) (k = 1, 2, ...) and ã0(t) are equal to the right hand sides of (4.4) and (4.7),
respectively.

By means of simple transformations, we find that the following inequalities are valid:( ∞∑
k=1

(
λk
√
λk ‖ũk(t)‖C[0,T ]

)2)1/2

≤
√
3

( ∞∑
k=1

(
λk
√
λk |ϕk|

)2)1/2

+
√
3

∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]

(1 + δ)×

√T (∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+ T ‖a0(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

 , (4.8)

‖ã0 (t)‖C[0,T ] ≤
∥∥h−1(t)∥∥

C[0,T ]

{∥∥a1(t)h′(t)− f(x0, t)∥∥C[0,T ]
+
√
2

( ∞∑
k=1

λ−1k

) 1
2

×

[( ∞∑
k=1

(
λk
√
λk |ϕk|

)2) 1
2

+

∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]

×(1 + δ)

√T (∫ T

0

∞∑
k=1

(λk
√
λk |fk(τ)|)2 dτ

)1/2

+ T ‖a0 (t)‖C[0,T ]

( ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

) 1
2

 . (4.9)
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Suppose that the data of problem (2.1)-(2.3), (2.10) , (2.11) satisfy the following condi-
tions:

1. ϕ(x) ∈ C2 [0, 1] , ϕ′′′(x) ∈ L2(0, 1), ϕ(0) = 0, J(ϕ) = 0, ϕ′′(0) = 0 ,

dϕ′′(1) + ϕ′(1) = 0.

2. f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), f (0, t) = 0, J (f) = 0,

fxx(0, t) = 0, , .dfxx(1, t) + fx(1.t) = 0 (0 ≤ t ≤ T )
3. δ ≥ 0, 0 < a1(t) ∈ C[0, T ], h(t) ∈ C1[0, T ], h(t) 6= 0(0 ≤ t ≤ T ).

The from (4.8) and (4.9), allowing for (3.17), we get

‖ũ(x, t)‖
B

3/2
2,T

≤ A1(T ) +B1(T )T ‖a0 (t)‖C[0,T ] ‖u(x, t)‖B3/2
2,T

, (4.10)

‖ã(t)‖C[0,T ] ≤ A2(T ) +B2(T )T ‖a0 (t)‖C[0,T ] ‖u(x, t)‖B3/2
2,T

, (4.11)

where

A1(T ) =
√
3M

∥∥ϕ′′′(x)∥∥
L2(0,1)

+

∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]

(1 + δ)
√
3TM ‖fxxx(x, t)‖L2(DT )

,

B1 (T ) =
√
3

∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]

(1 + δ),

A2(T ) =
∥∥h−1(t)∥∥

C[0,T ]

{∥∥a1(t)h′(t)− f (x0, t)∥∥C[0,T ]

+
√
2(
∞∑
k=1

λ−1k )1/2
[
M
∥∥ϕ′′′(x)∥∥

L2(0,1)

+

∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]

(1 + δ)
√
TM ‖fxxx(x, t)‖L2(DT )

]}
,

B2(T ) =
∥∥h−1(t)∥∥

C[0,T ]

∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]

(1 + δ)

( ∞∑
k=1

λ−2k

) 1
2

.

From inequlities (4.10), (4.11) we deduce:

‖ũ(x, t)‖B2
2,T

+ ‖ã(t)‖C[0,T ] ≤ A(T ) +B(T )T ‖a0 (t)‖C[0,T ] ‖u(x, t)‖B2
2,T
, (4.12)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

Theorem 4.1 Let conditions 1-3 be fulfilled, and

(A(T ) + 2)2B(T ) < 1. (4.13)

Then problem (2.1)-(2.3), (2.10) , (2.11)has in the ball K = KR(||z||E3/2
T

≤ R =

A(T ) + 2) of the space E3/2
T a unique solution.
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Proof. In space E3/2
T we consider the equation

z = Φz, (4.14)

where z = {u, a}, the components Φi(u, a0 )(i = 1, 2) of the operator (u, a0) are deter-
mined by the right hand sides of equations (4.5), (4.7), respectively. Let us consider the
operator (u, a0) in the ball K = KR(‖z‖E2

T
≤ R = A(T ) + 2) from E

3/2
T .

Similar to (4.12), we get that for any z, z1, z2 ∈ KR the following estimations are valid:

‖Φz‖
E

3/2
T

≤ A(T ) +B(T )T ‖a0(t)‖C[0,T ] ‖u(x, t)‖B3/2
2,T

, (4.15)

‖Φz1 − Φz2‖E3/2
T

≤ B(T )TR

×

(
‖a01(t)− a02(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖

B
3/2
2,T

)
(4.16)

Then, allowing for (4.13), from the estimations (4.15) and (4.16), it follows that the
operator Φ acts in the ball K = KR and is contractive. Therefore, in the ball K = KR the
operator Φ has a unique fixed point {u, a0}, that is the unique solution of equation (4.14),
i.e. it is a unique solution in the ball K = KR of system (4.5), (4.7).

The function u(x, t), as an element of the space B3/2
2,T , is continuous and has continuous

derivatives ux(x, t), uxx(x, t) in DT .
From (4.2) ,by (3.14), it is easy to see that

( ∞∑
k=1

(
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2

) 1
2

≤
∥∥∥∥ 1

a1(t)

∥∥∥∥
C[0,T ]


( ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

) 1
2

+M
∥∥∥‖fx(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

+ ‖a0 (t)‖C[0,T ]

( ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

) 1
2

 .

Hence it follows that ut(x, t) is continuous in DT .
It is easy to verify that equation (2.1) conditions (2.2)-(2.3), (2.10) and (2.11) are satis-

fied in the ordinary sense.
Therefore, {u(x, t), a0(t)} is the solution of problem (2.1)-(2.3), (2.10), (2.11).By Corol-

lary 4.1 of lemma 4.1 it is unique in the ball K = KR. The theorem is proved

Theorem 4.2 Let all the conditions of theorem 4.1 and agreement conditions

ϕ(x0) = h(0) + δh (T ) .

be fulfilled.
Then problem (2.1)-(2.5) has in the ball K = KR(|| z ||E3/2

T

≤ R = A(T ) + 2) of the

space E3/2
T a unique classic solution.
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