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Abstract. We consider the problem of approximation of a continuous multivariate function by sums of
two radial basis functions in the uniform norm. We obtain a formula for the approximation error in terms
of functionals generated by closed paths.
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1 Introduction

In modern approximation theory, radial basis functions play an essential role. A radial basis
function is a multivariate function of the form

F (x) = r(‖x− c‖),

where r : R → R, x = (x1, ..., xd) is the variable, c ∈ Rd and ‖·‖ is the Euclidean
norm in Rd. The point c is called the center of F . In other words, a radial basis function
is a multivariate function constant on the spheres ‖x− c‖ = α, α ∈ R. These functions
and their linear combinations arise naturally in many fields, especially in RBF (radial basis
function) neural networks (see, e.g., [8,16,17,20–25]).

Consider the following set of functions

D = {r1(‖x− c1‖) + r2(‖x− c2‖) : ri ∈ C(R), i = 1, 2} .

That is, we fix centers c1 and c2 and consider linear combinations of radial basis functions
with these centers.
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Let f (x) be a given continuous function on some compact subsetQ of Rd. In this paper,
we will obtain a formula for computation of the approximation error

E (f) = E(f,D) def
= inf

r∈D
‖f − r‖ .

Note that if there exists r0 ∈ D such that

‖f − r0‖ = E(f),

then r0 is called an extremal element.

2 The approximation error formula

Suppose Q is a compact set in Rd and c1, c2 ∈ Rd are fixed points.

Definition 2.1. A finite or infinite ordered set p = (p1,p2, ...) ⊂ Q with pi 6= pi+1, and
either ‖p1 − c1‖ = ‖p2 − c1‖ , ‖p2 − c2‖ = ‖p3 − c2‖, ‖p3 − c1‖ = ‖p4 − c1‖, ... or
‖p1 − c2‖ = ‖p2 − c2‖ , ‖p2 − c1‖ = ‖p3 − c1‖, ‖p3 − c2‖ = ‖p4 − c2‖, ...is called
a path with respect to the centers c1 and c2.

In the above definition, we alternate distances from two fixed points. Paths have many
different variations. For example, instead of points, one can take two hyperplanes ai·x = αi,
i = 1, 2, where “ · ” denotes the standard scalar product in Rd, and alternate distances from
these two hyperplanes. Certainly, in R2, hyperplanes turn into straight lines, thus one can
talk about distances from straight lines. Paths with respect to two straight lines in R2 were
first considered by Braess and Pinkus [5]. They showed that paths give geometric means
of deciding if a set of points

{
xi
}m
i=1
⊂ R2 has the “non-interpolation property” for so

called ridge functions (for this terminology see [5]). Ismailov and Pinkus [10] used paths
with respect to two hyperplanes in Rd to solve the problem of interpolation on straight
lines by ridge functions. If straight lines are fixed as the coordinate lines in R2, then the
corresponding set of points (p1,p2, ...) turn into “bolts of lightning” (see, e.g., [1,9,19]).
It is well known that the idea of bolts was first introduced by Diliberto and Straus [6] and
played an essential role in problems of approximation by sums of univariate functions (see,
e.g., [6,7,9,14,15,18,19]). Note that the name “bolt of lightning” is due to Arnold [1].
Ismailov [11,12] generalized paths to those with respect to a finite set of functions. Paths
with respect to n arbitrarily fixed functions turned out to be very useful in problems of
representation by linear superpositions.

In the sequel, we use the term “path” instead of the long expression “path with respect to
the centers c1 and c2”. A finite path (p1,p2, ...,p2n) is said to be closed if
(p1,p2, ...,p2n,p1) is also a path.

We associate a closed path p = (p1,p2, ...,p2n) with the functional

Gp(f) =
1

2n

2n∑
k=1

(−1)k+1f(pk).

This functional has the following obvious properties:
(a) If r ∈ D, then Gp(r) = 0.
(b) ‖Gp‖ ≤ 1 and if pi 6= pj for all i 6= j, 1 ≤ i, j ≤ 2n , then ‖Gp‖ = 1.
The following lemma holds.
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Lemma 2.1. Let a compact set Q have closed paths. Then

sup
p⊂Q
|Gp(f)| ≤ E (f) , (2.1)

where the sup is taken over all closed paths. Moreover, inequality (2.1) is sharp, i.e. there
exist functions for which (2.1) turns into equality.

Proof. Let p be a closed path of Q and r be any function from D. Then by the linearity of
Gp and properties (a) and (b),

|Gp(f)| = |Gp(f − r)| ≤ ‖f − r‖ . (2.2)

Since the left-hand and the right-hand sides of (2.2) do not depend on r and p respectively,
it follows from (2.2) that

sup
p⊂Q
|Gp(f)| ≤ inf

r∈D
‖f − r‖ . (2.3)

Now we prove the sharpness of (2.1). By assumption Q has closed paths. Then Q has
closed paths p′ = (p′1, ...,p

′
2m) such that all points p1, ...,p2m are distinct. On the other

hand there exist continuous functions g = g(x) onQ such that g(p′i) = 1, i = 1, 3, ..., 2m−
1, g(p′i) = −1, i = 2, 4, ..., 2m and−1 < g(x) < 1 elsewhere. For such functions we have

Gp′(g) = ‖g‖ = 1 (2.4)

and
E(g) ≤ ‖g‖, (2.5)

where the last inequality follows from the fact that 0 ∈ D. From (2.3)-(2.5) it follows that

sup
p⊂Q
|Gp(g)| = E (g) .

We have proved the sharpness of (2.1) and hence the lemma.
The images of the distance functions ‖x− c1‖ and ‖x− c2‖ on Q denote by X1 and

X2, respectively. For any function h ∈ C(Q), consider the real functions

s1(a) = max
x∈Q

‖x−c1‖=a

h(x), s2(a) = min
x∈Q

‖x−c1‖=a

h(x), a ∈ X1,

g1(b) = max
x∈Q

‖x−c2‖=b

h(x), g2(b) = min
x∈Q

‖x−c2‖=b

h(x), b ∈ X2.

When are these functions continuous on the appropriate sets X1 and X2. The following
lemma, which we use in the proof of our main result, Theorem 2.1, answers this question.

Lemma 2.2. (see [3]). Let Q ⊂ Rd be a compact set. Then the functions s1 and s2 are
continuous on X1 (g1 and g2 are continuous on X2) for any h ∈ C(Q) if the following
condition, which we call the condition A, holds:

(A) for any two points x and y in Q with ‖x− c1‖ = ‖y − c1‖ (‖x− c2‖ = ‖y − c2‖)
and any sequence {xn}∞n=1 tending to x, there exists a sequence {yn}∞n=1 tending to y such
that ‖xn − c1‖ = ‖yn − c1‖ (‖xn − c2‖ = ‖yn − c2‖) for all n = 1, 2, ...

The following theorem is valid. In the proof we use the method exploited in [13] (see
also [4]).
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Theorem 2.1. Let Q ⊂ Rd be a compact set and f ∈ C(Q). Assume the following
conditions hold.

1) Q satisfies the condition A;
2) there exists an extremal element r0 ∈ D for the function f ;
3) for any path q = (q1, ...,qn) ⊂ Q there exist points qn+1,qn+2, ...,qn+s ∈ Q

such that (q1, ...,qn,qn+1, ...,qn+s) is a closed path and s is not more than some positive
integer n0 independent of q.

Then the approximation error can be computed by the formula

E (f) = sup
p⊂Q
|Gp(f)| ,

where the sup is taken over all closed paths.

Proof. For brevity of the exposition, in the sequel, we use the concept of “an extremal
path”. A finite or infinite path (p1,p2, ...) is said to be extremal for a function u ∈ C(Q) if
u(pi) = (−1)i ‖u‖ , i = 1, 2, ... or u(pi) = (−1)i+1 ‖u‖ , i = 1, 2, ... (see [13]). Regarding
extremal paths for the function f1 = f − r0, there are only two possible options. The first
option is when there exists a closed path p0 = (p1, ...,p2n) extremal for the function f1. In
this case, it is easy to see that

|Gp0(f)| = |Gp0(f − r0)| = ‖f − r0‖ = E(f).

Considering this, the assertion of the theorem follows from (2.1). The second option is when
there does not exist a closed path extremal for the function f1. Let us prove that in this case,
there exists an infinite path extremal for f1. Suppose the contrary. Suppose that there exists
a positive integer N such that the length of each path extremal for f1 is not more than N .
Here by length of a path we mean its number of points. Define the following functions:

fn = fn−1 − r1,n−1 − r2,n−1, n = 2, 3, ...,

where

r1,n−1 = r1,n−1 (‖x− c1‖) =
1

2

 max
y∈Q

‖y−c1‖=‖x−c1‖

fn−1(y) + min
y∈Q

‖y−c1‖=‖x−c1‖

fn−1(y)



r2,n−1 = r2,n−1(‖x− c2‖) =
1

2

 max
y∈Q

‖y−c2‖=‖x−c2‖

(fn−1(y)− r1,n−1(‖y − c1‖))

+ min
y∈Q

‖y−c2‖=‖x−c2‖

(fn−1(y)− r1,n−1(‖y − c1‖))

 .

Note that by Lemma 2.2, all the above functions fn(x), n = 2, 3, ..., are continuous on
Q. Since r0 is an extremal element for f , the equality ‖f1‖ = E (f) holds. Let us show that
‖f2‖ = E (f). Indeed, for any x ∈ Q

f1(x)− r1,1(‖x− c1‖)

≤ 1

2

 max
y∈Q

‖y−c1‖=‖x−c1‖

f1(y)− min
y∈Q

‖y−c1‖=‖x−c1‖

f1(y)

 ≤ E(f) (2.6)
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and
f1(x)− r1,1(‖x− c1‖)

≥ 1

2

 min
y∈Q

‖y−c1‖=‖x−c1‖

f1(y)− max
y∈Q

‖y−c1‖=‖x−c1‖

f1(y)

 ≥ −E(f). (2.7)

Considering the definition of r2,1(‖x− c2‖), for any x ∈ Q we can write

f1(x)− r1,1(‖x− c1‖)− r2,1(‖x− c2‖)

≤ 1

2

 max
y∈Q

‖y−c2‖=‖x−c2‖

(f1(y)− r1,1(‖y − c1‖))− min
y∈Q

‖y−c2‖=‖x−c2‖

(f1(y)− r1,1(‖y − c1‖))


and

f1(x)− r1,1(‖x− c1‖)− r2,1(‖x− c2‖)

≤ 1

2

 min
y∈Q

‖y−c2‖=‖x−c2‖

(f1(y)− r1,1(‖y − c1‖))− max
y∈Q

‖y−c2‖=‖x−c2‖

(f1(y)− r1,1(‖y − c1‖))

 .

Using (2.6) and (2.7) in the last two inequalities, we obtain that for any x ∈ Q

−E(f) ≤ f2(x) = f1(x)− r1,1(‖x− c1‖)− r2,1(‖x− c2‖) ≤ E(f).

Thus,
‖f2‖ ≤ E(f). (2.8)

Since f2 − f ∈ D, it follows from (2.8) that ‖f2‖ = E(f).
Similarly, one can show that ‖f3‖ = E(f), ‖f4‖ = E(f), and so on. Thus, ‖fn‖ =

E(f) for all n = 1, 2, ...
Let us now prove the following implications

f1(p0) < E(f)⇒ f2(p0) < E(f) (2.9)

and
f1(p0) > −E(f)⇒ f2(p0) > −E(f), (2.10)

where p0 ∈ Q. First, we are going to prove the implication

f1(p0) < E(f)⇒ f1(p0)− r1,1(‖p0 − c1‖) < E(f). (2.11)

There are two possible cases.
1) max

y∈Q
‖y−c1‖=‖p0−c1‖

f1(y) = E(f) and min
y∈Q

‖y−c1‖=‖p0−c1‖

f1(y) = −E(f).

In this case, r1,1(‖p0 − c1‖) = 0. Therefore,

f1(p0)− r1,1(‖p0 − c1‖) < E(f).

2) max
y∈Q

‖y−c1‖=‖p0−c1‖

f1(y) = E(f)− ε1 and min
y∈Q

‖y−c1‖=‖p0−c1‖

f1(y) = −E(f) + ε2,

where ε1, ε2 ≥ 0 and ε1 + ε2 6= 0.
In this case,

f1(p0)− r1,1(‖p0 − c1‖) ≤ max
y∈Q

‖y−c1‖=‖p0−c1‖

f1(y)− r1,1(‖p0 − c1‖)



A.Kh. Asgarova, A.M-B. Babayev, I.K. Maharov 27

=
1

2

 max
y∈Q

‖y−c1‖=‖p0−c1‖

f1(y)− min
y∈Q

‖y−c1‖=‖p0−c1‖

f1(y)


= E(f)− ε1 + ε2

2
< E(f).

Thus we have proved (2.11). Using the same method, we can also prove that

f1(p0)− r1,1(‖p0 − c1‖) < E(f)

⇒ f1(p0)− r1,1(‖p0 − c1‖)− r2,1(‖p0 − c2‖) < E(f). (2.12)

Implications (2.11) and (2.12) yield (2.9). By the same way one can prove the validity of
(2.10). From implications (2.9) and (2.10) it follows that if f2(p0) = E(f), then f1(p0) =
E(f) and if f2(p0) = −E(f), then f1(p0) = −E(f). This simply means that each path
extremal for f2 is extremal for f1.

We supposed above that any path extremal for f1 has the length not more than N . Let us
show that in his case, any path extremal for f2 has the length not more than N −1. Suppose
the contrary. Suppose that there is a path extremal for f2 with the length equal toN . Denote
this path by q = (q1,q2, ...,qN ). Without loss of generality we may assume that b·qN−1 =
b · qN . As we have shown above, the path q is extremal for f1. Assume f1(qN ) = E(f).
Then there is not a point q0 ∈ Q such that q0 6= qN , a · q0 = a · qN and f1(q0) =
−E(f). Indeed, if there was such q0 and q0 6∈ q, then the path (q1,q2, ...,qN ,q0) would
be extremal for f1. But this would contradict our assumption that any path extremal for f1
has the length not more than N . On the other hand, if there was such q0 and q0 ∈ q, then
from points of q we could form a closed extremal path for f1, which would contradict our
assumption that there does not exist a closed extremal path for f1. Hence we conclude that

max
y∈Q

‖y−c1‖=‖qN−c1‖

f1(y) = E(f), min
y∈Q

‖y−c1‖=‖qN−c1‖

f1(y) > −E(f).

Therefore,
|f1(qN )− r1,1(‖qN − c1‖)| < E(f).

From the last inequality, by the similar way as above, one can obtain that

|f2(qN )| < E(f).

This means that the path (q1,q2, ...,qN ) can not be extremal for f2. Thus any path extremal
for f2 has the length not more than N − 1.

By the same way, it can be shown that any path extremal for f3 has the length not more
than N − 2, any path extremal for f4 has the length not more than N − 3 and so on. Finally,
we obtain that there is not a path extremal for fN+1. Then there is not a point p0 ∈ Q
such that |fN+1(p0)| = ‖fN+1‖. But the norm ‖fN+1‖ must be attained, since by Lemma
2.2, all the functions f2, f3, ..., fN+1 are continuous on the compact set Q. The obtained
contradiction means that there exists an infinite path extremal for f1.

Let a path p = (p1,p2, ...,pn, ...) be infinite and extremal for f1. Note that all the points
pi must be distinct, otherwise we could form a closed extremal path, contrary to our assump-
tion. Consider the sequence pn = (p1,p2, ...,pn), n = 1, 2, ..., of finite paths. By condition
(3) of the theorem, for each path pn there exists a closed path
pmn
n = (p1,p2, ...,pn,qn+1, ...,qn+mn), where mn ≤ n0. The functional Gpmn

n
obeys

the inequalities∣∣Gpmn
n

(f)
∣∣ = ∣∣Gpmn

n
(f − r0)

∣∣ ≤ n ‖f − r0‖+mn ‖f − r0‖
n+mn

= ‖f − r0‖ (2.13)
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and ∣∣Gpmn
n

(f)
∣∣ ≥ n ‖f − r0‖ −mn ‖f − r0‖

n+mn
=
n−mn

n+mn
‖f − r0‖ . (2.14)

We obtain from (2.13) and (2.14) that

sup
pmn
n

∣∣Gpmn
n

(f)
∣∣ = ‖f − r0‖ . (2.15)

Since r0 is an extremal element, it follows from (2.15) and Lemma 2.1 that

E (f) = sup
p⊂Q
|Gp(f)| ,

where the sup is taken over all closed paths of Q. The theorem has been proved.

Remark. Theorem 2.1 generalizes the result of Diliberto and Straus (see [6, Theorem
1]) from the sum of univariate functions to the sum of radial basis functions.
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