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Abstract. In this paper we consider a spectral problem with describes bending vibrations of a homoge-
neous rod, in cross-sections of which the longitudinal force acts, the left end of which is fixed, and the
right end resiliently fastened and on this end an inertial mass is concentrated. We give the location of the
eigenvalues on the real axis and the structure of root subspaces of this problem.
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1 Introduction

We consider the following eigenvalue problem

y(4)(x) − (q(x)y′(x))′ = λy(x), 0 < x < 1, (1.1)

y(0) = y′(0) = 0, (1.2)

y′′(1)− (aλ+ b)y′(1) = 0, (1.3)

Ty(1)− cλy(1) = 0, (1.4)

where λ ∈ C is a spectral parameter, Ty(x) ≡ y′′′(x) − q(x)y′(x), x ∈ [0, 1], q(x) is a
positive absolutely continuous function on the interval [0, 1], a, b and c are real constants
such that a > 0, b < 0 and c > 0.

The spectral problems for second and fourth order ordinary differential operators with
spectral parameter in the boundary conditions were studied by many authors (see, e.g., [1-
5, 9-17]). A number of problems in mathematical physics can be reduced to such problems
(e.g., see [5, 9, 10, 11, 16, 17]).

The eigenvalue problem (1.1)-(1.4) describes the flexural vibrations of a homogeneous
rod, in the cross sections of which the longitudinal force acts, the left end is fixed rigidly,
and the right end resiliently fastened and on this end an inertial mass is concentrated (see
[10]).
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The location of eigenvalues in the complex plane (on the real axis), the structure of the
root subspaces, oscillation properties of eigenfunctions (and their derivatives), the asymp-
totic formulas for eigenvalues and eigenfunctions, the basis property of subsystems of
eigenfunctions of problem (1.1)-(1.4) for a > 0, c < 0 and b = 0 were investigated in
the recent paper [5]. In this paper is established as a necessary and sufficient condition, as
well as sufficient conditions for the system of eigenfunctions of this problem after removing
two functions to form a basis in Lp(0, 1), 1 < p <∞. The establishment of sufficient con-
ditions is based on the rough asymptotic behavior of eigenvalues and oscillation properties
of eigenfunctions and their derivatives.

Note that the signs of the parameters a and c play an important role. If a > 0 and c < 0,
then problem (1.1)-(1.4), can be treated as a spectral problem for a self-adjoint operator in
the Hilbert spaceH = L2(0, 1)⊕C2. If a > 0 and c > 0, then this problem is equivalent to a
spectral problem for the J-self-adjoint operator in the Pontryagin spaceΠ1 = L2(0, 1)⊕C2

with the corresponding inner product (e.g., see [2-4, 6-8, 16]). In the case a > 0 and c < 0
all eigenvalues of problem (1.1)-(1.4) are positive, simple, and form an infinitely increasing
sequence. In the case a > 0, b < 0 and c > 0 we show that problem (1.1)-(1.4) has one
negative simple eigenvalue and a sequence of positive and simple eigenvalues tending to
infinity.

The purpose of the present paper is to investigated the location of the eigenvalues on the
real axis and the structure of root subspaces of problem (1.1)-(1.4).

2 Operator interpretation of the spectral problem (1.1)-(1.4)

The considered problem (1.1)-(1.4) can be reduced to the eigenvalue problem for the
linear operator L in the Hilbert space H = L2(0, 1)⊕ C2 with the inner product

(û, v̂) = ({y,m, n}, {v, s, t}) = (y, v)L2 + |a|−1ms̄ + |c|−1nt̄, (2.1)

where
Lŷ = L{y,m, n} = {(Ty(x))′ , y′′(1)− by′(1), T y(1)}

is an operator with the domain

D(L) = {{y (x), m, n} : y ∈W 4
2 (0, 1), (Ty(x))′ ∈ L2(0, 1),

y(0) = y′(0) = 0, m = ay′(1), n = cy(1)}

dense everywhere in H (see [16]). L is a closed operator in H with a compact resolvent.
The eigenvalue problem of operator L is equivalent to problem (1.1)-(1.4): the spectra of
operator L and problem (1.1)-(1.4) coincide, as do their multiplicities; between the eigen-
vectors of operator L and the eigenfunctions of problem (1.1)-(1.4) corresponding to one
and the same eigenvalue, it is possible to establish a one-to-one correspondence

yk(x)↔ {yk(x), mk, nk}, mk = ay′k(1), nk = cyk (1).

The eigenvalue problem (1.1)-(1.4) in the case a 6= 0 and c 6= 0 is strongly regular in
the sense of [16]; in particular, this problem has discrete spectrum.

In the case a > 0 and c < 0 the operator L is a self-adjoint discrete lower-semibounded
in H and hence has a system of eigenvectors {yk(x),mk, nk}, k ∈ N, that forms an or-
thogonal basis in H [5].

In the case a > 0 and c > 0 the operator L is a nonself-adjoint in H . In this case we
define an operator J : H → H as follows:

J{y,m;n} = {y,m,−n}.
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J is a unitary, symmetric operator on H . Its spectrum consists of two eigenvalues: − 1 with
multiplicity 1, and + 1 with infinite multiplicity. This operator generates the Pontryagin
space Π1 = L2(0, 1)⊕ C2 with inner product [6]

[û, v̂] = (û, v̂)Π1 = ({y,m, n}, {u, s, t})Π1 = (u, v)L2 + a−1ms̄ − c−1nt̄. (2.2)

Theorem 2.1 L is J−self-adjoint operator in Π1.

Proof. J-self-adjointness of L on Π1 follows from [7, Section 3, Proposition 30].

Theorem 2.2 If L∗ is the adjoint operator of L in H, then L∗ = JLJ . The system of
eigenvectors {ŷk}∞k=1, ŷk = {yk,mk, nk}, of L forms an unconditional basis in H .

Proof. The proof of the first part of this theorem follows from [7, Section 3, Proposition
50] and the second part from [8].

3 Some auxiliary statements and main properties of the solution of problem (1.1)-(1.3)

We introduce the boundary conditions (see [1, 2, 13])

y(1) cos δ − Ty(1) sin δ = 0, (3.1)

where δ ∈ [π2 , π].
Alongside the problem (1.1)-(1.4) we shall consider the problem (1.1)-(1.3), (3.1). The

problem (1.1)-(1.3), (3.1) have been considered in [1]. In [1] study the oscillation proper-
ties of eigenfunctions and their derivatives, and investigate the basis property in the space
Lp, 1 < p <∞, of the system of eigenfunctions of this problem.

The following theorem is a special case of the general result of [1].

Theorem 3.1 (see [1, Theorem 2.2]) There exists an unboundedly increasing sequence
of eigenvalues λ1(δ), λ2(δ), . . . , λn(δ), . . . of boundary value problem (1.1)-(1.3), (3.1),
moreover, λn > 0 for n ∈ N. The corresponding eigenfunctions and their derivatives have
the following oscillation properties:

(i) the eigenfunction y(δ)n (x), n ∈ N, corresponding to the eigenvalue λn(δ), has n− 1
simple zeros in (0, 1) in the case aλn(δ) + b ≤ 0, has either n− 2 or n− 1 simple zeros in
(0, 1) in the case aλn(δ) + b > 0;

(ii) the function (y
(δ)
n (x))′, n ∈ N, has exactly n− 1 simple zeros in (0, 1).

It follows from the proof of [1, Theorem 2.2] that

λ1

(π
2

)
< λ1(π) < λ2

(π
2

)
< λ1(π) < . . . . (3.2)

Theorem 3.2 For each fixed λ ∈ C there exists a nontrivial solution y(x, λ) of the problem
(1.1)-(1.3) which is unique up to a constant coefficient.

Proof. We denote by ϕk(x, λ), k = 1, 4, be solutions of equation (1.1), normalized for
x = 0 by the Cauchy conditions

ϕ
(s−1)
k (0, λ) = δks, s = 1, 3, Tϕk(0, λ) = δk4, (3.3)

where δks is the Kronecker delta.
We will seek the function y(x, λ) in the following form

y(x, λ) =
4∑

k=1

Ckϕk(x, λ), (3.4)
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where Ck, k = 1, 4, are constants.
It follows from (3.3), (3.4) and boundary conditions (1.2), (1.3) that C1 = C2 = 0 and

C3

(
ϕ′′3(1, λ)− (aλ+ b)ϕ′3(1, λ)

)
+ C4

(
ϕ′′4(1, λ)− (aλ+ b)ϕ′4(1, λ)

)
= 0.

For the completion of the proof of this theorem it is sufficient to show that

|ϕ′′3(1, λ)− (aλ+ b)ϕ′3(1, λ)|+ |ϕ′′4(1, λ)− (aλ+ b)ϕ′4(1, λ)| > 0. (3.5)

Let λ ∈ C\R. If for such λ, (3.5) is not satisfied, then the functions ϕ3(x, λ) and
ϕ4(x, λ) are solutions of the problem (1.1)-(1.3). We define the function w(x, λ) in the
following way:

w(x, λ) = Tϕ4(1, λ)ϕ3(x, λ)− Tϕ3(1, λ)ϕ4(x, λ).

Since Tw(1, λ) = 0, the function w(x, λ) is an eigenfunction of the spectral problem (1.1)-
(1.3), (3.1) for δ = π

2 corresponding to the eigenvalue λ ∈ C\R. By virtue of Theorem 3.1
we have λ ∈ R which contradicts the relation λ ∈ C\R.

Now let λ ∈ R and (3.5) be not satisfied. In this case alongside the function w(x, λ) we
define the function:

ψ(x, λ) = ϕ4(1, λ)ϕ3(x, λ)− ϕ3(1, λ)ϕ4(x, λ).

Since ψ(1, λ) = 0, the function ψ(x, λ) is an eigenfunction of the spectral problem (1.1)-
(1.3), (3.1) for δ = π corresponding to the eigenvalue λ ∈ R. On the other hand, by the
above arguments λ is also an eigenvalue of this problem for δ = π

2 , which contradicts the
relation (3.2). The proof of this theorem is complete.

Remark 3.1 From the proof of Theorem 4.1 it seen that without loss of generality we can
regard solution y(x, λ) of the problem (1.1)-(1.3) for each fixed x ∈ [0, 1] as an entire
function of λ of the following form

y(x, λ) = (ϕ′′4(1, λ)− (aλ+ b)ϕ′4(1, λ))ϕ3(x, λ)
− (ϕ′′3(1, λ)− (aλ+ b)ϕ′3(1, λ))ϕ4(x, λ).

(3.6)

Let Bk = (λk−1(π), λk(π)), n = 1, 2, ..., where λ0(π) = −∞.
Obviously, the eigenvalues λn(π) and λn(π/2) of the spectral problem (1.1)-(1.3), (2.1)

for δ = π and δ = π/2 are zeros of the entire functions y(1, λ) and Ty(1, λ), respectively.
Note that the function

F (λ) =
Ty(1, λ)

y(1, λ)

is defined for

λ ∈ B ≡ (C\R) ∪

( ∞⋃
k=1

Bk

)
,

and λk(π/2) and λk(π), n ∈ N, are the zeros and poles of this function, respectively.

Lemma 3.1 The following formula holds:

dF (λ)

dλ
=

1

y2(1, λ)


l∫

0

y2(x, λ) dx+ ay′2(1, λ)

 , λ ∈ B. (3.7)



118 Some spectral properties of an eigenvalue problem . . .

Proof. By (1.1) we have

(Ty(x, µ))′ y(x, λ)− (Ty(x, λ))′ y(x, µ) = (µ− λ)y(x, µ)y(x, λ).

Integrating this relation from 0 to 1 (using the formula for the integration by parts) and
taking into account boundary conditions (1.1) and (1.3) we obtain

Ty(1, µ) y(1, λ)− Ty(1, λ) y(1, µ)

= (µ− λ)

{
1∫
0

y(x, µ) y(x, λ)dx+ ay′(1, µ) y′(1, λ)

}
.

(3.8)

By (3.8) for µ, λ ∈ B, µ 6= λ, we have

Ty(1, µ)

y(1, µ)
− Ty(1, λ)

y(1, λ)
= (µ− λ)

l∫
0

y(x, µ) y(x, λ) dx+ a y′(1, µ) y′(1, λ)

y(1, µ) y(1, λ)
. (3.9)

Dividing both sides of relation (3.9) by µ− λ (µ 6= λ) and by passing to the limit as µ→ λ
we obtain (3.7). The proof of this lemma is complete.

Corollary 3.1 The function F (λ) of λ strictly increases on each interval Bk, k ∈ N.

Lemma 3.2 The following relation holds:

lim
λ→−∞

F (λ) = −∞. (3.10)

The proof is similar to that of [5, Lemma 3.4].

Remark 3.2 By Theorem 3.1 it follows from Lemmas 3.1 and 3.2 that F (0) < 0.

Following the corresponding arguments of the proof of [5, Lemma 3.17], we can show
that the following assertion holds.

Lemma 3.3 The following representation holds:

F (λ) = F (0) +
∞∑
k=1

λ ck
λk(π)(λ− λk(π))

, (3.11)

where ck = res
λ=λk(π)

F (λ), and ck < 0, k ∈ N.

The proof is similar to that of [13, Lemma 3.17].

Corollary 3.2 The function F (λ) is convex in the interval (−∞, λ1(π)).
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4 The location of the eigenvalues and structure of root subspaces of problem
(1.1)-(1.4)

Lemma 4.1 The eigenvalues of the boundary value problem (1.1)-(1.4) are real, simple and
form an at most countable set without finite limit point.

Proof. It is easy to see that the eigenvalues of problem (1.1)-(1.4) are the roots of the equa-
tion

Ty(1, λ)− cλ y(1, λ) = 0. (4.1)
If λ is a nonreal eigenvalue of problem (1.1)-(1.4), then λ̄ is also an eigenvalue of this

problem, because the coefficients q(x), a, b, c are real. In this case y(x, λ̄) = y(x, λ), so
that if equality (4.1) holds for λ, then it also holds for λ̄ .

Setting µ = λ̄ in (3.8), we obtain

Ty(1, λ) y(1, λ)− Ty(1, λ) y(1, λ) = (λ̄− λ)

{
1∫
0

| y(x, λ)|2dx+ a| y′(1, λ)|2
}
. (4.2)

By virtue of (1.4) from (4.2) we get

c (λ̄− λ) |y′(1, λ)|2 = (λ̄− λ)


1∫

0

| y(x, λ)|2dx+ a| y′(1, λ)|2
 .

Since λ̄ 6= λ, it follows that

1∫
0

| y(x, λ)|2dx+ a | y′(1, λ)|2 − c | y(1, λ)|2 = 0. (4.3)

On the other hand multiplying both sides of equation (1.1) by y(x, λ), and integrating
resulting equality from 0 to 1, using the formula of integration by parts and taking into
account (1.2)-(1.4), we have

1∫
0

| y′′(x, λ)|2dx+
1∫
0

q(x)| y′(x, λ)|2dx

= λ

{
1∫
0

| y(x, λ)|2dx+ a | y′(1, λ)|2 − c | y(1, λ)|2
}
.

(4.4)

By (4.3) from (4.4) we obtain

1∫
0

|y′′(x, λ)|2dx+

1∫
0

q(x)|y′(x, λ)|2dx = 0.

which implies (by (1.2)) that y(x, λ) ≡ 0. This contradiction shows that the eigenvalues of
problem (1.1)-(1.4) are real. The proof of this lemma is complete.

The entire function occurring on the left-hand side in equation (4.1) does not vanish for
non-real λ. Consequently, it does not vanish identically. Therefore, its zeros form an at most
countable set without finite limit points.

If λ is an eigenvalue of problem (1.1)-(1.4), then it follows from (3.2) that y(1, λ) 6= 0.
Hence each root (with regard of multiplicities) of equation (4.1) is a root of the equation

F (λ) = cλ. (4.5)
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Let us show that equation (4.5) has only simple roots. Indeed, if λ = λ̃ is a multiple root
of (4.5), then

F (λ̃) = cλ, F ′(λ̃) = c. (4.6)

Hence by (3.7) from (4.6) we obtain

1∫
0

y(x, λ̃)
2
dx+ a y′(1, λ̃)

2 − c y(1, λ̃)
2

= 0. (4.7)

Since the eigenvalues of problem (1.1)-(1.4) are real it follows from (4.4) that

1∫
0

y′′(x, λ̃)
2
dx+

1∫
0

q(x) y′(x, λ̃)
2
dx

= λ

{
1∫
0

y(x, λ̃)
2
dx+ a y′(1, λ̃)

2 − c y(1, λ̃)
2
}
.

(4.8)

which implies that
1∫

0

y′′(x, λ̃)
2
dx+

1∫
0

q(x) y′(x, λ̃)
2
dx = 0. (4.9)

By virtue of (4.9) we have y(x, λ̃) ≡ 0 which contradicts condition y(x, λ̃) 6≡ 0. The
resulting contradiction completes the proof of Lemma 5.1.

Remark 4.1 By Remark 3.2 it follows from (4.5) that λ = 0 is not an eigenvalue of the
problem (1.1)-(1.4).

Lemma 4.2 The eigenvalue problem (1.1)-(1.4) can have only one eigenvalue in each in-
terval B1 ∩ (−∞, 0) and Bk ∩ (0, +∞), k = 1, 2, . . . .

Proof. Let λ̃ ∈ Bk ∩ (0, +∞) be an eigenvalue of problem (1.1)-(1.4) for some k ∈ N.
Then from equality (4.8) we obtain

1∫
0

y2(x, λ̃) dx− a2y
2(1, λ̃) + a1y

′2(1, λ̃) > 0,

which implies by (3.7) that
(F (λ)− cλ)′

∣∣
λ=λ̃

> 0.

Hence it follows from this inequality that the function F (λ) − cλ takes zero value only
strictly increasing in the interval Bk ∩ (0, +∞). Since F (λ̃) − cλ̃ = 0 equation (4.5) has
a unique solution λ̃ in the interval Bk ∩ (0, +∞). In a similar way, one can show that
problem (1.1)-(1.4) can have only one eigenvalue in the interval B1 ∩ (−∞, 0). The proof
of Lemma 4.2 is complete.

Theorem 4.1 There exists an infinitely increasing sequence of eigenvalues λ1, λ2, ..., λk, ...
of the boundary value problem (1.1)-(1.4) such that

λ1 ∈ (−∞, 0)) and λk ∈ (λk−1(π/2), λk−1(π), ) for k > 1. (4.10)
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Proof. We recall that the eigenvalues of problem (1.1)-(1.4) are the roots of the equation
F (λ) = c λ where c > 0. By virtue of Corollary 3.2 F (λ) is convex function in the interval
B1. By virtue of the relations (3.10) and (3.11) we have

lim
λ→−∞

F (λ) = −∞ and lim
λ→λ1(π)−0

F (λ) = +∞.

Therefore, the line c λ intersect the graph of the function F (λ) at two points λ1 < λ2 such
that λ1 ∈ (−∞, 0) and λ2 ∈ (λ1(π/2), λ1(π) ⊂ (0, λ1(π). Consequently, in the interval
B1 problem (1.1)-(1.4) has two simple eigenvalues λ1 and λ2 such that λ1 ∈ (−∞, 0) and
λ2 ∈ (λ1(π/2), λ1(π).

It follows from (3.2), (3.7) and (3.11) that

lim
λ→λk(π)−0

F (λ) = +∞, lim
λ→λk−1(π)+0

F (λ) = −∞, k ≥ 2. (4.11)

Hence equation (4.5) has at least one solution in each interval Bk, k = 2, 3, . . . . Then by
virtue of Lemma 4.2, in the interval Bk, k = 2, 3, . . . , problem (1.1)-(1.4) has the unique
(simple) eigenvalue λk+1. The proof of this theorem is complete.
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15. Möller, M., Zinsou, B.: Self-adjoint fourth order differential operators with eigenvalue
parameter dependent boundary conditions, Quaestiones Mathematicae, 34(3), 393–406
(2011).

16. Shkalikov, A.A.: Boundary value problems for ordinary differential equations with a
parameter in the boundary conditions, J. Sov. Math., 33, 1311–1342 (1986).

17. Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary
condition, Math. Z., 133(4), 301–312 (1973).


