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On the structure of global continua of solutions bifurcating from infinity
of some nonlinear fourth order eigenvalue problems
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Abstract. In this paper we consider bifurcation from infinity in some class of nonlinear eigenvalue prob-
lems for fourth order differential operators. We show the existence of two families of unbounded continua
of nontrivial solutions, corresponding to the nodal properties and bifurcating from the intervals at infinity.
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1 Introduction

We consider the following nonlinear eigenvalue problem

`y ≡ (py′′)′′ − (qy′)′ + ry = λτy + f(x, y, y′, y′′, y′′′, λ), x ∈ (0, l), (1.1)

y′(0) cosα− (py′′)(0) sinα = 0,
y(0) cosβ + Ty(0) sinβ = 0,
y′(l) cos γ + (py′′)(l) sin γ = 0,
y(l) cos δ − Ty(l) sin δ = 0,

(1.2)

where λ ∈ R is a spectral parameter, Ty ≡ (py′′)′−qy′, the function p is twice continuously
differentiable and positive on [0, l], q is continuously differentiable and nonnegative on [0, l],
r is continuous on [0, l] and τ is continuous and positive on [0, l], α, β, γ, δ ∈ [0, π2 ]. The
function f is continuous on [0, l] × R5 satisfying the condition: there exist M > 0 and
c0 > 1 such that∣∣∣∣f(x, u, s, v, w, λ)u

∣∣∣∣ ≤M, x ∈ [0, l], |u|+ |s|+ |v|+ |w| ≥ c0, λ ∈ R. (1.3)

Since condition (1.3) holds we can consider bifurcation from ”y = ∞”, i.e., the exis-
tence of solutions of (1.1)-(1.2) having arbitrarily large y. If nonlinear term f satisfies a
o(|y| + |y′| + |y′′| + |y′′′|) condition, then the problem is said to be asymptotically linear
and the existence of solutions (λ, y) of (1.1)-(1.2) with large y bifurcating from infinity may
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be discussed as in the papers [11, 13, 14]. The approach used in these papers is to trans-
form the bifurcation from infinity problem to a problem involving bifurcation from zero at
eigenvalues of the linearization of (1.1)-(1.2), and then apply the standard global bifurcation
theory of Rabinowitz [10]. As equation (1.1) contains the nonlinear term f satisfying (1.3)
problem (1.1)-(1.2) need not be asymptotically linear and the transformed problem may not
have a linearization at y = 0. Thus the standard global bifurcation results are not immedi-
ately applicable and the proofs in [11] are not valid in this case. However, by extending the
approximation technique from [5] and combining it with the global results in [1, 2, 3] we
prove the existence, in this case, of global continua of solutions bifurcating from infinity
which are similar to those obtained in [8, 9, 12].

2 Preliminary

Although problem (1.1)-(1.2) is not asymptotically linearizable (when f 6≡ 0), it is never-
theless related to a fourth-order linear problem

`(y)(x) = λτ(x)y(x), x ∈ (0, l), y ∈ B.C., (2.1)

where by B.C. we denote the set of boundary conditions (1.2).
To study the bifurcation of the solutions of the problem (1.1)-(1.2) we use the classes

Sνk , k ∈ N, ν ∈ {+ , −}, which are defined in [1, § 3.1] and consist of functions of
Banach space E = C3[0, l] ∩ B.C. (with usual norm ||u||3) that have nodal properties of
the eigenfunctions of the linear problem (2.1) and their derivatives with the help of angular
functions.

By [1, Theorem 1.2] (see also [4]) the eigenvalues of problem (2.1) which is a completely
regular Sturmian system (see [1, 6]) are real and simple and form an infinitely increasing
sequence λ1 < λ2 < ... < λk < . . . ; moreover, for each k ∈ N the eigenfunction yk(x)
corresponding to the eigenvalue λk is lies in Sk = S−k ∪ S

+
k .

3 Global bifurcation of problem (1.1)-(1.2) from infinity

We denote by L the closure in R × E of the set of nontrivial solutions of (1.1)-(1.2) and
by Lνk, k ∈ N, the closure in R × E of the set of all solutions (λ, y) of (1.1)-(1.2) with
y ∈ R× Sνk .

We say that (λ,∞) is a bifurcation point of problem (1.1)-(1.2) with respect to the set
R× Sνk , k ∈ N, if each neighborhood of this point has a nonempty intersection with Lνk.

Lemma 3.1 The set of bifurcation points from infinity of problem (1.1)-(1.2) (with respect
to the set Sνk , k ∈ N) is nonempty.

Proof. For the proof we consider the following modified nonlinear eigenvalue problem{
`(y) = λτ(x)y + f(x, |y|εy, y′, y′′, y′′′, λ)

(|y|+|y′|+|y′′|+|y′′′|)2ε , x ∈ (0, l),

y ∈ B.C.,
(3.1)

where ε ∈ (0, 1). By (1.3) we obtain f(x,|u|εu, s, v, w,λ)
(|u|+|v|+|s|+|w|)2ε = o (|u| + |s| + |v| + |w|) at

(u, s, v, w) = ∞ uniformly in x ∈ [0, l] and in λ ∈ Λ, for every bounded interval Λ ⊂ R.
Then it follows by [9, Theorem 2.4] that for each k ∈ N and each ν there exists an un-
bounded continuum Cνk,ε of solutions of (3.1) which contains (λk,∞) and satisfies con-
clusions of well known theorem of bifurcation from infinity of Rabinowitz [11]. Moreover,
there exists a neighborhood N of (λk,∞) such that (Cνk,ε ∩N ) ⊂ (R× Sνk ) ∪ {(λk,∞)}.
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Now we show that for any sufficiently small δ > 0 there exists cδ > c0 such that the
problem (3.1) with ε ∈ (0, 1) has no nontrivial solution (λ, y) which satisfies the following
conditions: dist{λ, Ik} > δ, y ∈ Sνk , ||y||3 > cδ. Indeed, otherwise there exists δ0 > 0
and a sequence {(λn, yn, εn)}∞n=1 of solutions of (3.1), with dist{λn, Ik} > δ0, yn ∈
Sνk , ||yn||3 > n. Clearly, (λn, yn) solves the linear problem

`(y) + hn(x) y = λτ(x)y, x ∈ (0, l), y ∈ B.C., (3.2)

where hn(x) = −f(x, (τn(x))εnyn(x), y′n(x), y
′′
n(x), y

′′′
n (x), λn)

(τn(x))2εnyn(x)
if yn(x) 6= 0, hn(x) = 0 if

yn(x) = 0 and τn(x) = |yn(x)| + |y′n(x)| + |y′′n(x)| + |y′′′n (x)|. Taking (1.3) into account
from the definition of hn(x) for sufficiently large n ∈ N we obtain

|hn(x)| ≤
M

(τn(x))εn
< M, x ∈ [0, l]. (3.3)

Since hn(x) has a finite number of zeros on (0, l) and is bounded on the closed interval [0,
l], Remark 4.1 from [1] shows that the result of [1, Theorem 1.2] holds for problem (3.2).
Then, taking (3.3) into account it follows from [1, formula (4.2)] that λn ∈ Ik, which yields
the equality dist{λn, Ik} = 0, contradicting dist{λn, Ik} > δ0.

Now let small δ1 > 0 is fixed. Then there exists c1 > c0 such that for any c ∈ (c1,∞)
problem (3.1) with ε ∈ (0, 1) has a solution (λc, ε, yc, ε) satisfying conditions:

dist{λc, ε : Ik} ≤ δ1, yc, ε ∈ Sνk , ||yc, ε||3 = c.

Problem (3.1) shows that the set of points (λc, ε, yc, ε) is bounded in R × C4[0, l] inde-
pendently of ε. Hence there exists a sequence {εn}∞n=1 ⊂ (0, 1) such that εn → 0 and
(λc, εn , yc, εn) converges in R × E to a nontrivial solution (λc, yc) of problem (1.1)-(1.2).
It is obvious that λc ∈ Ik(δ0) = [λk − M

τ0
− δ0, λk + M

τ0
+ δ1], y ∈ Sνk = Sνk ∪ ∂Sνk and

||yc||3 = c. Since ||yc||3 = c, [1, Lemma 1.1] shows that yc ∈ Sνk . (In fact c1 is chosen so
that (Ik × (E \Bc1)) ⊂ N , where Bc1 is the open ball in E of radius c1 centered at 0 and
Bc1 is the closure of Bc1 in E.)

Now let {cn}∞n=1 be a sequence converging to +∞. Then for any n ∈ N there exists a
solution (λn, yn) of problem (1.1)-(1.2) such that λn ∈ Ik(δ0), yn ∈ Sνk and ||yn||3 = cn.
From the sequence {λn}∞n=1 we can select a subsequence {λnm}∞m=1 that converges to some
λ ∈ Ik(δ0). Therefore, there exists a sequence {(λnm , ynm)}∞m=1 of solutions of problem
(1.1)-(1.2) which converges to some (λ,∞) in R×E, i.e. (λ,∞) is a bifurcation point from
infinity of problem (1.1)-(1.2) with respect to the set R× Sνk . The lemma is proved.

Corollary 3.1 If (λ,∞) is a bifurcation point of problem (1.1)-(1.2) with respect to the set
R× Sνk , k ∈ N, then λ ∈ Ik .

Proof. Assume the contrary, i.e. let λ /∈ Ik. Let δ = dist{λ, Ik} > 0. Since (λ,∞) is a
bifurcation point of problem (1.1)-(1.2), there exists a sequence {(λn, yn)}∞n=1 ⊂ R × Sνk
of solutions of (1.1)-(1.2) such that (λn, yn)→ (λ,∞). Then there exists nδ ∈ N such that
|λn − λ| < δ

2 for n > nδ. Hence dist{λn, Ik} > δ
2 for n > nδ.

It is obvious that (λn, yn) solves the linear problem

`(y) + ϕn(x) y = λτ(x)y, x ∈ (0, l), y ∈ B.C., (3.4)

where ϕn(x) = −f(x, yn(x), y′n(x), y
′′
n(x), y

′′′
n (x), λn)

yn(x)
if yn(x) 6= 0, ϕn(x) = 0 if yn(x) = 0.

Using (1.3) for any sufficiently large n > nδ we obtain |ϕn(x)| ≤ M . Hence, by (3.4)
and [1, Remark 4.1] it follows from [1, formula (4.2)] that λn ∈ Ik, which contradicts the
inequality dist{λn, Ik} > δ

2 . The proof of corollary is complete.
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For k ∈ N and each ν let D̂ν
k denote the union of the connected components D̂ν

k, λ of
the solution set of (1.1)-(1.2) emanating from bifurcation points (λ,∞) ∈ Ik × {∞} with
respect to the set R × Sνk . Clearly, D̂ν

k 6= ∅. The set D̂ν
k may not be connected in R × E

although, by adding the ”points at infinity” (λ,∞), λ ∈ Ik, to R × E and defining an
appropriate topology on the resulting set, the set Dν

k = D̂ν
k ∪ (Ik × {∞}) is connected.

For any B ⊂ R× E we denote by PR(B) the natural projection of B onto R× {0}.

Theorem 3.1 For each k ∈ N and each ν for the setDν
k at least one of the following holds:

(i) Dν
k meets Ik′ × {∞} within the set R× Sν′k′ for some (k′, ν ′) 6= (k, ν);

(ii) Dν
k meets (λ, 0) for some λ ∈ R;

(iii) PR(D
ν
k) is unbounded in R.

In addition, if the union Dk = D+
k ∪D

−
k does not satisfy (ii) or (iii) then it must satisfy

(i) with k′ 6= k.

Proof. For any nontrivial (λ, v) ∈ R×E we define the function f̃(λ, v) ∈ C[0, l] as follows:

f̃(λ, v)(x) = ||v||23f
(
x,
v(x)

||v||23
,
v′(x)

||v||23
,
v′′(x)

||v||23
,
v′′′(x)

||v||23
, λ

)
, x ∈ [0, l].

Moreover, let f̃(λ, 0) = 0. By condition (1.3), the function f̃ : R× E → C[0, l] is contin-
uous and satisfies the condition

||f̃(λ, v)||∞ ≤M ||v||3 for ||v|| ≤ c−10 . (3.5)

Dividing (1.1)-(1.2) by ||y||23 and setting v = y
||y||23

yields the problem

`(v) = λτ(x)v + f̃(λ, v), x ∈ (0, l), v ∈ B.C., (3.6)

since ||v||3 = 1
||y||3 and y = v

||v||23
. Note that the inversion (λ, y) → T (λ, y) = (λ, v) turns

a ”bifurcation at infinity” problem into a ”bifurcation at zero” problem (see [3, 11]).
Let L̃ the closure in R×E of the set of nontrivial solutions of problem (3.6). Obviously,

the inversion (λ, y) → T (λ, y) maps L into L̃ and, heuristically, interchanges points at
y = 0 (respectively, y = ∞) with points at v = ∞ (respectively, v = 0). Let D̃ν

k be the
union of all the components of L̃ which meet Ik×{0}within the set R×Sνk . ThenDν

k is the
inverse image T−1(D̃ν

k) of D̃ν
k under the inversion T . We now choose some fixed (arbitrary)

k0 ∈ N and ν0, and we will prove the theorem for k0 and ν0. It should be noted that to prove
the theorem it suffices to show that either D̃ν0

k0
meets some interval Ik × {0} within the set

R×Sνk , with (k, ν) 6= (k0, ν0), or D̃ν0
k0

is unbounded in R×E (the alternatives (ii) and (iii)
stated in the theorem for Dν0

k0
correspond, via T , to the various ways in which D̃ν0

k0
can be

unbounded).
Suppose that the above assertions for the set D̃ν0

k0
do not hold. Then D̃ν0

k0
is bounded in

R × E and we can choose a compact interval Λ ⊂ R such that (PR(D̃
ν0
k0
) ∪ Ik0) ⊂ Λ.

Following [12, Theorem 1.3], we can find a neighborhood Q̃ of D̃ν0
k0

and sufficiently small
δ2 < δ1 and c−22 (c2 > c0) such that D̃ν0

k0
⊂ Q̃,((Ik0(δ2) × Bc−1

2
) ∩ (R × Sν0k0 )) ⊂ Q̃,

∂Q̃ ∩ L̃ = ∅.
Along with problem (3.6), consider the following approximation problem

`(v) = λτ(x)v + f̃(λ, ||v||ε3), x ∈ (0, l), v ∈ B.C., (3.7)
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where ε ∈ (0, 1]. For fixed ε ∈ (0, 1) it follows from (3.5) that ||f̃(λ, ||v||ε3) = o(||v||3)
as ||v||3 → 0 uniformly in λ ∈ Λ, so the global bifurcation results in [1, 3] and [10] are
applicable to this problem. Then for each fixed ε ∈ (0, 1) there exists a continuum D̃ν0

k0, ε
of

solutions of problem (3.7) which meets (λk0 , 0) within the set R× Sν0k0 and either D̃ν0
k0, ε

is
unbounded in R×E or there is some (k, ν) 6= (k0, ν0) such that D̃ν0

k0, ε
meets (λk, 0) within

the set R×Sνk . Hence D̃ν0
k0, ε

intersects both Q̃ and the complement of Q̃, and consequently,
D̃ν0
k0, ε
∩ ∂Q̃ 6= ∅. It follows that for each ε ∈ (0, 1) there exists a nontrivial solution

(λε, vε) ∈ ∂Q̃ of problem (3.7). Since Q̃ is bounded in R×E it follows from (3.7) that the
set {(λε, vε) ∈ R × E : ε ∈ (0, 1)} is bounded in R × C4[0, l] independently of ε. Then
there is a sequence {εn}∞n=1 ⊂ (0, 1) such that εn → 0 and {(λεn , vεn)}∞n=1 converges to a
nontrivial solution (λ0, v0) of (3.6) in R × E, which implies that (λ0, v0) ∈ ∂Q̃ ∩ L̃. This
contradicts the relation ∂Q̃ ∩ L̃ = ∅. The proof is complete.
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