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Cauchy functional equation and representation by ridge functions

Aysel A. Asgarova

Received: 15.05.2018 / Revised: 03.08.2018 / Accepted: 01.10.2018

Abstract. In the current paper, we show the relevance of some classical results on the Cauchy functional
equation to the problem of representation by sums of ridge functions with finitely many directions. We
prove that if a sum of ridge functions belongs to a class of functions with difference property then under
suitable conditions each summand also belongs to this class. We also give some practical corollaries of
this result.
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1 Introduction

A ridge function is a multivariate function of the form

g (a·x) = g (a1x1 + . . .+ anxn) ,

where g : R → R, a = (a1, ..., an) is a fixed vector (direction) in Rn\ {0} , x =
(x1, ..., xn) is the variable and a·x is the usual inner product in Rn. In the theory of par-
tial differential equations, ridge functions have been known under the name of plane waves
(see, e.g., [18]). They appear as general solutions of some homogeneous hyperbolic type
equations. For example, assume that (ai, bi), i = 1, ..., r, are pairwise linearly independent
vectors in R2. Then the general solution to the equation

r∏
i=1

(
ai
∂

∂x
+ bi

∂

∂y

)
f (x, y) = 0,

where the derivatives are understood in the sense of distributions, are all functions of the
form

f(x, y) =
r∑

i=1

gi (bix− aiy)

for arbitrary continuous univariate functions gi, i = 1, ..., r.
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The term “ridge function” was devised by Logan and Shepp in their pioneering paper
[26] dedicated to the mathematics of computerized tomography (see also [19,20,28,29]).
After a 1981 paper by Friedman and Stuetzle [11] ridge functions started to appear also
in statistics, especially, in the theory of projection pursuit and projection regression (see,
e.g., [6,7,10–12]). The general idea therein was to reduce “dimension” and thus bypass the
“curse of dimensionality”.

Ridge functions are used in many models in neural network theory. For example, in one
of the popular models called MLP (multilayer feedforward perceptron) model, the simplest
case considers functions of the form

r∑
i=1

ciσ(w
i·x− θi).

Here the weights wi are vectors in Rn, the thresholds θi and the coefficients ci are real
numbers and the activation function σ is a univariate function. Note that for each θ ∈ R
and w ∈ Rn\{0} the function

σ(w · x− θ)

is a ridge function. For an extensive study of approximation properties of the MLP model
see [34].

Ridge functions are interesting also to approximation theorists. In approximation the-
ory, these functions are implemented as an effective and convenient tool for approximating
complicated multivariate functions (see, e.g., [13–17,23,25,27,30,33]).

In this paper, we consider the problem of representation by sums of ridge functions with
r, r ≥ 1, fixed directions. Let the directions ai ∈ Rn\ {0} , i = 1, ..., r, be given and
pairwise linearly independent. Assume we know that a function f(x) can be represented in
the form

f(x) =

r∑
i=1

gi(a
i · x). (1.1)

Assume in addition that f is of the class Ck(Rn). What can we say about gi? Can we say
that gi ∈ Ck(R)? The case r = 1 is obvious. In this case, if f ∈ Ck(Rn), then for c ∈ Rn

satisfying a1 · c = 1 we have that g1(t) = f(tc) is in Ck(R). The same argument can
be carried out for the case r = 2. In this case, since the vectors a1 and a2 are linearly
independent, there exists a vector c ∈ Rn satisfying a1 · c = 1 and a2 · c = 0. Therefore,
we obtain that the function g1(t) = f(tc)− g2(0) is in the class Ck(R). Similarly, one can
verify that g2 ∈ Ck(R) (see [2]).

The above questions becomes quite difficult if the number of directions r ≥ 3. For
r = 3, there are many smooth functions which decompose into sums of very badly behaved
ridge functions. This is a consequence of the classical Cauchy Functional Equation (CFE).
This equation is defined as

h(x+ y) = h(x) + h(y), h : R→ R, (1.2)

which has a class of simple solutions h(x) = cx, c ∈ R. However, it easily follows from the
Hamel basis theory that CFE has also a large class of badly behaved solutions. These solu-
tions are called “badly behaved” because they are weird over reals. They are, for example,
not continuous at a point, not monotone at an interval, not bounded at any set of positive
measure (see, e.g., [1]). Let h1 be any such solution of the equation (1.2). Then the zero
function can be written as

0 = h1(x) + h1(y)− h1(x+ y). (1.3)
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Note that the functions involved in (1.3) are ridge functions with the directions (1, 0), (0, 1)
and (1, 1) respectively. This particular example shows that for smoothness of the represen-
tation (1.1) one must impose additional conditions on the functions gi, i = 1, ..., r.

It was first proved by Buhman and Pinkus [5] that if in (1.1) f ∈ Ck(Rn), k ≥ r − 1
and gi ∈ L1

loc(R) for each i, then gi ∈ Ck(R) for i = 1, ..., r. In [32] Pinkus found a strong
relationship between CFE and the problem of smoothness in ridge function representation.
He generalized extensively the previous result of Buhman and Pinkus [5]. He showed that
the solution is quite simple and natural if the functions gi are taken from a class B of real-
valued functions u defined on R. By definition, u is in B if for any function v ∈ C(R) for
which u− v satisfies CFE, u− v is linear, i.e. u(x)− v(x) = cx, where c ∈ R (see [32]).
The result of Pinkus states that if in (1.1) f ∈ Ck(Rn) and each gi ∈ B, then necessarily
gi ∈ Ck(R) for i = 1, ..., r.

The above representation problem was also considered by Konyagin and Kuleshov [21,
22] and by Kuleshov [24]. They mainly analyze the continuity of the representation, that
is, the question if and when continuity of f in (1.1) guarantees the continuity of gi. There
are also other results concerning the smoothness of ridge function representation generaliz-
ing the above result of Pinkus (see [24]). The results in [21,22,24] involve certain subsets
(convex open sets, convex bodies, etc.) of Rn instead of only Rn itself.

The results of Pinkus [32] give rise to the following natural and important problem.
Assume in the representation (1.1) f ∈ Ck(Rn), but the functions gi are arbitrarily behaved
(that is, we allow very badly behaved functions). Can we write f as a sum

∑r
i=1 fi(a

i · x)
but with the fi ∈ Ck(R), i = 1, ..., r? This problem was posed in [5] and [31]. In [2],
Aliev and Ismailov gave a partial solution to this problem. Their solution comprises the
cases in which r − 1 directions of given r directions are linearly independent. Note that
this condition is satisfied by default if we are given three directions, as it is assumed that all
the directions are pairwise linearly independent. The representation problem in the case of
three directions was initially considered in [4]. For bivariate functions having the degree of
smoothness k ≥ r − 2, the problem was completely solved in [3].

In this paper we generalize the result of Pinkus in such a way that instead of the pair
Ck(Rn) and B, one would be able to take many other important pairs of function classes.
As a practical example, for each natural number k we suggest a special function class Bk,
which is wider than B, and show that if a function f ∈ Ck(Rn) has the representation (1.1)
and gi ∈ Bk, i = 1, ..., r, then gi ∈ Ck(R), i = 1, ..., r.

2 Main result

In [32], A.Pinkus considered the problem of smoothness in ridge function representation.
For a given function f represented by (1.1), he posed and answered the following ques-
tion. If f belongs to some smoothness class, what can we say about the smoothness of the
functions gi? He proved that for a large class of representing functions, the representation
is smooth. That is, if a priori assume that in the representation (1.1), the functions gi is of a
certain class of ”quite well behaved functions”, then they have the same degree of smooth-
ness as the function f. As the mentioned class of ”quite well behaved functions” one may
take, e.g., the set of continuous functions, the set of Lebesgue measurable functions, etc.
All these classes come from the class B considered by Pinkus [32] and the classical theory
of CFE (Cauchy Functional Equation). In [32], B denotes any translation invariant (that is,
f(· + t) ∈ B for any t ∈ R if f ∈ B) linear space of real-valued functions u defined on
R such that if there is a function v ∈ C(R) for which u − v satisfies CFE, then u − v is
necessarily linear, i.e. u(x)− v(x) = cx, for some constant c ∈ R. Such definition of B is
required in the proof of the following theorem.
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Theorem 2.1 (Pinkus [32]). Assume f ∈ Ck(Rn) is of the form (1.1). Assume, in addition,
that each gi ∈ B. Then necessarily gi ∈ Ck(R) for i = 1, ..., r.

Below we prove more general version of the result of Pinkus. Let A denote any class
of functions f : R → R with the property that if f satisfies CFE, then f = cx. These
classes (namely, in this form) appear almost everywhere in the literature on CFE (see, e.g.,
[1]). Besides, we assume that A is difference invariant, that is, f(·+ t)− f(·) ∈ A for any
t ∈ R if f ∈ A. Simple examples of A are the sets of continuous, bounded and Lebesgue
measurable functions.

Along with the classes A, we consider the classes of functions having the difference
property. Let D denote any class of functions with the property that if 4tf = f(· + t) −
f(·) ∈ D for all t ∈ R, then f − s ∈ D, for some s satisfying CFE. Several classes with the
difference property are investigated in de Bruijn [8,9]. Some of these classes are:

1) C(R), continuous functions;
2) Ck(R), functions with continuous derivatives up to order k;
3) C∞(R), infinitely differentiable functions;
4) analytic functions;
5) functions which are absolutely continuous on any finite interval;
6) functions having bounded variation over any finite interval;
7) algebraic polynomials;
8) trigonometric polynomials;
9) Riemann integrable functions.
In the sequel, we assume that the considered classD contains linear functions and forms

a linear space.
We define the following relation between the classes A and D.

Definition 2.1 Let A and D be two classes of functions defined above. We say that the
classes A and D are compatible if for any pair f ∈ A and g ∈ D, we have f − g ∈ A.

For example, the classes A =Cm(R) and D =Ck(R) are compatible if m ≤ k, the
class A of functions continuous on the real axis is compatible with the class D of algebraic
polynomials, etc.

The following theorem is valid. Its proof is based on the ideas set forth in [32].

Theorem 2.2 Let A and D be any two compatible classes of functions. Assume f(x) =
r∑

i=1
gi(a

i · x), where f(ct) ∈ D for any c ∈ Rn and gi ∈ A. Then gi ∈ D.

Proof. We prove this theorem by induction on r. The result is valid when r = 1. Indeed,
for any direction c orthogonal to a1, we can write that g1(t) = f(ct) ∈ D. Assume that the
result is valid for r − 1.

Chose any vector e ∈ Rn satisfying e · ar = 0 and e · ai = bi 6= 0, for i = 1, ..., r − 1.
Clearly, there exists a vector with this property. The property of e enables us to write that

f(x+ et)− f(x) =
r−1∑
i=1

gi(a
i · x+ bit)− gi(ai · x). (2.1)

Consider the following functions

F (x)=f(x+ et)− f(x)

and
hi(y) = gi(y + bit)− gi(y), i = 1, ..., r − 1.
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Then (3.1) can be written as

F (x) =
r−1∑
i=1

hi(a
i · x).

Note that F (ct) ∈ D for any c ∈ Rn and hi ∈ A for all t ∈ R. Thus it follows by our
induction assumption that hi ∈ D for all t ∈ R.

Now it is not difficult to prove that the result is valid also for r. From the definition of D
and the functions hi we obtain that gi−si ∈ D, for some si satisfying CFE. Put ui = gi−si,
i = 1, ..., r − 1. Since the classes A and D are compatible, one can see that the functions
si = gi−ui are in the classA. But then by the definition ofA, si = cix, for some constants
ci, i = 1, ..., r − 1. Thus we conclude that the functions gi = ui + si are in the class D.
This is valid for i = 1, ..., r − 1. It is not difficult to see that gr is also in the class D. (To
see this instead of the vector e take any vector d such that d · a1 = 0 and d · ai 6= 0, for
i = 2, ..., r, and repeat the above process). Thus from the assumption that the result is valid
for r − 1 we has derived that it is valid for r. Theorem 2.2 has been proved.

One can easily formulate many useful and applicable corollaries of Theorem 2.2. Below
we formulate three of them. The first corollary extends the class of B considered by Pinkus.
Let for each k ∈ N, Bk be any class of difference invariant functions u defined on R such
that if there is a function v ∈ Ck(R) for which u− v satisfies CFE, then u(x)− v(x) = cx,
for some constant c ∈ R. Clearly, Bk may contain more functions than B. Let, for example,
s be any badly behaved solution of CFE, t be a nowhere differentiable continuous function
and u = s + t. Then u cannot be in B, but it can be in Bk, since there is no function
v ∈ Ck(R) such that u− v satisfies CFE.

Corollary 2.1 Assume f ∈ Ck(Rn) is of the form (1.1). Assume, in addition, that each
gi ∈ Bk. Then necessarily gi ∈ Ck(R) for i = 1, ..., r.

The next corollary is about representation of polynomials by sums of ridge functions.

Corollary 2.2 Assume a multivariate polynomial function f is of the form (1.1). Assume,
in addition, that each gi, i = 1, ..., r, is continuous. Then gi are univariate polynomials.

The next corollary follows from the fact that the class of continuous functions has the
difference property (see [8]) and is compatible with the class of Lebesgue measurable func-
tions.

Corollary 2.3 Assume a continuous function f is of the form (1.1). Assume, in addition,
that each gi, i = 1, ..., r, is Lebesgue measurable. Then all the functions gi are continuous.
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