
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
38 (2018), no. 4, Mathematics, 70-78.

Fourier series analysis of a time-dependent perfusion coefficient
determination in a 2D bioheat transfer process
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Abstract. In this work, an inverse problem of determining the time-dependent perfusion coefficient of
two-dimensional (2D) heat equation with a classical and total energy integral overdetermination con-
dition is considered. The existence and uniqueness of the problem is obtained by generalized Fourier
method combined with the unique solvability of the second kind Volterra integral equation. Moreover, the
proof of the continuous dependence upon the data of the inverse problem is given.
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1 Introduction

The inverse coefficient problems for heat equation are of importance in some engineering,
industrial and medical point of views. Among these inverse problems, much attention is
given to the determination of the lowest order coefficient in multidimensional heat equation,
in particular, when this coefficient depends solely on time [4,7,9,12–15,21], although many
researchers have reported its difficulties.

The bioheat model is composed of a partial differential equation [20]:

ρcUτ − κ∆U + wbcb(U − Ua) = hm + he, (1.1)

where κ is the thermal conductivity of the tissue, U is the temperature of the tissue, wb
is mass flow rate of blood, cb is specific heat of the blood, Ua is the temperature of the
arterial blood, hm is a volumetric rate of metabolic heating generation, he volumetric rate
of external heat, ρ is the density, and c is specific heat of the tissue.

In two-dimensional (2D) case, (1.1) takes the following dimensionless form

ut = uxx + uyy − p(t)u(x, y, t) + f(x, y, t), (x, y, t) ∈ DT , (1.2)
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by using the change of variables, letting g0 as a reference source of heating generation

u =
κ(U − Ua)

g0
, t =

κτ

ρc
, p =

wbcb
κ

, f =
he + hm
g0

,

where the domain DT = D × (0 < t ≤ T ) with D = {(x, y) : 0 < x, y < 1}, the
parameter p(t) is blood perfusion coefficient, and f is the dimensionless source of heating
generation.

Inverse blood perfusion determination techniques for one dimensional (1D) case based
on known initial and classicial boundary conditions (Dirichlet, Neumann, Robin) and ad-
ditional classical measurements have been described in [6,16–18,21]. Moreover, these in-
verse problems in multidimensional cases had been studied in [3,22]. The determination of
the coefficient for one dimensional case based on nonlocal or nonclassical and additional
integral boundary conditions have been described in [8,10,11].

The determination of a time-dependent blood perfusion coefficient in a 2D bioheat equa-
tion is formulated as an inverse problem of finding the coefficient of the lowest term in a
2D heat equation with classical boundary conditions (Dirichlet boundary conditions) will
be considered in the present paper.

We consider (1.2) with the initial condition

u(x, y, 0) = ϕ(x, y), 0 ≤ x, y ≤ 1, (1.3)

Dirichlet boundary conditions

u(0, y, t) = u(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T,
u(x, 0, t) = u(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T. (1.4)

In the mathematical model of this problem, we consider a rectangular perfused tissue with
both thickness and length are 1. The boundary conditions (1.4) include 0◦ temperature at
x = 0, x = 1, on the upper skin surface at y = 1 and on a wall between the tissue and an
adjoint large blood vessel at y = 0.

The model which is considered a rectangular perfused tissue with length and thickness
equal to some value L and 1, respectively, including (some) given temperature on the upper
skin y = 1, adiabatic conditions at x = 0 and x = L, and convective heat transfer between
the tissue and an adjoint large blood vessel at y = 0 as a space-dependent bioheat transfer
problem presented in [1,2].

The problem of finding a pair {p(t), u(x, y, t)} ∈ C[0, T ] × C2,2,1(DT ) satisfying the
equation (1.2), initial condition (1.3), boundary conditions (1.4) and overdetermination con-
dition ∫ 1

0

∫ 1

0
u(x, y, t)dxdy = E(t). (1.5)

will be called an inverse problem.
The paper is organized as follows. In Section 2, we recall some necessary results on

basisness of root functions concerning the two-dimensional spectral problem with classical
boundary condition. Then the well-posedness of the inverse problem (1.2)-(1.5) for global
T is showed by using generalized Fourier method combined with the unique solvability of
the second kind of Volterra integral equation in Section 3. Finally, the concluding remarks
are presented in Section 4.
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2 Spectral problem

Consider the following spectral problem:

∂2Z

∂x2
+
∂2Z

∂y2
+ µZ = 0, x, y ∈ D, (2.1)

Z(0, y) = Z(1, y) = 0, Z(x, 0) = Z(x, 1) = 0, 0 ≤ x, y ≤ 1, (2.2)

where µ is the separation parameter. We present the solution as follows

Z(x, y) = X(x)V (y). (2.3)

Substituting this expression into (2.1) and (2.2), we obtain the following problems

X ′′(x) + γX(x) = 0, 0 < x < 1, X(0) = X(1) = 0, (2.4)

V ′′(y) + λV (y) = 0, 0 < y < 1, V (0) = V (1) = 0, (2.5)

where γ = µ− λ. It is known that the solutions of (2.4) and (2.5) are

γm = (πm)2, Xm(x) =
√
2 sin(πmx),

λk = (πk)2, Vk(y) =
√
2 sin(πky),

for k,m = 1, 2, . . ., respectively. Here, we give the constants multiplying the eigenfunctions
suitable for normalization conditions.

Consequently, the eigenvalues and eigenfunctions of problem (2.1), (2.2), with the rep-
resentation (2.3), are

µm,k = γm + λk = (πm)2 + (πk)2, Zm,k(x, y) = Xm(x)Vk(y), m, k = 1, 2, . . . .
(2.6)

The problem (2.1)-(2.2) is self-adjoint in the sense of the following inner product

(ψ, ξ) =

∫ 1

0

∫ 1

0
ψ(x, y)ξ(x, y)dxdy.

Additionally, since Xm(x) and Vk(y) are complete orthonormal system on [0, 1], then the
set of eigenfunctions Zm,k(x, y) is complete in L2(D) and form an orthonormal system of
functions on D; i.e., for any admissible indices m, k, l, and p, we have (Zm,k, Zl,p) = 1 if
m = l and k = p and (Zm,k, Zl,p) = 0 otherwise.

For any integrable function ϕ(x, y) in D, the Parseval’s relation is

∫∫
D
ϕ2(x, y)dxdy =

∞∑
k=1

∞∑
m=1

ϕ2
m,k,

where ϕm,k =
∫∫
D ϕ(x, y)Zm,k(x, y)dxdy, (see for example [19]).
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3 Global well-posedness of the inverse problem

We have the following assumptions on ϕ(x, y), f(x, y, t) and E(t).

(A1)
(A1)1 ϕ(x, y) ∈ C2,2(D),
(A1)2 ϕ(0, y) = ϕ(1, y) = 0, ϕ(x, 0) = ϕ(x, 1) = 0,
(A1)3 ϕ1,1 > 0, ϕ2m−1,2k−1 ≥ 0, m, k = 2, 3, . . . ,

(A2)
(A2)1 f(x, y, t) ∈ C(DT ), f(x, y, t) ∈ C2,2(D), ∀t ∈ [0, T ]
(A2)2 f(0, y, t) = f(1, y, t) = 0, f(x, 0, t) = f(x, 1, t) = 0,
(A2)3 f2m−1,2k−1(t) ≥ 0, m, k = 1, 2, . . . ,

(A3)
(A3)1 E(t) ∈ C1[0, T ],

(A3)2 E(0) =
∫ 1
0

∫ 1
0 ϕ(x, y)dxdy,

(A3)3 E(t) > 0, ∀t ∈ [0, T ],

where

fm,k(t) =

∫∫
D
f(x, y, t)Zm,k(x, y)dxdy, m, k = 1, 2, . . . .

The main result on existence and uniqueness of the solution of the inverse problem
(1.2)-(1.5) is presented as follows.

Theorem 3.1 (Existence and uniqueness) Under the conditions (A1)-(A3) the inverse
problem (1.2)-(1.5) has a unique solution.

Proof. Since (2.6) is a basis inL2(D), we present the solution of (1.2)-(1.4) in the following
form for arbitrary p(t) ∈ C[0, T ]:

u(x, y, t) =

∞∑
k=1

∞∑
m=1

αm,k(t)Zm,k(x, y), (3.1)

where

αm,k(t) = ϕm,ke
−[(πm)2+(πk)2]t−

∫ t
0 p(s)ds +

∫ t

0
fm,k(τ)e

−[(πm)2+(πk)2](t−τ)−
∫ t
τ p(s)dsdτ.

Under conditions (A1) and (A2), the series (3.1), its t−partial derivative, the xx−second
order and yy−second order partial derivatives converge uniformly inDT that their majoriz-
ing sums absolutely convergence. Thus u(x, y, t) ∈ C2,2,1(DT ). By considering (3.1) and
the overdetermination condition (1.5), we obtain the following Volterra integral equation of
the second kind with respect to r(t) = e

∫ t
0 p(s)ds:

r(t) = F (t) +

∫ t

0
K(t, τ)r(τ)dτ, (3.2)

where

F (t) =
8

π2E(t)

∞∑
k=1

∞∑
m=1

ϕ2m−1,2k−1
(2m− 1)(2k − 1)

e−[((2m−1)π)
2+((2k−1)π)2]t,

K(t, τ) =
8

π2E(t)

∞∑
k=1

∞∑
m=1

f2m−1,2k−1(τ)

(2m− 1)(2k − 1)
e−[((2m−1)π)

2+((2k−1)π)2](t−τ).
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In the case that (3.2) has a positive solution in C1[0, T ], the function p(t) can be determined
from the equation

p(t) =
r′(t)

r(t)
. (3.3)

Under the assumptions (A1)1,2 − (A3)1,2, the right-hand side of F (t) and the kernel
K(t, τ) are continuously differentiable functions in [0, T ] and [0, T ] × [0, T ], respectively.
Moreover, under the conditions (A1)3 − (A3)3, F (t) > 0 in [0, T ] and K(t, τ) ≥ 0 in
[0, T ] × [0, T ]. In addition, applying the Gronwall inequality [5] to (3.2), the following
inequality holds:

‖r‖C[0,T ] ≤ ‖F‖C[0,T ]e
T‖K‖C([0,T ]×[0,T ]) . (3.4)

Then we obtain a unique positive function r(t) ∈ C1[0, T ], which the function (3.3)
together with the solution of the problem (1.2)-(1.4) given by the Fourier series (3.1), form
the unique solution of the inverse problem (1.2)-(1.5). Theorem 3.1 is proved.

The following result on continuously dependence on the data of the solution of the in-
verse problem (1.2)-(1.5) holds.

Theorem 3.2 (Stability) Let = be the class of triples in the form {ϕ, f,E} which satisfy
the assumptions (A1) - (A3) and

‖f‖C2,2,0(DT )
≤ N0, ‖ϕ‖C2,2(D) ≤ N1, ‖E‖C1[0,T ] ≤ N2,

0 < N3 ≤ min
t∈[0,T ]

|E(t)| ,

for some positive constantsNi, i = 0, 1, 2, 3. Then the solution (p, u) of the inverse problem
(1.2)-(1.5) depends continuously upon the data in =.

Proof. Let Φ = {ϕ,E, f}, Φ = {ϕ,E, f} ∈ = be two sets of data and (p, u) and (p, u) be
the solutions of inverse problem (1.2)-(1.5) corresponding the data Φ and Φ, respectively.
Denote ‖Φ‖ = ‖ϕ‖C2,2(D) + ‖E‖C1[0,T ] + ‖f‖C2,2,0(DT )

.
According to (3.1) and (3.2), we get

r(t) = F (t) +

∫ t

0
K(t, τ)r(τ)dτ, and r(t) = F (t) +

∫ t

0
K(t, τ)r(τ)dτ,

where

F (t) =
8

π2E(t)

∞∑
k=1

∞∑
m=1

ϕ2m−1,2k−1
(2m− 1)(2k − 1)

e−[((2m−1)π)
2+((2k−1)π)2]t,

K(t, τ) =
8

π2E(t)

∞∑
k=1

∞∑
m=1

f2m−1,2k−1(τ)

(2m− 1)(2k − 1)
e−[((2m−1)π)

2+((2k−1)π)2](t−τ),

and

F (t) =
8

π2E(t)

∞∑
k=1

∞∑
m=1

ϕ2m−1,2k−1
(2m− 1)(2k − 1)

e−[((2m−1)π)
2+((2k−1)π)2]t,

K(t, τ) =
8

π2E(t)

∞∑
k=1

∞∑
m=1

f2m−1,2k−1(τ)

(2m− 1)(2k − 1)
e−[((2m−1)π)

2+((2k−1)π)2](t−τ).
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At first, let us estimate the difference r − r. We obtain from (3.2)

r(t)−r(t) = F (t)−F (t)+
∫ t

0

[
K(t, τ)−K(t, τ)

]
r(τ)dτ+

∫ t

0
K(t, τ) [r(τ)− r(τ)] dτ.

(3.5)
Let γ = ‖F−F‖C[0,T ]+T‖K−K‖C([0,T ]×[0,T ])‖r‖C[0,T ] and denoteR(t) = |r(t)−r(t)|.
Then (3.5) implies the inequality

R(t) ≤ γ +

∫ t

0
|K(t, τ)|R(τ)dτ (3.6)

By applying the Gronwall inequality, we obtain from (3.6)

R(t) ≤ γ · e
∫ t
0 sups∈[τ,t] |K(s,τ)|dτ .

Moreover, by using Schwarz and Bessel’s inequalities, we get

|F (t)| ≤ 8

π2|E(t)|

∣∣∣∣∣
∞∑
k=1

∞∑
m=1

ϕ2m−1,2k−1
(2m− 1)(2k − 1)

∣∣∣∣∣ ≤ 8

π2N3
C1C2‖ϕ‖C2,2(D) ≤

8N1

π2N3
C1C2,

(3.7)
and similarly

|K(t, τ)| ≤ 8N0

π2N3
C1C2, (3.8)

where

C1 =

( ∞∑
m=1

(
1

2m− 1

)2
)1/2

, C2 =

( ∞∑
k=1

(
1

2k − 1

)2
)1/2

.

Finally, from (3.4), (3.7) and (3.8), we have

‖r − r‖C[0,T ] ≤ C3(‖F − F‖C[0,T ] + C4‖K −K‖C([0,T ]×[0,T ])),

where C3 = eT (8N0/π2N3)C1C2 and C4 = T (8N1/π
2N3)C1C2C3. Therefore, r continu-

ously depends upon F and K.
Now let us see that F and K continuously depend upon the data. It is easy to derive the

following inequalities:

|F (t)− F (t)| ≤ 8

π2
C1C2

(
1

N3
‖ϕ− ϕ‖C2,2(D) +

N1

N2
3

‖E − E‖C1[0,T ]

)
,

|K(t, τ)−K(t, τ)| ≤ 8

π2
C1C2

(
1

N3
‖f − f‖C2,2,0(DT )

+
N0

N2
3

‖E − E‖C1[0,T ]

)
,

These inequalities imply that

‖F − F‖C[0,T ] ≤M1(‖f − f‖C2,2,0(DT )
+ ‖ϕ− ϕ‖C2,2(D) + ‖E − E‖C1[0,T ])

≤M1‖Φ− Φ‖,

and similarly
‖K −K‖C([0,T ]×[0,T ]) ≤M2‖Φ− Φ‖,

where M1 and M2 are constants obtained from the constants C1, C2 and Nk, k = 0, 1, 2, 3.
Thus, F and K continuously depend upon the data. So, r also continuously depends upon
the data.
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We also need to show that r′ depends continuously upon the data in order to show that
p depends continuously upon the data. Differentiating both sides of (3.2) with respect to t,
we get the followings:

r′(t) = F ′(t) +K(t, t)r(t) +

∫ t

0
Kt(t, τ)r(τ)dτ,

r′(t) = F
′
(t) +K(t, t)r(t) +

∫ t

0
Kt(t, τ)r(τ)dτ.

Then, the following estimation holds:

‖r′ − r′‖C[0,T ] ≤‖F ′ − F
′‖C[0,T ]

+
(
‖K −K‖C([0,T ]×[0,T ]) + T‖Kt −Kt‖C([0,T ]×[0,T ])

)
‖r‖C[0,T ]

+
(
‖K‖C([0,T ]×[0,T ]) + T‖Kt‖C([0,T ]×[0,T ])

)
‖r − r‖

C[0,T ]
.

(3.9)

Since we know that r, F , andK are continuously dependent upon the data, we need to show
continuously dependence of the remaining statements. Since the following inequality holds
by two times over the x−axis and two times over the y−axis integration by parts

|Kt(t, τ)|

≤ 8

π2

∣∣∣∣∣
∞∑
k=1

∞∑
m=1

f2m−1,2k−1(τ)

[
π2

E(t)

(
2m− 1

2k − 1
+

2k − 1

2m− 1

)
+
E
′
(t)

E
2
(t)

1

(2m− 1)(2k − 1)

]∣∣∣∣∣ ,
≤ 8

π2
‖f‖C2,2,0(DT )

(
2C1C2

N3
+
N2C1C2

N2
3

)
≤ 8

π2
N0C1C2

(
2

N3
+
N2

N2
3

)
,

r′ depends continuously upon F ′ and Kt, we can easily obtain the following inequalities
similarly:

|F ′(t)− F ′(t)| ≤ 8

π2
C1C2

[(
N2 + 2N3

N2
3

)
‖ϕ− ϕ‖C2,2(D)

+N1

(
2N2 + 3N3

N3
3

)
‖E − E‖C1[0,T ]

]
,

|Kt(t, τ)−Kt(t, τ)| ≤
8

π2
C1C2

[(
N2 + 2N3

N2
3

)
‖f − f‖C2,2,0(DT )

+N0

(
2N2 + 3N3

N3
3

)
‖E − E‖C1[0,T ]

]
,

Hence, by using the last inequalities, from (3.9)

‖r′ − r′‖C[0,T ] ≤M3‖Φ− Φ‖,
where M3 is a constant which is determined from C1, C2 and Nk, k = 0, 1, 2, 3. This
means that r′ depends continuously upon the data as well. Thus, from (3.3) p also depends
continuously upon the data.

Similarly, we obtain the estimate the difference u− u from (3.1):

‖u− u‖C(DT )
≤M4‖Φ− Φ‖.

Theorem 3.2 is proved.
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4 Conclusion

The paper considers the problem of determining the lowest coefficient that depends on time
only, for a two-dimensional parabolic equation with classical boundary conditions and the
total energy measurement. The existence and uniqueness of the solution of such an inverse
problem and global well-posedness of this problem are examined by using the method of
series expansion in terms of eigenfunctions of corresponding spatial differential operator
which is self-adjoint and hence the system of eigenfunctions is complete.

The numerical method of the inverse problem (1.2)-(1.5) will be considered with a suit-
able combination of the finite difference scheme and numerical integration as a future work.
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