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Abstract. In this paper we consider a spectral problem with describes bending vibrations of a homo-
geneous rod, on the right end of which a tracing force acts and on the right end an inertial mass is
concentrated. We study oscillation properties of eigenfunctions and basis properties of subsystems of
eigenfunctions in the space Lp(0, 1), 1 < p < ∞ of this problem.
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1 Introduction

We consider the following eigenvalue problem

y(4)(x) = λy(x), 0 < x < 1, (1.1)

y′′(0) = 0, (1.2)

y′′′(0)− aλy(0) = 0, (1.3)

y′′(1)− bλy′(1) = 0, (1.4)

y′′′(1)− cλy(1) = 0, (1.5)

where λ ∈ C is a spectral parameter, a, b and c are real constants such that a > 0, b > 0
and c < 0.

The eigenvalue problem (1.1)-(1.5) describes the bending vibrations of a homogeneous
rod, on the right end of which a tracing force acts and on the right end an inertial mass is
concentrated (see [10, 25]).

Eigenvalue problems for ordinary differential operators with a spectral parameter in the
boundary conditions of different statements have been studied in many papers (see, for
example, [1-4, 6-11, 14-14, 26]). The oscillation properties of eigenfunctions of ordinary
differential operators of second and fourth orders with a spectral parameter in boundary
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conditions play a fundamental role in the study of basis properties of root functions in the
space Lp, 1 < p <∞, of these operators. The study of the oscillation properties of ordinary
differential operators has a long history. These properties of differential operators of second
and fourth orders well studied in papers [2, 4-7, 9-12, 15, 16, 19-22]. Basis properties of
root functions in the space Lp, 1 < p <∞, of ordinary differential operators of second and
fourth orders operators studied in detail in [1-3, 6-10, 16-21, 23]. In recent papers [9, 10]
were investigated spectral problems of the fourth order two boundary conditions of which
contained a spectral parameter. It should be noted that for the first time in this work is
study the spectral properties of ordinary differential operators fourth order with a spectral
parameter contained in three of the boundary conditions.

The purpose of this paper is to study the location of eigenvalues on the real axis, oscil-
lation and basis properties of eigenfunctions of the spectral problem (1.1)-(1.5).

2 Operator interpretation of the spectral problem (1.1)-(1.4)

The considered problem (1.1)-(1.4) can be reduced to the eigenvalue problem for the
linear operator L in the Hilbert space H = L2(0, 1)⊕ C3 with the inner product

(û, v̂) = ({y,m, n, τ}, {v, s, t,κ}) = (y, v)L2 + |a|−1ms̄ + |b|−1nt̄+ |c|−1τ κ̄, (2.1)

where
Lŷ = L{y,m, n, τ} = {y(4)(x), ay(0), by′(1), cy(1)}

is an operator with the domain

D(L) = {{y (x), m, n} : y ∈W 4
2 (0, 1), y′′(0) = 0,m = ay(0), n = by′(1), τ = cy(1)}

dense everywhere in H . Problem (1.1)-(1.5) takes the form

Lŷ = λŷ, y ∈ D(L)

i.e., the eigenvalues λk, , k ∈ N, of the operator L and problem (1.1)-(1.5) coincide tak-
ing into account their multiplicities and between the root functions, there is a one-to-one
correspondence

yk(x)↔ {yk(x), mk, nk, τk}, mk = ayk(0), nk = by′k (1), τk = cyk(1).

By direct computation, we make sure thatL is a self-adjoint discrete lower-semibounded
operator inH . Hence this operator has a system of eigenvectors {yk(x),mk, nk, τk}∞k=1 that
forms an orthogonal basis in H .

3 The existence and properties of the solution of problem (1.1)-(1.3), (1.5)

We introduce the boundary conditions (see [4, 12, 19])

y′(1) cos γ − y′′(1) sin γ = 0, (3.1)

where γ ∈ [0, π2 ].
Alongside the problem (1.1)-(1.5) we also consider the problem (1.1)-(1.3), (3.1), (1.5).

The spectral properties of problem (1.1)-(1.3), (3.1), (1.5) in the case of γ = π
2 have been

considered in [10].
Using the method of [10] it can be shown that for problem (1.1)-(1.3), (3.1), (1.5) the

following result holds.
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Theorem 3.1 The eigenvalues of the boundary value problem (1.1)-(1.3), (3.1), (1.5) form
an infinitely nondecreasing sequence 0 = λ1(γ) = λ2(γ) < λ3(γ) < . . . < λk(γ) < . . ..
The eigenfunction yk, γ(x), corresponding to the eigenvalue λk(γ), for k ≥ 3 has k − 1
simple zeros in (0, 1). Moreover, for any γ ∈ [0, π2 ] we have the following relation

λ1 (π/2) = λ1(γ) = λ1(0) = 0 = λ2 (π/2)

< λ2(γ) < λ2(0) < λ3 (π/2) < λ3(γ) < λ2(0) < . . . .
(3.2)

Theorem 3.2 For each fixed λ ∈ C\{0} there exists a nontrivial solution y(x, λ) of the
problem (1.1)-(1.3), (1.5) which is unique up to a constant coefficient.

Proof. We denote by ϕk(x, λ), k = 1, 4, be solutions of equation (1.1), normalized for
x = 0 by the Cauchy conditions

ϕ
(s−1)
k (0, λ) = δks, s = 1, 4, (3.3)

where δks is the Kronecker delta.
The function y(x, λ) will be sought in the following form

y(x, λ) =

4∑
k=1

Ckϕk(x, λ), (3.4)

where Ck, k = 1, 4, are constants.
By (3.3), (3.4) and boundary conditions (1.2), (1.3) it follows that C3 = 0, C4 = aλC1.

Hence the function y(x, λ) can be rewritten as follows:

y(x, λ) = C1(ϕ1(x, λ) + aλϕ4(x, λ)) + C2(ϕ2(x, λ). (3.5)

Then in view of boundary conditions (1.5) from (3.5) we obtain

C1 {(ϕ′′′1 (1, λ) + aλϕ′′′4 (1, λ))− cλ (ϕ1(1, λ) + aλϕ4(1, λ))}

+C2 {ϕ′′′2 (1, λ)− cλϕ2(1, λ)} = 0.
(3.6)

Let λ > 0. Then by virtue of (1.5) it follows from [12, Lemma 2.1] that ϕ2(1, λ) > 0,
ϕ′′′2 (1, λ) > 0. Since c < 0 it follows that ϕ′′′2 (1, λ) − cλϕ2(1, λ) > 0. Consequently, by
(3.6) the function y(x, λ) takes the form

y(x, λ) = C1 {ϕ1(x, λ) + aλϕ4(x, λ)

−ϕ′′′
1 (1,λ)+aλϕ′′′

4 (1,λ)−cλ(ϕ1(1,λ)+aλϕ4(1,λ))
ϕ′′′
2 (1,λ)−cλϕ2(1,λ)

ϕ2(x, λ)
}
.

(3.7)

Let now λ ∈ C\ [0,+∞). If in this case

ϕ′′′1 (1, λ) + aλϕ′′′4 (1, λ)− cλ (ϕ1(1, λ) + aλϕ4(1, λ)) = 0

and
ϕ′′′2 (1, λ)− cλϕ2(1, λ) = 0,

then the functions ϕ1(x, λ)+aλϕ4(x, λ) and ϕ2(x, λ) are solutions of problem (1.1)-(1.3).
We consider the function

v(x, λ) = ϕ′2(1, λ) (ϕ1(x, λ) + aλϕ4(1, λ))

− (ϕ′1(1, λ) + aλϕ′4(1, λ))ϕ2(x, λ).
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Then v(x, λ) is an eigenfunction of problem (1.1)-(1.3), (3.1), (1.5) with γ = 0 correspond-
ing to the eigenvalue λ ∈ C\ [0,+∞) which contradicts to (3.2). Thus

{ϕ′′′1 (1, λ) + aλϕ′′′4 (1, λ)− cλ (ϕ1(1, λ) + aλϕ4(1, λ))}2

+ {ϕ′′′2 (1, λ)− cλϕ2(1, λ)}2 > 0.

Cosequently, the function y(x, λ) can be represented as follows:

y(x, λ) = C {(ϕ′′′2 (1, λ)− cλϕ2(1, λ)) {ϕ1(x, λ) + aλϕ4(x, λ)}

− (ϕ′′′1 (1, λ) + aλϕ′′′4 (1, λ)− cλ (ϕ1(1, λ) + aλϕ4(1, λ)))ϕ2(x, λ)} ,
(3.8)

where

C =
C1

ϕ′′′2 (1, λ)− cλϕ2(1, λ)
if ϕ′′′2 (1, λ)− cλϕ2(1, λ) 6= 0,

C = −C2
ϕ′′′
1 (1,λ)+aλϕ′′′

4 (1,λ)−cλ(ϕ1(1,λ)+aλϕ4(1,λ))
if

ϕ′′′1 (1, λ) + aλϕ′′′4 (1, λ)− cλ (ϕ1(1, λ) + aλϕ4(1, λ)) 6= 0.

The proof of this lemma is complete.

Remark 3.1 Since the functions ϕi(x, λ), ı = 1, 4, are entire function of λ it follows from
(3.7) and (3.8) that without loss of generality we can regard solution y(x, λ) of the problem
(1.1)-(1.3), (1.5) for each fixed x ∈ [0, 1] as an entire function of λ for λ ∈ C\{0} of the
following form

y(x, λ) = (ϕ′′′2 (1, λ)− cλϕ2(1, λ)) {ϕ1(x, λ) + aλϕ4(x, λ)}

− (ϕ′′′1 (1, λ) + aλϕ′′′4 (1, λ)− cλ (ϕ1(1, λ) + aλϕ4(1, λ)))ϕ2(x, λ).
(3.9)

Remark 3.2 It is obvious that if λ = 0 then problem (1.1)-(1.3) has two linearly indepen-
dent solutions y1(x, 0) = 1 and y2(x, 0) = x.

Remark 3.3 Let λ = ρ4. Then solution y(x, λ) problem (1.1)-(1.3), (1.5) represented as
follows:

y(x, λ) = cos ρ(x) + cosh ρx+ C(ρ) sin ρx+ (C(ρ) + 2aρ) sinh ρx, (3.10)

where

C(ρ) =
sin ρ+ sinh ρ+ 2aρ cosh ρ− cρ(cos ρ+ cosh ρ+ 2aρ sinh)

cos ρ− cosh ρ+ cρ(sin ρ+ sinh ρ)
. (3.11)

By virtue of (3.10) and (3.11) we have

lim
λ→0

y(x, λ) = 2

(
1 +

2(1 + a− c)
2c− 1

x

)
. (3.12)

Remark 3.4 Now we can define a function y(x, λ) everywhere on [0, 1]× C by putting

y(x, 0) = 2

(
1 +

2(1 + a− c)
2c− 1

x

)
. (3.13)
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Remark 3.5 It follows from (3.13) that the function y(x, 0) has one zero x = 1−2c
2(1+a−c) =

1−2c
1+2a+1−2c in the interval (0, 1). This fact plays a fundamental role in the study of the
oscillation properties of the eigenfunctions of the problem (1.1)-(1.5).

Remark 3.6 By virtue of (3.13) we have

y′(x, 0) =
2(1 + a− c)

2c− 1
< 0, y′′(x, 0) = 0, x ∈ [0, 1]. (3.14)

Remark 3.7 If λ > 0, then by (1.2), (1.3), (1.5) and the first part of [12, Lemma 2.1] we
have y(0, λ) y′(0, λ) 6= 0.

Lemma 3.1 The zeros in (0, 1] of functions y(x, λ) and y′(x, λ) are simple andC1 function
of λ > 0.

Proof. Let λ > 0 and x0 ∈ (0, 1) such that y(x0, λ) = y′(x0, λ) = 0 (y′(x0, λ) =
y′′(x0, λ) = 0). If y′′(x0, λ)y′′′(x0, λ) ≥ 0 (y(x0, λ)y′′′(x0, λ) ≥ 0), then by virtue of the
first part of [12, Lemma 2.1] we have y(1, λ) = y′′′(1, λ) > 0 in contradiction with (1.5). If
y′′(x0, λ)y′′′(x0, λ) < 0 (y(x0, λ)y′′′(x0, λ) < 0), then by virtue of the second part of [12,
Lemma 2.1] we have y′′(0, λ) 6= 0 in contradiction with (1.2).

Let λ > 0 such that y(1, λ) = y′(1, λ) = 0 (y′(1, λ) = y′′(1, λ) = 0). Then by (1.5) it
follows from the second part of [1, Lemma 2.1] that y′′(0, λ) 6=) in contradiction with (1.2).

Let λ ≤ 0 and x0 ∈ (0, 1] such that y(x0, λ) = y′(x0, λ) = 0. Then multiplying both
sides of equation (1.1) by y(x, λ), and integrating obtaining equality in the range from 0
to x0, using the formula of integration by parts and taking boundary conditions (1.2), (1.3)
into account, we have

x0∫
0

y′′2(x, λ)dx = λ


x0∫
0

y2(x, λ)dx+ ay2(0, λ)


which implies that λ > 0 in contradiction with λ ≤ 0.

Let λ ≤ 0 and x0 ∈ (0, 1] such that y′(x0, λ) = y′′(x0, λ) = 0. Since y′′(0, λ) = 0
there exists a point ξ closest to x0 such that y′′′(ξ, λ) = 0. We can assume without loss of
generality that y′′(x, λ) < 0 for x ∈ [ξ, x0). Then y′(ξ, λ) > 0, y′′′(ξ − 0, λ) < 0 and
y′′′(ξ + 0, λ) < 0. Hence by Eq. (1.1) y(ξ, λ) < 0. Consequently, by the above argument
we have

ξ∫
0

y′′2(x, λ)dx− y′(ξ, λ) y′′(ξ, λ) = λ


ξ∫

0

y2(x, λ)dx+ ay2(0, λ)


which implies that λ > 0 in contradiction with λ ≤ 0.

The continuous differentiability of the function x(λ) follows from the well-known im-
plicit function theorem. The proof of this lemma is complete.

Corollary 3.1 As λ > 0 (λ ≤ 0) varies the function y(x, λ) and y′(x, λ) can lose or gain
zeros only by these zeros leaving or entering the interval [0, 1] through its endpoint x = 1
(x = 0).

Lemma 3.2 Let y(x, λ) be a nontrivial solution of problem (1.1), (1.2), (1.5) for λ > 0.
If y(x0, λ) = 0 or y′′(x0, λ) = 0, then y′(x, λ)Ty(x, λ) < 0 in a some neighborhood
of x0 ∈ (0, 1); if y′(x0, λ) = 0 or Ty(x0, λ) = 0, then y(x, λ)y′′(x, λ) < 0 in a some
neighborhood of x0 ∈ (0, 1).
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The proof of this lemma is similar to that of [2, Lemma 2.2].

Lemma 3.3 Let λ > 0. Then between consecutive zeros of function y′(x, λ) in half-open
interval (0, 1], there is exactly one zero of function y(x, λ).

The proof of Lemmas 3.3 is similar to that of [9, Lemma 2.5] using Lemma 3.2.
We consider the function

H(x, λ) =
y′(x, λ)

y′′(x, λ)
.

By virtue of Theorem 3.2, and Remarks 3.1-3.4 that the function H(x, λ) is a finite order
meromorphic function of λ for all finite λ and fixed x ∈ (0, 1].

Remark 3.8 It is obvious that the eigenvalues λn(0) and λn(π/2), n ∈ N, n 6= 1, of the
spectral problem (1.1)-(1.3), (3.1), (1.5) for γ = 0 and γ = π/2 are zeros of the entire
functions y′(1, λ) and y′′(1, λ), respectively.

To study the spectral properties of problem (1.1)-(1.5), we need to investigate the behav-
ior of the function

F (λ) =
1

H(1, λ)
=
y′′(1, λ)

y′(1, λ)

on the real axis. In view of Theorem 3.1, (3.14) and Remark 3.8 this function is well defined
for

λ ∈ D ≡ (C\R) ∪ (−∞, λ2(0)) ∪

( ∞⋃
k=3

(λk−1(0), λk(0))

)
and is a meromorphic function of finite order. The eigenvalues λk (π/2) and λk(0) of prob-
lem (1.1)-(1.3), (3.1), (1.5) for k ≥ 2 are zeros and poles of this function, respectively.

Remark 3.9 It follows from (3.14) that F (0) = 0.

Lemma 3.4 For each λ ∈ D\{0} the relation

dF (λ)

dλ
= − 1

y′2(1, λ)


1∫

0

y2(x, λ) dx+ ay2(0, λ)− cy2(1, λ)

 (3.15)

holds.

Proof. By virtue of Eq. (1.1) we have(
y′′′(x, µ)

)′
y(x, λ)−

(
y′′′(x, λ)

)′
y(x, µ) = (µ− λ)y(x, µ)y(x, λ). (3.16)

Integrating equality (3.16) from 0 to 1, using the formula for the integration by parts and
taking boundary conditions (1.1), (1.3) and (1.5) into account we obtain

− y′′(1, µ) y′(1, λ) + y′′(1, λ) y′(1, µ)

= (µ− λ)

{
1∫
0

y(x, µ) y(x, λ)dx+ ay(0, µ) y(0, λ)− cy(1, µ) y(1, λ)

}
.

(3.17)

By (3.8) for µ, λ ∈ D, µ 6= λ, we have

y′′(1,µ)
y′′(1,µ) −

y′′(1,λ)
y′(1,λ) = − (µ− λ)

l∫
0

y(x,µ) y(x,λ) dx+a y′(1,µ) y′(1,λ)

y(1,µ) y(1,λ) .
(3.18)

Dividing both sides of relation (3.18) by µ−λ (µ 6= λ) and by passing to the limit as µ→ λ
we obtain (3.15). The proof of this lemma is complete.
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Remark 3.10 By (3.10) and (3.11) we have

F (λ) = ρ − cos ρ+cosh ρ−C(ρ) sin ρ+(C(ρ)+2aρ) sinh ρ
− sin ρ+sinh ρ+C(ρ) cos ρ+(C(ρ)+2aρ) cosh ρ , (3.19)

which implies that

F (λ) =
4c− 1 + 4a(3c− 1)

12(1 + a− c)
λ+ o(λ) as λ→ 0. (3.20)

Then it follows from (3.20) that

dF (0)

dλ
=

4c− 1 + 4a(3c− 1)

12(1 + a− c)
< 0. (3.21)

Corollary 3.2 The function F (λ) strictly decreases on each of intervals (−∞, λ2(0)) and
(λk−1(0), λk(0)), k = 3, 4, . . . .

Lemma 3.5 The following relation holds:

lim
λ→−∞

F (λ) = +∞. (3.22)

Proof. We denote: τ =
4
√
|λ|√
2
. Note that if λ < 0, then ρ = 4

√
λ = (1 + i) τ . Hence by

direct calculation from (3.19) we get

F (λ) = 2 τ

(
1 +O

(
1

τ

))
=
√

2 4
√
|λ|

(
1 +O

(
1

4
√
|λ|

))
as λ→ −∞.

The proof of this lemma is complete.

Lemma 3.6 If there exist x ∈ (0, 1] and λ > 0 such that y′(x, λ) = 0, then

∂H(x, λ)

∂x
> 0.

The proof of this lemma is similar to that of [9, Lemma 3.5] with the use of Lemmas
3.1.

The following comparison type theorem is valid.

Lemma 3.7 Let 0 < ν < η. If y′(x, µ) has m zeros in the interval (0, 1), then y′(x, η) has
at least m zeros in this interval.

The proof of this lemma is similar to that of [9, Lemma 3.6] with the use of Theorem
3.2, Remarks 3.1-3.4, Corollary 3.1, Lemmas 3.3-3.6.

Denote by τ(λ) and s(λ) we denote the number of zeros in the interval (0, 1) of functions
y(x, λ) and y′(x, λ), respectively.

Theorem 3.3 If λ ∈ (0, λ2(0)], then τ(λ) = 1, s(λ) = 0, if λ ∈ (λk−1(0), λk(π/2)) and
k ≥ 3, then τ(λ) = k − 2 or τ(λ) = k − 1, if λ ∈ [λk(π/2), λk(0)] and k ≥ 3, then
τ(λ) = k − 1, if λ ∈ (λk−1(0), (λk(0)] and k ≥ 3, then s(λ) = k − 2.

The proof of this lemma is similar to that of [9, Theorem 3.2] with the use of Remarks
3.5 , 3.6, Lemmas 3.1, 3.3, 3.4, 3.7, Corollary 3.1.

Remark 3.11 If λ ∈ (λk−1(0), λk(π/2)), k ≥ 3, is sufficiently close to λk−1(0), then
τ(λ) = k − 2, and if λ is sufficiently close to λk(π/2), then τ(λ) = k − 1.



116 Oscillation and basis properties of a fourth order differential operator with . . .

4 Main properties of eigenvalues and eigenfunctions of problem (1.1)-(1.4), (1.5)

Lemma 4.1 The eigenvalues of the boundary value problem (1.1)-(1.5) are real and form
an at most countable set without finite limit point.

Proof. It’s obvious that the eigenvalues of problem (1.1)-(1.5) are the roots of the equation

y′′(1, λ)− cλ y′(1, λ) = 0. (4.1)

Let λ be the nonreal eigenvalue of problem (1.1)-(1.4). Since the coefficients q(x), a, b, c
are real it follows that λ̄ is also an eigenvalue of problem (1.1)-(1.4). In this case y(x, λ̄) =

y(x, λ), so that if equality (4.1) holds for λ, then it also holds for λ̄ .
Putting µ = λ̄ in (3.17), we get

− y′′(1, λ) y′(1, λ) + y′′(1, λ) y′(1, µ)

= (λ̄− λ)

{
1∫
0

|y(x, λ)|2dx+ a|y(0, λ)|2 − c|y(1, λ)|2
}
.

(4.2)

In view of (1.4) from (4.2) we obtain

−b (λ̄− λ) |y′(1, λ)|2

= (λ̄− λ)

{
1∫
0

| y(x, λ)|2dx+ a|y(0, λ)|2 − c|y(1, λ)|2
}
.

(4.3)

Since λ̄ 6= λ from (4.3) we obtain

1∫
0

| y(x, λ)|2dx+ a | y(0, λ)|2 + b |y′(1, λ)|2 − c | y(1, λ)|2 = 0 (4.4)

which implies that y(x, λ) ≡ 0.
The entire function on the left-hand side in equation (4.1) does not vanish for non-real λ.

Consequently, it does not vanish identically. Therefore, its zeros form an at most countable
set without finite limit points.

Lemma 4.2 The nonzero eigenvalues of the boundary value problem (1.1)-(1.5) are simple.

Let λ be a nonzero eigenvalue of problem (1.1)-(1.4). Then by Lemma 4.1 from (4.4)
we get

1∫
0

y′′2(x, λ)dx+
1∫
0

q(x) y′2(x, λ)dx

= λ

{
1∫
0

y2(x, λ)dx+ a y2(0, λ) + b y′2(1, λ)− c y2(1, λ)

}
.

(4.5)

Hence it follows from (4.5) that λ > 0. Then by virtue of boundary condition (1.1) and
Lemma 2.1 we have y′(1, λ) 6= 0. Therefore each root (with regard of multiplicities) of
equation (4.1) is a root of the equation

F (λ) = bλ. (4.6)

To prove the lemma, it suffices to show that the equation (4.6) has only simple roots.
Indeed, if λ = λ∗ is a multiple root of (4.6), then we have

F (λ∗) = bλ∗, F ′(λ∗) = b. (4.7)
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In view of (3.15) from the second relation in (4.7) we obtain

1∫
0

y2(x, λ∗)dx+ a y2(0, λ∗) + b y′2(1, λ∗)− c y2(1, λ∗) = 0. (4.8)

Consequently, y(x, λ∗) ≡ 0. The proof of this lemma is complete.

We have the following oscillation theorem for the problem (1.1)-(1.5).

Theorem 4.1 There exists an infinitely nondecreasing sequence {λk}∞k=1 of eigenvalues of
the spectral problem (1.1)-(1.5) such that λ1 = λ2 = 0 and λk > 0, k ≥ 3. Moreover, the
corresponding eigenfunctions and their derivatives have the following oscillation proper-
ties:

(i) the eigenfunction yk(x), corresponding to the eigenvalue λk for k ≥ 3 has either
k − 2 or k − 1 simple zeros in (0, 1);

(ii) the function y′k(x) for k ≥ 3 has exactly k − 2 simple zeros in the interval (0, 1).

Proof. By virtue of Remark 3.10 and Corollary 3.2 the functionF (λ) = y′′(1, λ)/y′(1, λ)
is a continuous strictly decreasing function in the intervals (−∞, λ2(0)) and (λk−1(0), λk(0)),
k ≥ 3. In view of relations (3.22) and y′(1, λk(0)) = 0, k ≥ 2, we have

lim
λ→−∞

F (λ) = +∞, lim
λ→λk(0)− 0

F (λ) = −∞,

lim
λ→λk(0)+ 0

F (λ) = +∞.
(4.9)

Consequently, the function F (λ) takes each value in (−∞,+∞) at a unique point in each
of intervals (−∞, λ2(0)) and (λk−1(0), λk(0)), k ≥ 3. The function Q(λ) = bλ is strictly
increasing on (−∞,+∞) in view of condition b > 0. Then it follows from the preceding
considerations that in in each of intervals (−∞, λ2(0)) and (λk−1(0), λk(0)), k ≥ 3 the
equation

F (λ) = Q(λ)

has unique solution λ = λ∗k, i.e. (1.4) holds. By virtue of Remark 3.9 λ = 0 is an eigenvalue
of the problem (1.1)-(1.5). It is easy to verify that this eigenvalue has geometric multiplicity
2. Therefore, we can assume that λ1 = λ2 = λ∗1 = 0, and corresponding eigespace consists
of functions px+ q, p, q ∈ R, x ∈ [0, 1]. Then λ∗k for k ≥ 2 is the (k + 1)th eigenvalue of
problem (1.1)-(1.5), i.e. λk = λ∗k−1 for k ≥ 3, and consequenly, yk(x) = y(x, λk) is the
corresponding eigenfunction.

By (4.9) it follows from Lemmas 3.4 that F (λ) > 0 for λ ∈ (λk−1(0), λk(π/2)), k =
3, 4, . . . . Then by the above arguments we have

λ1 = λ2 = 0 < λ2(0) < λ3 < λ3(π/2) < λ3(0) < λ4 < λ2(π/2) < . . . . (4.10)

Hence it follows from Theorem 3.3 that

k − 2 ≤ s(λk) ≤ k − 1 and τ(λk) = k − 2, k = 3, 4, . . . . (4.11)

The proof of this theorem is complete.

Theorem 4.2 The following asymptotic formulas hold:

4
√
λk = (k − 11/4)π +O (1/k) , (4.12)

yk(x) = sin(k − 11/4)πx+ (−1)ke−(k−11/4)π(1−x) +O( 1/k), (4.13)

where relation (4.13) holds uniformly for x ∈ [0, 1].
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Proof. By virtue of (4.9) from relation (4.13) it follows that for sufficiently large k ∈ N
the eigenvalue λk of problem (1.1)-(1.5) is sufficiently close to λk−1(0). Following the
corresponding reasoning carried out in [1, § 3] we are convinced that

λk(0) =
(
k − 7

4

)
+O

(
1
k

)
,

yk, 0(x) = sin(k − 7/4)πx+ (−1)k+1e−(k−7/4)π(1−x) +O( 1/k),

where yk, 0(x) is an eigenfunction corresponding to the eigenvalue λk(0). Hence using os-
cillation properties of eigenfunctions of problem (1.1)-(1.5) and by following the arguments
on pp. 909-911 of [19] we obtain (4.12) and (4.13). The proof is complete.

5 Basis properties of eigenfunctions of problem (1.1)-(1.5)

Let ŷk = {yk(x),mk, nk, τk}∞k=1, mk = ayk(0), nk = by′k(1), τk = cyk(1), be the sys-
tem of eigenvectors of the operator L. By the arguments in § 2 this system forms an orthog-
onal basis in H .

We denote by
δk = (ŷk, ŷk) .

By virtue of (2.1) we have

δk = ||yk||2L2
+ a−1m2

k + b−1n2k − c−1τ2k > 0. (5.1)

Then the system v̂k = δ
− 1

2
k ŷk forms an Riesz basis in the space in H .

Let j, r and l be different arbitrary fixed natural numbers and

∆j, r, l =

∣∣∣∣∣∣∣
δ
−1/2
j mj δ

−1/2
j nj δ

−1/2
j τj

δ
−1/2
r mr δ

−1/2
r nr δ

−1/2
r τr

δ
−1/2
l ml δ

−1/2
l nl δ

−1/2
l τl

∣∣∣∣∣∣∣
= δ
−1/2
j δ

−1/2
r δ

−1/2
l abc

∣∣∣∣∣∣
yj(0) y′j(1) yj(1)
yr(0) y′r(1) yr(1)
yl(0) y′l(1) yl(1)

∣∣∣∣∣∣ .
(5.2)

Denote by

∆̃j, r, l =

∣∣∣∣∣∣
yj(0) y′j(1) yj(1)
yr(0) y′r(1) yr(1)
yl(0) y′l(1) yl(1)

∣∣∣∣∣∣ . (5.3)

By (5.1)-(5.3) we have
∆r, l 6= 0⇔ ∆̃r, l 6= 0. (5.4)

Theorem 5.1 If ∆j, r, l 6= 0, then the system {yk(x)}∞k=1, k 6=j, r, l of eigenfunctions of prob-
lem (1.1)-(1.5) forms a basis in the space Lp(0, 1), 1 < p < ∞, which is an unconditional
basis for p = 2. If ∆r, l = 0, then this system is incomplete and nonminimal in the space
Lp(0, 1), 1 < p <∞.

The proof of Theorem 5.1 for p = 2 follows from [1, Theorem 3.1 and Corollary 3.1],
for p ∈ (1, +∞)\{2} is similar to that of [19, Theorem 5.1] by using asymptotic formulas
(4.12)-(4.13).

It should be noted that using Theorems 4.1 and 4.2 from Theorem 5.1 one can obtain var-
ious sufficient conditions for the system {yk(x)}∞k=1, n 6=r, l to form a basis in Lp(0, 1), 1 <
p <∞.
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Remark 5.1 Recall that the eigenvalue λ = 0 of problem (1.1)-(1.5) has a geometric mul-
tiplicity of 2 (in this case λ1 = λ2 = 0) and the corresponding eigenspace consists of
functions of the form y(x) = px + q, p, q ∈ R, x ∈ [0, 1]. Hence the functions y1(x)
and y2(x) can be chosen arbitrarily of the form y1(x) = p1x + q1 and y2(x) = p2x + q2,
p1, p2, q1, q2 ∈ R.

Now let j = 1, r = 2 and l ≥ 3 be the arbitrary fixed natural number. Moreover, let
y1(x) = 1 and y2(x) = 1− x, x ∈ [0, 1]. Then we have

∆̃j, r, l =

∣∣∣∣∣ 1 0 1
1 − 1 0

yl(0) y′l(1) yl(1)

∣∣∣∣∣ =

∣∣∣∣∣ 1 0 1
0 − 1 0

yl(0) + y′l(1) y′l(1) yl(1)

∣∣∣∣∣
= yl(0) + y′l(1)− yl(1).

If l is a sufficiently large number of odd multiplicity, then by virtue of Theorem 4.1 and
Remark 3.7 we have yl(0)yl(1) < 0. Moreover, by virtue of Remark 3.7 and [12, Lemma
2.1] it follows that yl(0)y′l(0) < 0 and consequently, yl(1)y′l(1) > 0.

We can assume without of generality that yl(0) > 0. Then it follows from the preceding
considerations that y′l(1) > 0 and yl(1) < 0. Hence ∆̃j, r, l > 0. Thus by (5.2)-(5.4) it
follows from Theorem 5.1 the following result.

Theorem 5.2 If j = 1, r = 2 and l is a sufficiently large number of odd multiplicity, then
the system of eigenfunctions {yn(x)}∞n=1, n6=j, r, l of problem (1.1)-(1.5) forms a basis in the
space Lp(0, 1), 1 < p <∞ (which is an unconditional basis for p = 2).
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