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Abstract. Pseudo-cyclic codes are the most general form of the concept of cyclicity of codes over vector
spaces in information and coding theory. As a method of construction, it provides a direct way to construct
shortened codes on vector spaces over finite fields and finite chain rings. This study applies the related
concepts to the matrix spaces with respect to the term rank metric.
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1 Introduction

In algebraic coding theory, many research has been conducted in terms of investigating
codes over different algebraic structures. It has been an important problem to find out new
construction methods for codes as well as obtaining new codes and new error correction and
data transmission methods. The concept of optimality of codes arises in terms of transmis-
sion of data with maximum error correction capability and this has been a widely studied
issue on algebraic codes [10,12].

Codes over matrix spaces with respect to term rank or rank metric have applications in
information transmission via memoryless matrix channels which appear in the data storage
systems, memory cards and some wireless communication systems in addition to network
coding and space-time coding [4]. Gritsenko and Maevskiy[5] have introduced a method of
constructing codes involving term rank metric. Recently, Liu and Liu [8] have investigated
codes over the rank metric as complementary dual codes and introduced a construction of
two classes of Gabidulin LCD MRD codes by self dual basis. In this study, we first give
some preliminaries about pseudo-cyclic codes and codes over matrix spaces. We propose
the pseudo-cyclic construction method for codes over term rank metric spaces in the second
section and we provide some examples. In the third section, we address a method to compute
the minimum term rank distance of a code using computer algebra system Magma and
Python programming language together, and examine the optimality conditions of codes by
means of the proposed construction method.
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2 Preliminaries

2.1 Pseudo-cyclic Codes
Pseudo-cyclic codes over finite fields were first introduced in [11]. Although every

pseudo-cyclic code over finite fields is indeed a shortened cyclic code, the method provides
a direct construction for many linear codes of various parameters over both finite fields and
finite chain rings and thus attracted many researchers. Pseudo-cyclic codes and their duals
are defined as polycyclic codes by means of the generalization of the concept of cyclic-
ity of codes in [9]. After that, having the notions of left/right polycyclic codes introduced,
these codes are examined in terms of duality and directions in [1]. Throughout this study
we consider the following definitions and notations about pseudo-cyclic codes.

Definition 2.1 A linear code C with length n over a finite field Fq, is called right pseudo-
cyclic with respect to v = (v0, v1, . . . , vn−1) ∈ Fnq , if, whenever c = (c0, c1, . . . , cn−1) is
in C, so is its v-pseudo-cyclic shift (v0cn−1, c0 + v1cn−1, . . . , cn−2 + vn−1cn−1).

With the usual correspondence to the polynomial ring Fq[x], C is a right pseudo-cyclic
code with respect to the polynomial v(x) = v0 + v1x + · · · + vn−1x

n−1, for which v is
the coefficient vector. The direction of a pseudo-cyclic code refers to the direction of the
pseudo-cyclic shift. In this study we prefer using the right shift.

Clearly, any cyclic code is pseudo-cyclic with respect to v = (1, 0, . . . , 0); v(x) = 1
and any constacyclic code with respect to α where α ∈ F ∗q , is pseudo-cyclic with respect to
v = (α, 0, . . . , 0); v(x) = α.

Consider the following transformation

τv : Fn −→ Fn

(c0, c1, . . . , cn−1) 7−→ (v0cn−1, c0 + v1cn−1, . . . , cn−2 + vn−1cn−1)
(2.1)

The representation matrix of τv is Tv, where τv(c) = Tvc for c ∈ Fn, and Tv is exactly
the companion matrix of f(x) = xn − v(x):

Tv =


0 · · · · · · 0 v0
1 0 · · · 0 v1

0 1
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 1 vn−1


n×n

(2.2)

A pseudo-cyclic code with respect to v is invariant under τv. A matrixG in the following
form, which is exactly the v-based vector circulant matrix of the vector c [7], is a generating
matrix of a pseudo-cyclic code with respect to v.

G =


c0 . . . cn−1
− Tvc −
− T 2

v c −
...

− Tn−1v c −


n×n

(2.3)

In the quotient ring F [x]/(xn − v(x)), multiplying a polynomial by x corresponds to
a pseudo-cyclic shift with respect to v, therefore a pseudo-cyclic code C generated by a
polynomial g(x) (a divisor of f(x) = xn − v(x)), corresponds to an ideal in F [x]/(xn −
v(x)). Using the fact that C is an ideal, one can easily show that if deg(g(x)) = n − k,
C = (g(x)) has dimension k.
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2.2 Codes Over Matrix Spaces Codes over matrix spaces have been studied in terms
of array codes or Gabudilin codes in [4] with respect to rank metric and term rank metric
instead of the usual Hamming metric defined on usual vector spaces. In matrix spaces,
matrices correspond to vectors in usual vector spaces. Note that, matrices over the base
field Fq are isomorphic to the vector space over the extension field Fqn ;

Fm×nq
∼= Fmqn (2.4)

The vector space of m × n matrices over a fixed finite field Fq of q elements become a
metric space denoted by MTR. Given A as an m × n matrix with I(A) being the set of
rows/columns of A which contains all the nonzero entries of A, the term rank norm is
defined as

‖A‖TR = min |I(A)| (2.5)

If A and B are two m× n matrices, the term rank distance is defined as

dTR = ‖A−B‖TR (2.6)

Codes over matrix spaces are considered as k−dimensional subspaces of Fmxnq . The
minimum distance of a code over a term rank metric space, denoted byDTR, should clearly
be less than or equal to the minimum of {m,n} and assuming without the loss of generality
that m ≤ n, we have

DTR = min
A∈C−{0}

‖A‖TR ≤ m (2.7)

The only known bound for optimality of codes over MTR is the Singleton bound, which is
expressed in the following version

k ≤ n(m−DTR + 1) (2.8)

If we have the equality, the code is considered to be optimal.
Gritsenko and Maevskiy [6] have introduced a construction method for optimal codes

over MTR, using the correspondence between polynomials and p(x)-circulants. With this
method, they construct [n × n, n]− codes, and for construction of [m × n, n]−codes, they
address the shortening method. In this study, we introduce a direct pseudo-cyclic construc-
tion, which will guide as an analogue to the usual construction of codes over ordinary vector
spaces in general, and with this method the cyclic and constacyclic cases for codes over ma-
trix spaces will be classified. We also propose a method for finding the minimum term rank
distance of a given code using Pyhton software.

3 Code Construction and Examples

Let p(x) = a0 + a1x + · · · + xm be a monic divisor of degree m of a polynomial f(x) =
xn − 1 of degree n and consider the following matrix Pp obtained from the companion
matrix of p(x) horizontally joined with an m× (n−m) block zero-matrix

Pp =


0 1 0 · · · 0 · · · 0
...

. . . . . . . . . . . .
...

...
0 · · · 0 1 0 · · · 0
−a0 −a1 · · · −am−1 0 · · · 0


m×n

(3.1)

We define a cyclic shift by vertically shifting the columns of Pp to the right hand side. We
can obtain this shift by multiplying Pp with Tf which is the companion matrix of f(x) =
xn − 1;
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Tf =


0 1 0 · · · 0

0 0 1
. . .

...

0
...

. . . . . . 0
0 0 · · · 0 1
1 0 · · · · · · 0


n×n

(3.2)

The Fq sub matrix space spanned by n matrices of cyclic shifts of Pp, constructs a form
of a cyclic code over MTR, which we call a cyclic code associated with p(x).

For the case where f = xn − α, (α ∈ F ∗q ), Tf constructs an α-constacyclic shift,
therefore we obtain an α-constacyclic code. Finally, for the most general case where f is an
arbitrary monic polynomial of degree n, we obtain pseudo-cyclic shift and pseudo-cyclic-
codes.

We generalize the structure to the pseudo-cyclic case as follows

Definition 3.1 Let Fq be a finite field with q elements and let f(x) be a monic polynomial
with p(x) a monic divisor of f(x) over Fq[x], with deg f(x) = n and deg p(x) = m. Let
Pp be the matrix obtained from the companion matrix of p(x) horizontally joined with an
m× (n−m) zero-matrix, and Tf be the companion matrix of f . The Fq− sub matrix space
spanned by the following set of m× n matrices

{PpT if : i ∈ [0, n− 1]} (3.3)

is a pseudo-cyclic code in the rank/term rank metric space over Fm×nq .

Considering the correspondence ϕ : Fq[x] −→ Fmxnq which maps xi to Pp(Tf )i, multi-
plying a polynomial by x over the polynomial ring Fq[x], corresponds to the pseudo-cyclic
shift in Fm×nq , as defined above.

Example 1 Let Fq be the finite field with 4 elements; F4 = {0, 1, α, α2}. Consider f(x) =
x9 − 1 and take p(x) = x3 + α2 as a divisor of f. Therefore we have m = 3, n = 9, and

Pp =

 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
α2 0 0 0 0 0 0 0 0

 , Tf =


0 1 0 · · · 0

0 0 1
. . .

...

0
...

. . . . . . 0
0 0 · · · 0 1
1 0 · · · · · · 0


9×9

(3.4)

Applying Tf to Pp, constructs the desired cyclic shift;

PpTf =

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 α2 0 0 0 0 0 0 0

 , (3.5)

PpT
2
f =

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 α2 0 0 0 0 0 0

 , (3.6)

... (3.7)

PpT
8
f =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 α2

 (3.8)
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And the subspace generated by the spanning set {PpT if : i ∈ [0, 8]} becomes a cyclic
[3× 9, 9]−code over the F4−matrix space of 3× 9 matrices.

Example 2 Let Fq be the finite field with 4 elements; F4 = {0, 1, α, α2}. Consider f(x) =
x6 +α2x2 +α and take p(x) = x4 + x2 +α as a divisor of f. We have m = 4, n = 6, and

Pp =

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
a 0 1 0 0 0

 , Tf =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a 0 a2 0 0 0

 (3.9)

Applying Tf to Pp, constructs a pseudo-cyclic shift as follows;

PpTf =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 α 0 1 0 0

 , PpT 2
f =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 α 0 1 0

 , (3.10)

PpT
3
f =

 0 0 0 0 1 0
0 0 0 0 0 1
α 0 α2 0 0 0
0 0 0 α 0 1

 , PpT 4
f =

 0 0 0 0 0 1
α 0 α2 0 0 0
0 α 0 α2 0 0
α 0 α2 0 α 0

 , (3.11)

PpT
5
f =

α 0 α2 0 0 0
0 α 0 α2 0 0
0 0 α 0 α2 0
0 α 0 α2 0 α

 (3.12)

And the subspace generated by the spanning set {PpT if : i ∈ [0, 5]} becomes a pseudo-
cyclic [4× 6, 6]−code over the F4−matrix space of 4× 6 matrices.

3.1 Computing The Minimum Term Rank Distance
As in the case in general coding theory, computing the minimum distance and obtaining

optimal codes is an important issue which also holds for codes over term rank metric spaces.
In order to compute minimum term rank distance of a code over a matrix space, graph
theoretical methods are addressed [5]. It is shown that, the term rank weight of a matrix A
is equal to the maximum size of a matching of the bipartite graph for which A is the bi-
adjacency matrix [3]. Currently, there was not any in-built function for computing the term
rank of a matrix in commonly used computer algebra systems. As an example for codes
over F4− matrix spaces, we used the following Magma script for obtaining a code over a
matrix space and created some Python implementations for computing the minimum term
rank distance of this code. In this method, we initially retrieve the list L of all entries (we
shall denote any noninteger field-specific element by an integer here) of matrices in the code
to a text file and call this file from Python to compute the minimum term rank distance.

We create a code over a matrix space with the following Magma code;

// Set the associated polynomial p and base polynomial f
// Set the appropriate output file name
// Copy m, n and the output filepath for later use in python function

K<a>:=GF(2ˆ2);
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F<x>:= PolynomialRing(K);

p:= xˆ5 + aˆ2∗xˆ4 + xˆ3 + xˆ2 + a∗x + 1;
f:= xˆ11−1;

m:=Degree(p);
n:=Degree(f) ;

T:= CompanionMatrix(f);
V:= KMatrixSpace(K,m,n);
M:=MatrixRing(K,n);

Z1 := [0: x in [1.. m∗(n−m)]];
P:= HorizontalJoin (CompanionMatrix(p),Matrix(K, m, n−m, Z1));
P;

B := { V!P∗Tˆi : i in [0.. n−1]};
S:=sub< V | B >;
S;

SetOutputFile (”5x11. txt ”) ;

for s in S do
for i in [1.. m] do
for j in [1.. n] do
print s[ i , j ];
end for ;
print ”$”;
end for ;
print ”@”;
end for ;

UnsetOutputFile () ;

Having the code constructed, we compute its minimum term rank distance with applying
the following Python function;

import numpy as np
import networkx as nx
from networkx.algorithms import bipartite
import itertools
from networkx.convert import prep create using
from networkx. convert matrix import generate weighted edges
import scipy
from scipy import linalg

# Given a file path of Magma file of the constructed code,
# computes the minimum term rank distance of an m x n code over GF(4)ˆmn.

def Minimum Term Rank Distance(m,n, filepath):
fname = filepath
fhand = open(fname)
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L = list ()
S = str ()
# Denote field − specific elements by 1
for line in fhand:

line = line . strip ()
if ”aˆ2” in line :

line = line . replace (”aˆ2”,”1”)
elif ”a” in line :

line = line . replace (”a” ,”1”)
S = S + line

M = S. strip () . split (”@”)

# Remove irrelevant characters inserted for environmental implementations
for s in M:

s = s . split (”$”)
L.append(s)

for l in L:
if len( l ) < m+1 :

L.remove(l)
else :

l . remove(””)

K = list ()
for item in L:

M = list ()
for i in range(m):

M.append([int( r ) for r in item[ i ]])
A = scipy . sparse . csr matrix (M)
G = nx. bipartite . from biadjacency matrix (A)
D = nx. bipartite .maximum matching(G)
termrank = int ( len(D.items () ) /2)
if termrank != 0:

K.append(termrank)
print (”D tr = ”, min(K))

For the cyclic code in the first example, we call the function with parameters (5,11,
”5x11.txt”) and we get that it has a minimum term rank distance of 3, and therefore it is
optimal.

This example is taken over the field F4. One may change the field and then slight mod-
ifications should be applied to the scripts if there exist more field-specific non-zero and
non-integer elements.

3.2 Constructing Optimal Codes
Our main theorem is pointing out the conditions for p(x) and f(x) at which the code

becomes optimal. For cyclic [m × n, n] codes the following results are obtained. For the
most general cases the optimality question remains open.

Theorem 3.1 Let Fq be a finite field with q elements and p(x) a divisor polynomial of
f(x) = xn − 1 over Fq[x], with deg p(x) = m. Let Pp and Tf be as defined above. The
cyclic [m × n, n] code C associated with p(x) is optimal when p(x) = xm − a0, where
a0 ∈ F ∗q .

Proof. For any polynomial p(x) =
∑m

i=0 aix
i, a matrix A ∈ C, namely a ci ∈ Fq(i ∈

[0, n− 1])-linear combination of basis matrices PpT if : i ∈ [0, n− 1], will look like
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A =


cn−1 c0 c1 · · · cn−m−1 cn−m · · · · · · cn−2
cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m · · · cn−3

...
. . . . . . . . . . . . . . . . . . . . .

...
cn−m+1 · · · cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m
−γ0 −γ1 · · · · · · · · · · · · · · · · · · γn−1


m×n

(3.13)

where for i ∈ [0, n− 1] we have

γi = c0ai+c1ai−1+· · ·+cia0+0 + · · ·+ 0︸ ︷︷ ︸
(n−m)

+cn−m+1+iam−1+· · ·+cn−2ai+2+cn−1ai+1.

(3.14)
It is shown in [3] that

‖A‖TR = max
τ
|∆τ (A)| (3.15)

where the diagonal

∆τ = {(0, τ(0)), (1, τ(1)), · · · , (m− 1, τ(m− 1))} (3.16)

is a set of positions in a matrix A ∈ Fm×nq , and τ is an injection from [0,m − 1] to
[0, n− 1]. |∆τ (A)| denotes the number of nonzero entries in ∆τ .

For the case where p(x) is of the form xm − a0, (a0 ∈ F ∗q ), we have

A =


cn−1 c0 c1 · · · cn−m−1 cn−m · · · · · · cn−2
cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m · · · cn−3

...
. . . . . . . . . . . . . . . . . . . . .

...
cn−m+1 · · · cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m
−c0a0 −c1a0 · · · · · · · · · · · · · · · · · · −cn−1a0


m×n

(3.17)
We know that there exists at least one nonzero coefficient in the linear combination for all
A ∈ C, say ct ∈ Fq(t ∈ [0, n− 1]). The diagonal

∆τ = {ct = (0, 1), ct = (1, 2), · · · , ct = (m− 1, n− 1),−cta0 = (m, 0)}

corresponding to the nonzero coefficient ct, gives the desired maxτ |∆τ (A)| = m. There-
fore, we have ‖A‖TR = m,∀A ∈ C, which makes C optimal.

4 Conclusion and Future Work

We proposed a pseudo-cyclic method for construction of codes over matrix spaces which
allows defining cyclic, constacyclic and pseudo-cyclic concepts as in codes over vector
spaces. Our method, using sparse matrices, becomes memory-efficient compared to already
known constructions over matrix spaces. We provided computer algebraic method to com-
pute the term rank distance of a code and gave optimality conditions for cyclic codes over
the term rank metric space. This method can be applied to any matrix-space code, and can
be improved in terms of computational speed. By means of optimality, we introduced a re-
striction for associated polynomials that generates optimal cyclic codes over matrix spaces.
More conditions may be investigated for cyclic, constacylic and pseudo-cylic cases refer-
encing these concepts.
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