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1 Introduction

The theory of boundedness of classical operators of the real analysis, such as the frac-
tional maximal operator, Riesz potential and the singular integral operators etc, from one
Lebesgue space to another one is well studied by now. These results have good applications
in the theory of partial differential equations. However, in the theory of partial differential
equations, along with Lebesgue spaces, Orlicz spaces also play an important role.

For x € R™ and r > 0, we denote by B(z,r) the open ball centered at = of radius 7,
and by ‘B (z,7) denote its complement. Let | B(x, r)| be the Lebesgue measure of the ball
B(z,r).

Let P be a real n X n matrix, all of whose eigenvalues have positive real part. Let
Ay =tP (t > 0), and set v = trP. Then, there exists a quasi-distance p associated with P
such that

(a) p(Awx) =tp(x), t >0, forevery = € R";
(0) p(0) =0, p(z—y)=p(y—2)=0
and p(z —y) < k(p(z — 2) + p(y — 2));

(¢) dx = p" tdo(w)dp, where p=p(z),w=A, 1z

p
and do(w)is a C*°measure on the ellipsoid {w : p(w) = 1}.

Then, {R", p, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss.
Thus R™, endowed with the metric p, defines a homogeneous metric space ([4,5]). The balls
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4 Parabolic fractional integral and its commutators on . ..

with respect to p, centered at x of radius 7, are just the ellipsoids £(x,r) = {y € R" : p(z — y)
< r}, with the Lebesgue measure |E(x, )| = v,r7, where v, is the volume of the unit el-
lipsoid in R™. Let also DS(:L‘, r) = R™\ &(x,r) be the complement of E(x, 7). If P = 1,
then clearly p(z) = || and &(x, 1) = B(z, 7). Let S, = {w € R" : p(w) = 1} be the
unit p-sphere (ellipsoid) in R™ (n > 2) equipped with the normalized Lebesgue surface
measure do.

Let S, = {w € R" : p(w) = 1} be the unit p-sphere (ellipsoid) in R™ (n > 2) equipped
with the normalized Lebesgue surface measure do. The parabolic maximal function M ¥ f
and the parabolic fractional integral I f, 0 < a < =, of a function f € LI°¢(R"™) are
defined by

MPf(z) = sup €z, 1) / F)ldy,
t>0 E(z,t)

P _ f)
fafle) = /]R” oz —yyr e

If P=1 then M = M({ is the Hardy-Littlewood maximal operator and I, = I/ is the
fractional integral operator It is well known that the parabolic fractional integral operators
play an important role in harmonic analysis (see [19]).

In this work we present the boundedness for parabolic fractional integral operator I
(Theorem 4.1) and its commutators [b, I”'] (Theorem 4.3) in the parabolic generalized
Orlicz-Morrey spaces Mj; o (R™). Moreover, we give necessary and sufficient condition for
the Spanne-type boundedness of the parabolic fractional integral operator (Theorem 4.2)
and its commutators with some BM O functions (Theorem 4.4) on the parabolic general-
ized Orlicz-Morrey spaces.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

2 Preliminaries

2.1 On Young Functions and Orlicz Spaces
First, we recall the definition of Young functions.

Definition 2.1 A function @ : [0,00) — [0, 00] is called a Young function if ¢ is convex,
left-continuous, hrﬂo &(r) = P(0) = 0 and lim &(r) = oo.
r—r r—00

From the convexity and ¢(0) = 0 it follows that any Young function is increasing. If there
exists s € (0,00) such that &(s) = oo, then @(r) = oo for r > s. The set of Young
functions such that 0 < &(r) < oo for 0 < r < oo will be denoted by V. If € Y, then
@ is absolutely continuous on every closed interval in [0, c0) and bijective from [0, 00) to
itself.

For a Young function @ and 0 < s < oo, let #71(s) = inf{r > 0 : &(r) > s}. If
& € Y, then ¢! is the usual inverse function of @. It is well known that

r <& Hr)d 1 (r) < 2r forr > 0, (2.1)
where &(r) is defined by

B(r) = {sup{rs — @(i)o: s €[0,00)} : rf:[O(,)ooo)
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A Young function @ is said to satisfy the Ao-condition, denoted also as @ € Ao, if
&(2r) < CP(r),r > 0 forsome C > 1. If & € Ay, then € ). A Young function @ is
said to satisfy the Vy-condition, denoted also by ¢ € Vo, if &(r) < %@(CT}, r > 0 for
some C > 1.

The Orlicz space and weak Orlicz space are defined as follows.

Definition 2.2 (Orlicz Space). For a Young function P, the set

Lg(R™) = {f e LP°(R") : / & (k|f(x)|)dz < oo for some k > 0 }

n

is called Orlicz space. If &(r) = 1P, 1 < p < oo, then Lp(R™) = L,(R™). If &(r) =
0, (0 <7 <1)and ®(r) = oo, (r > 1), then Lg(R"™) = Loo(R™). The space L'S°(R™) is
defined as the set of all functions f suchthat fx, € Lg(R™) for all parabolic balls £ C R".

Lg(R™) is a Banach space with respect to the norm

Hfmp—inf{»o:/n@(ff”)dxgl}.

For a measurable set {2 C R", a measurable function f and ¢t > 0, let m(§2, f, t) =
H{x € 2 : |f(x)| > t}|. In the case £2 = R", we shortly denote it by m(f, ¢). The
weak Orlicz space W Lg(R™) = {f € L*°(R") : ||f|lwL, < oo} is defined by the norm

| fllwre = inf{)\ >0 : supt>0@(t)m<§, t) < 1}.

The following analogue of the Holder’s inequality is well known (see, for example,

[15]).

Theorem 2.1 Let §2 C R"™ be a measurable set and functions f, g measurable on 2. For

a Young function ¢ and its complementary function ®, the following inequality is valid
Jo lf@)g(@)|dz < 20| fll L) 9]l ()-

By elementary calculations we have the following property.
Lemma 2.1 Let @ be a Young function and £ be a parabolic balls in R™. Then

1
IXe e = lIxellwes = W

By Theorem 2.1, Lemma 2.1 and (2.1) we get the following estimate.

Lemma 2.2 For a Young function ¢ and for the parabolic balls £ = E(x,r) the following
inequality is valid:

/g FW)ldy < 2€087 (€7 1]l oo

The following theorem is an analogue of Lebesgue differentiation theorem in Orlicz
spaces.

Theorem 2.2 [12] Suppose that D is a Young function and let f € Lg(R™) be nonnegative.
Then

lim inf M > f(x), foralmost every x € R".
r—0+ ”Xé’(x,r) HL<I>
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3 Parabolic fractional integral and its commutators in Orlicz spaces

In [1] the boundedness of the parabolic maximal operator M’ in Orlicz spaces Lg(R™)
was obtained, see also [2].

Theorem 3.1 [1] Let $ any Young function. Then the parabolic maximal operator MF is
bounded from Lg(R™) to W Lg(R™) and for ® € Vo bounded in Lg(R™).

In [3] the boundedness of the parabolic fractional integral operator I in Orlicz spaces
Ly (R™) was obtained, see also [10, 16].

Theorem 3.2 [3] Let 0 < o < 7y, @, ¥ be Young functions, ®,W € ) and

/ e (T dt Sred T (ETT), 0 <1 < oo, 3.1

r

holds. Then the condition N

rmAd T (r) < CUTH(r) (3.2)
for all r > 0, where C' > 0 does not depend on r, is necessary and sufficient for the
boundedness of IL from Lg(R™) to W Ly (R™). Moreover, if ® € Vs, the condition (3.2) is
necessary and sufficient for the boundedness of I from Lg(R™) to Ly (R™).

The commutators [b, I7], [b, I”| generated by b € L (R") and the operator I~ are
defined by

.11 = [ S s

p.1f1se) = [ D= gy, v <a<n,
respectively.

We recall that the space BMO(R”) = {b € LP¢(R™) : ||b]+ < oo} is defined by the
seminorm

1b]l« == sup

— bz |dy < 00,
2€RM >0 !5 z,7)| Je acr) (e.r)

where bg ;) = |E(x, 1) f £z T) y)dy. We will need the following property of BMO-
functions: ;
|be () — be(any| < Cllbllom~ for 0 <2r <t, (3.3)

where C does not depend on b, x, r and ¢. We refer for instance to [11] and [13] for details
on this space and properties.

Lemma 3.1 [3] Let b € BMO(R") and ¢ be a Young function with ® € As. Then

|bll« =  sup ¢! (7‘77) Hb() —b

2RO el Lo -

Lemma 3.2 Ifb € L (R") and & := (o, 10), then

1§ 1b(x) — bey| < C1b, I3 |xe, ()
for every x € &.

The known boundedness statements for the commutator operator [b, '] on Orlicz spaces
run as follows, see [3] and [10].
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Theorem 3.3 [3] Let0 < o <, b€ BMO(R") and ®,¥ € ).
1. If & € Voand ¥ € As, then the condition

e )+ [T (e e ) e < ol () G

forall v > 0, where C > 0 does not depend on r, is sufficient for the boundedness of [b, I%]
from Lg(R™) to Ly (R™).

2. IfW € Ay, then the condition (3.2) is necessary for the boundedness of |b, I| from
Lg(R™) to Ly (R™).

3. Let ® € Vo and ¥ € A,. If the condition

/ (1+m 9@_1 () e Ldt < Cred (1) (3.5)

holds for all r > 0, where C' > 0 does not depend on r, then the condition (3.2) is necessary
and sufficient for the boundedness of |b, I” | from Lg(R™) to Ly (R™).

4 Parabolic fractional integral and its commutators in parabolic generalized
Orlicz-Morrey spaces

Various versions of generalized Orlicz-Morrey spaces were introduced in [14], [18] and
[7]. We used the definition of [7] which runs as follows.

Definition 4.1 Let o(x,r) be a positive measurable function on R" x (0,00) and ¢ any
Young function. We denote by M, ({; o (R™) the parabolic generalized parabolic Orlicz-Morrey

space, the space of all functions f € LS(R™) for which

1y, = sup elar) @7 (€ ) DIl ey < oo

Lemma 4.1 Let ¢ be a Young function and ¢ be a positive measurable function on R™ x

(0, 00).
(i) If
¢71 & -1
sup (1€, ™) =00 forsomet >0 and forall x € R", 4.1)
t<r<oo (,0(.11?, 7")
then Mq];(p(R”) = 6.
(ii) If
sup <,0(£C,7“)71 =o0 forsomeT >0 andforall x € R", 4.2)
o<r<r

then MgSD(R”) =06.

Proof. (i) Let (4.1) be satisfied and f be not equivalent to zero. Then supcgn || f{| £, (2,1)) >
0, hence

Ifllpe = sup sup oz, )" (€@, )T fll Lo (e @)
P peRM t<r<oo

> sup || fllrp@E@e sup elz,r) e (E(@,r) 7).
zER"™ t<r<oo

Therefore HfHMg = 00.
)
(ii) Let f € MQI; SD(R”) and (4.2) be satisfied. Then there are two possibilities:
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Case 1: supg,«; @(x, 7)1 = oo forall t > 0.
Case 2: SUpg,«; P(z,7) "1 < oo for some s € (0, 7).
For Case 1, by Theorem 2.2, for almost all z € R",

1i ||fX€(x,r)||Lq§
m ———7F
=0+ || Xg(@m Lo

> [f(x)]. (4.3)

We claim that f(xz) = 0 for all those x. Indeed, fix  and assume |f(x)| > 0. Then by
Lemma 2.1 and (4.3) there exists tg > 0 such that

|f ()]
2

& H(1E(@, ) Lo (o) =
for all 0 < r < tp. Consequently,

IFllarp = sup e(@,r) 'O (1€, )Yl o)

o<r<to
> O iy (o,
2 0<r<tg

Hence || f|| Mg, = 00,80 fé MS{; »(R") and we have arrived at a contradiction.

Note that Case 2 implies that sup, ., ., ¢(z, )~ = oo, hence

sup (w,r) T OTH(|E(z, )| 2 sup p(x,r) T H(|E ()T

s<r<oo s<r<r

> @ H(|E(x, 7)) sup p(a,r) Tt = oo,
s<r<T

which is the case in (i).

Remark 4.1 Let ¢ be a Young function. We denote by (24 p the sets of all positive mea-
surable functions ¢ on R™ x (0, co) such that for all ¢ > 0,

(| (x, )7
sup H < 00,
zER" o(x,r) Lo (t,00)
and
-1
sup x,r H < o0,
:EERTL SO( ) Loo((),t)

respectively. In what follows, keeping in mind Lemma 4.1, we always assume that ¢ €
0@7 P.

A function ¢ : (0,00) — (0, 00) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C' > 0 such that

p(r) < Cop(s)  (resp.p(r) > Cyp(s)) forr <s.

For a Young function &, we denote by Gg the set of all almost decreasing functions ¢ :
(0,00) — (0,00) such that t € (0,00) mcp(t) is almost increasing.

Lemma 4.2 [2] Let & := E(xo,10). If ¢ € Gg, then there exist C' > 0 such that

L sl < -2
S |IXE r < .
©(ro) *"WMae = o(ro)




G.A. Abasova 9

The following Guliyev-type local estimate for the parabolic fractional integral operator
IP in Orlicz space is valid.

Lemma 4.3 Let 0 < a < 7, @, ¥ Young functions and (P, W) satisfy the conditions (3.1)
and (3.2). Then

1 I dt
123 flw o) S S =) /% vt 7)HfHqu(g(ac,t))7 4.4)

holds for any ball £ = E(x,r) and for all f € LL°(R™).
If ® € Vo, then

1 X 4 dt
1 flate S gy [ 27 ) I oo @5

YU () ok
holds for any ball £ = E(x,r) and for all f € L°(R™).

Proof. Let 0 < o < v, & € Vg and (P, V) satisfy the conditions (3.1) and (3.2). We put
[ = J1+ fo, where f1 = fXeorr) and fo = fx B (4,241’ where k is the constant from

the triangle inequality.
Estimation of I f1: By Theorem 3.2 we have

112 il ) < 1L Fill Ly ey S 11l 2o@ny = 1F] La(e(2rm)-

By using the monotonicity of the functions || f|| 7, (¢(x,¢))» @~ (t) with respect to ¢ we get,

1 I dt
W/z vt 7)Hf||Lq§(5(gg,1t))7

kr

(4.6)
Hf”[@ (z,2kr)) o0 dt
_— vt — 2 )
2T o ! )t Il Lo (6 (2,200
Consequently we have
1 o dt

P < - Ot —. 4.7
1o fillLg ) S 5T () /ZMJ/ EN N L) ; 4.7

Estimation of I% fo: Let y be an arbitrary point from &.
A geometric observation shows that y € &, z € ‘e (z,2kr) implies o-p(z — 2) <
ply —2) <

& dt
IP Ld N/ d / -
‘ faly | A £ (w,2k7) 'O(I—Z)7 ot a:2k;r)| (2)ld p(z—2) trtl-o

dt
ey A AN
/Zkrr /ri<paz z) t7+1 @ kr JE(x,t) e

. dt L dt
5/% I Lo t @ (E 7)7 </2 1Nl ra(e ey @ (¢ 7)7~ (4.8)

p(z — z). Therefore, by Lemma 2.2

Thus the function I f5(y), with fixed « and r, is dominated by the expression not de-
pending on y. Then we integrate the obtained estimate for I f5(y) in y over £, we get

1 e dt
115 fall 2y ce) W /M 1l ey @ (") — - (4.9)
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Gathering the estimates (4.7) and (4.9) we arrive at (4.5).
Let now @ be an arbitrary Young function. It is obvious that

1L Flwrae) < ME fillwrase) + 115 f2lwrae)-

By the boundedness of the operator I} from Lg(R") to W Lg(R™), provided by Theorem
3.2, we have

11E Fillw o) S 11 Lo @2nm)-
By using (4.6), (4.9) and Lemma 2.1 we arrive at (4.4).

Theorem 4.1 Let 0 < o < vy, @, ¥ Young functions and (9, V) satisfy the conditions (3.1)
and (3.2). Assume that the functions (1, p2) and (9, V) satisfy the conditions (3.1), (3.2)
and

o .. p1(z,s) @<
/r ' (t )ets<ssl<nlf7q§_l(s_y) , < Cpa(z,T), (4.10)

where C does not depend on r. Then the operator Iolf is bounded from Mé; o1 (R™) to
WMJ;}W (R™) and for & € Vs, the operator IY is bounded from M'gsm (R™) 1o M&;wz (R™).

Proof. Note that (ess inf f (x)) = ess sup ﬁ is true for any real-valued nonnegative
zeA z€A z)

function f and measurable on A and the fact that || f|| ., (¢(z,)) is @ nondecreasing function
of t

IfloaE@s) S (s )N Lo (et
= ess sup

ess inf —£2@3)_ goicscco e1(z, )

0<t<s<oo —1(s—7

o 1(s7
< sup (SN Lo (E(s)) e
z€R™,r>0 ©1 (377 3) b,01

Since (1, p2) and (P, ¥) satisfy the condition (4.10),

&0 o dt
/ 1 Lo (e @ (¢ 7)7

< [T Mrseey (e ers) lp—l(t—V)ﬂ
—Jr ess inf v1(z,8)  f<s<oo ¢—1 (3*’7) t
t<s<oo ¢—1(s—7

" oss i : L1 dt
S |fHM£m/ <ess1nf(p1(xs))>gp 1(15 7)7

t<s<oo @1 (3—7
S ool fllg - @1

Then by (4.10) and (4.11) we get

o dt
/ T EN s @n 7 S 1F g, -

1
IPf p < sup
|| « ”MW,LPQ 2€RM >0 SOQ(SCaT)

The estimate ||I2 f|| ME < [Ifll mp_ can be proved similarly by the help of local
»P2 P11
estimate (4.4).

Remark 4.2 Note that Theorem 4.1 in the isotropic case P = I were proved in [8], see
also [6,17].
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For proving our main results, we need the following estimate.

Lemma 4.4 If & := E(x0,70), then g < I xg, () for every z € &,.

0 ~

Proof. It is well-known that
ML f(x) < 207MPE f(x), 4.12)

et
where M'(f)(2) = sup €] [ £ (y)ldy.
o
Now let = € &. By using (4.12), we get

IPxe,(2) 2 MExe, (2) 2 ME e, (z) 2 sup €75 €N &|
xT

> & & N & = 1.

The following theorem gives necessary and sufficient conditions for Spanne-type bound-
edness of the operator I from My, (R") to My (R™).
Theorem 4.2 (Spanne-type result) Let 0 < o < =, (®,W¥) be Young functions, and let
w1 € ¢ p, P2 € (20 p.

1. If the functions (&, W) satisfy the conditions (3.1) and (3.2), then the condition

o0
—1(,.— : 901(8) @ <
/T 4 (r )ersgslgf oi(s) (s*’Y) ;= C pa(t), (4.13)
forall t > 0, where C' > 0 does not depend on t, is sufficient for the boundedness of I
from Mq];,wl (R™) to MWPisoz (R™).

2. If the function p1 € Gg, then the condition

t%p1(t) < Copa(t), (4.14)

forallt > 0, where C > 0 does not depend on t, is necessary for the boundedness of I
from Mg, (R") 10 My, (R™).
3. Let the functions (&, W) satisfy the conditions (3.1) and (3.2). If p1 € G satisfies the

condition . ( )
YTt dt
———L01(t)— < Cr%pq(t), 4.15
[ ey a0 <o @.15)
forallt > 0, where C' > 0 does not depend on t, then the condition (4.14) is necessary and

sufficient for the boundedness of IY from Mgg o (R?) 10 M; op (R).

Proof. The first statement of the theorem follows from Theorem 4.1.
We shall now prove the second part. Let & = E(x, tp) and x € &. By Lemma 4.4 we
have t§ < Ioxe, (). Therefore, by Lemma 2.1 and Lemma 4.2

td STH(E IIME xeoll Ly g0) S @2(t0)HI§X50HM£¢2
©2(to)
¢1(to)

Since this is true for every ¢y > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem.

<
S e2(to)llxenllay =<

The following Guliyev-type local estimate for the commutator of the parabolic fractional
integral operator [b, I1'] in Orlicz space is valid.
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Lemma 4.5 Let 0 < a < v, b € BMO(R"™), ¢, ¥ Young functions and (®,¥) satisfy the
conditions (3.1) and (3.2). Let W= (r) =~ ®~1(r)r~ 7 and ® € ANV, then the inequality

P < ||bH* /oo E —1 (41— ﬂ
100 atetonr S Gy o (LHI7)TT M Irateeonn

holds for any ball €(zo,r) and for all f € L¥¢(R™).

Proof. For & = E(wg,r), write f = f1 + fo with f1 = fx,,, and fo = fx, ,wherek
(2k€)

is the constant from the triangle inequality, so that

1 22110 1, ) < N Z21A 1y e + N0 TR ol

By the boundedness of the operator [b, I1] from Lg(R™) to Ly (R") provided by Theo-
rem 3.3, we obtain

10 IV 1l e) < N I 11 g rmy S N0l il imy = 100l (Ll L (ome) (4:16)

As we proceed in the proof of Lemma 4.3, we have for z € £

P [b(y) — b()[ |/ (y)|
Hb’ Ia ](f2)(x)’ 5 [:S(a:,Qk:r) p(l'O - y)w—a W

Then

b(y) — b(x z
H[b? Ig]fZHLW(S) 5 H /BE(I,2kT) (?(330 _(y))u_fo({ )|dy‘

san=|f, Moot

| i e

For the term J; by Lemma 2.1 we obtain

1 b(y) — be|1f(y)]
. =1 (r=) /35(35 okry  P(T0 —y)I ™ v

Ly (€)

Lo (&)

Q

and split it as follows:

1 o dt
J </ —bel|f dy/ s
S e Cg(mm\ ) =bellfwldy |

dt
—be| |[f(W)ldy ==
/ri /kr<p (zo—y)< ) | ‘ ( )‘ trtl-a

dt
— bel [f(W)ldy—7=%
/2kr/x0, H ( )| trtl-a’
Applying Holder’s 1nequahty, by Lemmas 2.2 and 3.1 and (3.3) we get
dt
5 gy o Lo B bgm,tmf(y)rdym

dt
W/2 . ’bS(azo, bS(xo,t)\/ y)|d Ve
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1 dt
Y= /% [6C) = beonll; e Il ate o) e

1 > gy dt
== /2 ey = beaoll f oo ® (77) =

1 > t dt
< _ —1(=7\22
S bl g /k (110 IS s eann® ™ ()

For J> we obtain

/()]

Jo = ||b(+) — bBHpr(g) /”5(95 2kr) plzo —y)—2

L
O () S k) pT0 —y)TO

ol [ Lt
: () o 1 1 e oy @ (8 7)7'

gathering the estimates for J; and Jo, we get

P <ﬂ = f 11— ﬂ
102 elce) S oy oy (1+m ) 0 () Il raeony G- @ID)

By using (4.6) we unite (4.17) with (4.16), which completes the proof.

Theorem 4.3 Let 0 < o < v, b € BMO(R"™), &, ¥ Young functions and (P, V) satisfy

the conditions (3.1) and (3.2). Let W= (r) ~ &~ 1(r) r_%, @ € Ay N\ Vo, and the functions
(¢1,p2) and (P, W) satisfy the condition

o
EN 1 (o o s p1(x,s) dt
where C does not depend on , r. Then the operator [b, IL] is bounded from MQI; o (R") 10
My, (R™).

Proof. The proof is similar to the proof of Theorem 4.1 thanks to Lemma 4.5.
Remark 4.3 Note that Theorem 4.3 in the isotropic case P = I were proved in [9].
For proving our main results, we need the following estimate.
Lemma 4.6 Ifb € L{ (R") and &) := E(wo, o), then
r&b(z) — bey| < |b, I |xe, () for every x € &.
Proof. It is well-known that

M/ f(z) < 277 ME, f(2), (4.19)

where MY, ()(@) = sup[€] ™% [y [b(z) = b(w)|If 0)ldy.



14 Parabolic fractional integral and its commutators on . ..

Now let z € &. By using (4.19), we get

|0, 15| Z M xe, () 2 My o f(2) = sup BI7*5 /g b(x) — b(y)[xe,dy
o

— sup €] +5 / Ib(z) — bly)|dy > &5 / Ib(z) — b(y)|dy
Edz EN&y EoN&o

> |

/ (b(x) — b(y))dy| = 3 [bx) — bey|.

&o

The following theorem gives necessary and sufficient conditions for Spanne-type bound-
edness of the operator [b, I1'] from ML (R™)to M} (R™).

D01 Y02

Theorem 4.4 Let 0 < o < v, b € BMO(R"), (®,¥) be Young functions, and let p; €
Q¢ p, 2 € 2y p.

1. Let W=(t) = t=/Y &~ (t) and D, € Ay N Vs, then the condition

- ENg—1(4— : pi(s) dt
- g S .
/r (1 +ln T)sp (t77) ess inf T 1 S C (1), (4.20)

forallr > 0, where C' > 0 does not depend on r, is sufficient for the boundedness of [b, I]
from Mgw (R™) to M£¢2 (R™).

2. If ¥ € Asg and o1 € Gg, then the condition (4.14) is necessary for the boundedness
of |b, IZ| from M;w (R™) to Mng (R™).

3. Let W (t) =t~/ &~ (t) and &, ¥ € Ay N\ V. If o1 € Gg satisfies the condition

/ (1 +1In ;)to‘ 901(25)% < Cr%p1(r), (4.21)

for all r > 0, where C' > 0 does not depend on r, then the condition (4.14) is necessary

and sufficient for the boundedness of |b, IL | from Mgm (R™) to Mf;:@ (R™).

Proof. The first statement of the theorem follows from Theorem 4.3.
We shall now prove the second part. Let &y = E(xg,70) and x € &. By Lemma 4.6 we
have 7§|b(z) — be,| < |b, I |xg, (). Therefore, by Lemma 3.1 and Lemma 4.2

T,Oz < |||b’ I(f’XgOHLg/(gO) < 1
o 16(-) = beollLy(g0) = 1101l

1 P
S 2 (ro)l1o, 1o Ixeollary S w2(ro)lixeollarp
|ID]] « T, 09 P,

116, 221 xe0 | 2 (20 2~ (€011

< ¢2(r0)
1~ pi(ro)

Since this is true for every rg > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem.
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