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1 Introduction

The theory of boundedness of classical operators of the real analysis, such as the frac-
tional maximal operator, Riesz potential and the singular integral operators etc, from one
Lebesgue space to another one is well studied by now. These results have good applications
in the theory of partial differential equations. However, in the theory of partial differential
equations, along with Lebesgue spaces, Orlicz spaces also play an important role.

For x ∈ Rn and r > 0, we denote by B(x, r) the open ball centered at x of radius r,
and by

{
B(x, r) denote its complement. Let |B(x, r)| be the Lebesgue measure of the ball

B(x, r).
Let P be a real n × n matrix, all of whose eigenvalues have positive real part. Let

At = tP (t > 0), and set γ = trP . Then, there exists a quasi-distance ρ associated with P
such that

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ Rn;
(b) ρ(0) = 0, ρ(x− y) = ρ(y − x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));
(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w)is a C∞measure on the ellipsoid {w : ρ(w) = 1}.

Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss.
Thus Rn, endowed with the metric ρ, defines a homogeneous metric space ([4,5]). The balls
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with respect to ρ, centered at x of radius r, are just the ellipsoids E(x, r) = {y ∈ Rn : ρ(x− y)
< r}, with the Lebesgue measure |E(x, r)| = vρr

γ , where vρ is the volume of the unit el-
lipsoid in Rn. Let also

{E(x, r) = Rn \ E(x, r) be the complement of E(x, r). If P = I ,
then clearly ρ(x) = |x| and EI(x, r) = B(x, r). Let Sρ = {w ∈ Rn : ρ(w) = 1} be the
unit ρ-sphere (ellipsoid) in Rn (n ≥ 2) equipped with the normalized Lebesgue surface
measure dσ.

Let Sρ = {w ∈ Rn : ρ(w) = 1} be the unit ρ-sphere (ellipsoid) in Rn (n ≥ 2) equipped
with the normalized Lebesgue surface measure dσ. The parabolic maximal function MP f
and the parabolic fractional integral IPα f , 0 < α < γ, of a function f ∈ Lloc

1 (Rn) are
defined by

MP f(x) = sup
t>0
|E(x, t)|−1

∫
E(x,t)

|f(y)|dy,

IPα f(x) =

∫
Rn

f(y)

ρ(x− y)γ−α
dy.

If P = I , then M ≡ M I
0 is the Hardy-Littlewood maximal operator and Iα ≡ IIα is the

fractional integral operator It is well known that the parabolic fractional integral operators
play an important role in harmonic analysis (see [19]).

In this work we present the boundedness for parabolic fractional integral operator IPα
(Theorem 4.1) and its commutators [b, IPα ] (Theorem 4.3) in the parabolic generalized
Orlicz-Morrey spaces MP

Φ,ϕ(Rn). Moreover, we give necessary and sufficient condition for
the Spanne-type boundedness of the parabolic fractional integral operator (Theorem 4.2)
and its commutators with some BMO functions (Theorem 4.4) on the parabolic general-
ized Orlicz-Morrey spaces.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Preliminaries

2.1 On Young Functions and Orlicz Spaces
First, we recall the definition of Young functions.

Definition 2.1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If there
exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that 0 < Φ(r) < ∞ for 0 < r < ∞ will be denoted by Y . If Φ ∈ Y , then
Φ is absolutely continuous on every closed interval in [0,∞) and bijective from [0,∞) to
itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}. If
Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.
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A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if
Φ(2r) ≤ CΦ(r), r > 0 for some C > 1. If Φ ∈ ∆2, then Φ ∈ Y . A Young function Φ is
said to satisfy the ∇2-condition, denoted also by Φ ∈ ∇2, if Φ(r) ≤ 1

2CΦ(Cr), r ≥ 0 for
some C > 1.

The Orlicz space and weak Orlicz space are defined as follows.

Definition 2.2 (Orlicz Space). For a Young function Φ, the set

LΦ(Rn) =
{
f ∈ Lloc

1 (Rn) :
∫
Rn
Φ(k|f(x)|)dx <∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn) = Lp(Rn). If Φ(r) =

0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn) = L∞(Rn). The space Lloc
Φ (Rn) is

defined as the set of all functions f such that fχE ∈ LΦ(Rn) for all parabolic balls E ⊂ Rn.

LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn
Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

For a measurable set Ω ⊂ Rn, a measurable function f and t > 0, let m(Ω, f, t) =
|{x ∈ Ω : |f(x)| > t}|. In the case Ω = Rn, we shortly denote it by m(f, t). The
weak Orlicz space WLΦ(Rn) = {f ∈ Lloc

1 (Rn) : ‖f‖WLΦ < ∞} is defined by the norm

‖f‖WLΦ = inf
{
λ > 0 : supt>0 Φ(t)m

(
f
λ , t

)
≤ 1
}
.

The following analogue of the Hölder’s inequality is well known (see, for example,
[15]).

Theorem 2.1 Let Ω ⊂ Rn be a measurable set and functions f , g measurable on Ω. For
a Young function Φ and its complementary function Φ̃, the following inequality is valid∫
Ω |f(x)g(x)|dx ≤ 2‖f‖LΦ(Ω)‖g‖L

Φ̃
(Ω).

By elementary calculations we have the following property.

Lemma 2.1 Let Φ be a Young function and E be a parabolic balls in Rn. Then

‖χE‖LΦ = ‖χE‖WLΦ =
1

Φ−1 (|E|−1)
.

By Theorem 2.1, Lemma 2.1 and (2.1) we get the following estimate.

Lemma 2.2 For a Young function Φ and for the parabolic balls E = E(x, r) the following
inequality is valid: ∫

E
|f(y)|dy ≤ 2|E|Φ−1

(
|E|−1

)
‖f‖LΦ(E).

The following theorem is an analogue of Lebesgue differentiation theorem in Orlicz
spaces.

Theorem 2.2 [12] Suppose that Φ is a Young function and let f ∈ LΦ(Rn) be nonnegative.
Then

lim inf
r→0+

‖fχE(x,r)‖LΦ
‖χE(x,r)‖LΦ

≥ f(x), for almost every x ∈ Rn.
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3 Parabolic fractional integral and its commutators in Orlicz spaces

In [1] the boundedness of the parabolic maximal operator MP in Orlicz spaces LΦ(Rn)
was obtained, see also [2].

Theorem 3.1 [1] Let Φ any Young function. Then the parabolic maximal operator MP is
bounded from LΦ(Rn) to WLΦ(Rn) and for Φ ∈ ∇2 bounded in LΦ(Rn).

In [3] the boundedness of the parabolic fractional integral operator IPα in Orlicz spaces
LΦ(Rn) was obtained, see also [10,16].

Theorem 3.2 [3] Let 0 < α < γ, Φ, Ψ be Young functions, Φ, Ψ ∈ Y and∫ ∞
r

tα−1Φ−1
(
t−γ
)
dt . rαΦ−1

(
t−γ
)
, 0 < r <∞, (3.1)

holds. Then the condition
r
−α
γ Φ−1(r) ≤ CΨ−1(r) (3.2)

for all r > 0, where C > 0 does not depend on r, is necessary and sufficient for the
boundedness of IPα from LΦ(Rn) to WLΨ (Rn). Moreover, if Φ ∈ ∇2, the condition (3.2) is
necessary and sufficient for the boundedness of IPα from LΦ(Rn) to LΨ (Rn).

The commutators [b, IPα ], |b, IPα | generated by b ∈ L1
loc(Rn) and the operator IPα are

defined by

[b, IPα ]f(x) =

∫
Rn

b(x)− b(y)
ρ(x− y)γ−α

f(y)dy,

|b, IPα |f(x) =
∫
Rn

|b(x)− b(y)|
ρ(x− y)γ−α

f(y)dy, 0 < α < γ,

respectively.
We recall that the space BMO(Rn) = {b ∈ Lloc

1 (Rn) : ‖b‖∗ < ∞} is defined by the
seminorm

‖b‖∗ := sup
x∈Rn,r>0

1

|E(x, r)|

∫
E(x,r)

|b(y)− bE(x,r)|dy <∞,

where bE(x,r) = |E(x, r)|−1
∫
E(x,r) b(y)dy. We will need the following property of BMO-

functions: ∣∣bE(x,r) − bE(x,t)

∣∣ ≤ C‖b‖∗ ln t
r

for 0 < 2r < t, (3.3)

where C does not depend on b, x, r and t. We refer for instance to [11] and [13] for details
on this space and properties.

Lemma 3.1 [3] Let b ∈ BMO(Rn) and Φ be a Young function with Φ ∈ ∆2. Then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
r−γ
) ∥∥b(·)− bE(x,r)

∥∥
LΦ(E(x,r))

.

Lemma 3.2 If b ∈ L1
loc(Rn) and E0 := E(x0, r0), then

rα0 |b(x)− bE0 | ≤ C|b, IPα |χE0(x)

for every x ∈ E0.

The known boundedness statements for the commutator operator [b, IPα ] on Orlicz spaces
run as follows, see [3] and [10].
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Theorem 3.3 [3] Let 0 < α < γ, b ∈ BMO(Rn) and Φ, Ψ ∈ Y .
1. If Φ ∈ ∇2 and Ψ ∈ ∆2, then the condition

rαΦ−1
(
r−γ
)
+

∫ ∞
r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
tα−1dt ≤ CΨ−1

(
r−γ
)

(3.4)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of [b, IPα ]
from LΦ(Rn) to LΨ (Rn).

2. If Ψ ∈ ∆2, then the condition (3.2) is necessary for the boundedness of |b, IPα | from
LΦ(Rn) to LΨ (Rn).

3. Let Φ ∈ ∇2 and Ψ ∈ ∆2. If the condition∫ ∞
r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
tα−1dt ≤ CrαΦ−1

(
r−γ
)

(3.5)

holds for all r > 0, whereC > 0 does not depend on r, then the condition (3.2) is necessary
and sufficient for the boundedness of |b, IPα | from LΦ(Rn) to LΨ (Rn).

4 Parabolic fractional integral and its commutators in parabolic generalized
Orlicz-Morrey spaces

Various versions of generalized Orlicz-Morrey spaces were introduced in [14], [18] and
[7]. We used the definition of [7] which runs as follows.

Definition 4.1 Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and Φ any
Young function. We denote byMP

Φ,ϕ(Rn) the parabolic generalized parabolic Orlicz-Morrey
space, the space of all functions f ∈ Lloc

Φ (Rn) for which

‖f‖MP
Φ,ϕ

= sup
x∈Rn,r>0

ϕ(x, r)−1Φ−1(|E(x, r)|−1)‖f‖LΦ(E(x,r)) <∞.

Lemma 4.1 Let Φ be a Young function and ϕ be a positive measurable function on Rn ×
(0,∞).

(i) If

sup
t<r<∞

Φ−1(|E(x, r)|−1)

ϕ(x, r)
=∞ for some t > 0 and for all x ∈ Rn, (4.1)

then MP
Φ,ϕ(Rn) = Θ.

(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (4.2)

then MP
Φ,ϕ(Rn) = Θ.

Proof. (i) Let (4.1) be satisfied and f be not equivalent to zero. Then supx∈Rn ‖f‖LΦ(E(x,t)) >
0, hence

‖f‖MP
Φ,ϕ
≥ sup

x∈Rn
sup

t<r<∞
ϕ(x, r)−1Φ−1(|E(x, r)|−1)‖f‖LΦ(E(x,r))

≥ sup
x∈Rn

‖f‖LΦ(E(x,t)) sup
t<r<∞

ϕ(x, r)−1Φ−1(|E(x, r)|−1).

Therefore ‖f‖MP
Φ,ϕ

=∞.

(ii) Let f ∈MP
Φ,ϕ(Rn) and (4.2) be satisfied. Then there are two possibilities:
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Case 1: sup0<r<t ϕ(x, r)
−1 =∞ for all t > 0.

Case 2: sup0<r<t ϕ(x, r)
−1 <∞ for some s ∈ (0, τ).

For Case 1, by Theorem 2.2, for almost all x ∈ Rn,

lim
r→0+

‖fχE(x,r)‖LΦ
‖χE(x,r)‖LΦ

≥ |f(x)|. (4.3)

We claim that f(x) = 0 for all those x. Indeed, fix x and assume |f(x)| > 0. Then by
Lemma 2.1 and (4.3) there exists t0 > 0 such that

Φ−1
(
|E(x, r)|−1

)
‖f‖LΦ(E(x,r)) ≥

|f(x)|
2

for all 0 < r ≤ t0. Consequently,

‖f‖MP
Φ,ϕ
≥ sup

0<r<t0

ϕ(x, r)−1Φ−1
(
|E(x, r)|−1

)
‖f‖LΦ(E(x,r))

≥ |f(x)|
2

sup
0<r<t0

ϕ(x, r)−1.

Hence ‖f‖MP
Φ,ϕ

=∞, so f /∈MP
Φ,ϕ(Rn) and we have arrived at a contradiction.

Note that Case 2 implies that sups<r<τ ϕ(x, r)
−1 =∞, hence

sup
s<r<∞

ϕ(x, r)−1Φ−1(|E(x, r)|−1) ≥ sup
s<r<τ

ϕ(x, r)−1Φ−1(|E(x, r)|−1)

≥ Φ−1(|E(x, τ)|−1) sup
s<r<τ

ϕ(x, r)−1 =∞,

which is the case in (i).

Remark 4.1 Let Φ be a Young function. We denote by ΩΦ,P the sets of all positive mea-
surable functions ϕ on Rn × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|E(x, r)|−1)

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞,

and
sup
x∈Rn

∥∥∥ϕ(x, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 4.1, we always assume that ϕ ∈
ΩΦ,P .

A functionϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

For a Young function Φ, we denote by GΦ the set of all almost decreasing functions ϕ :
(0,∞)→ (0,∞) such that t ∈ (0,∞) 7→ 1

Φ−1(t−γ)
ϕ(t) is almost increasing.

Lemma 4.2 [2] Let E0 := E(x0, r0). If ϕ ∈ GΦ, then there exist C > 0 such that

1

ϕ(r0)
≤ ‖χE0‖MP

Φ,ϕ
≤ C

ϕ(r0)
.
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The following Guliyev-type local estimate for the parabolic fractional integral operator
IPα in Orlicz space is valid.

Lemma 4.3 Let 0 < α < γ, Φ, Ψ Young functions and (Φ, Ψ) satisfy the conditions (3.1)
and (3.2). Then

‖IPα f‖WLΨ (E) .
1

Ψ−1
(
r−γ
) ∫ ∞

2kr
Ψ−1

(
t−γ
)
‖f‖LΦ(E(x,t))

dt

t
(4.4)

holds for any ball E = E(x, r) and for all f ∈ Lloc
Φ (Rn).

If Φ ∈ ∇2, then

‖IPα f‖LΨ (E) .
1

Ψ−1
(
r−γ
) ∫ ∞

2kr
Ψ−1

(
t−γ
)
‖f‖LΦ(E(x,t))

dt

t
(4.5)

holds for any ball E = E(x, r) and for all f ∈ Lloc
Φ (Rn).

Proof. Let 0 < α < γ, Φ ∈ ∇2 and (Φ, Ψ) satisfy the conditions (3.1) and (3.2). We put
f = f1 + f2, where f1 = fχE(x,2kr) and f2 = fχ {E(x,2kr)

, where k is the constant from
the triangle inequality.

Estimation of IPα f1: By Theorem 3.2 we have

‖IPα f1‖LΨ (E) ≤ ‖IPα f1‖LΨ (Rn) . ‖f1‖LΦ(Rn) = ‖f‖LΦ(E(x,2kr)).

By using the monotonicity of the functions ‖f‖LΦ(E(x,t)), Φ−1
(
t
)

with respect to t we get,

1

Ψ−1
(
r−γ
) ∫ ∞

2kr
Ψ−1

(
t−γ
)
‖f‖LΦ(E(x,t))

dt

t

≥
‖f‖LΦ(E(x,2kr))

Ψ−1
(
r−γ
) ∫ ∞

2kr
Ψ−1

(
t−γ
)dt
t

& ‖f‖LΦ(E(x,2kr)).

(4.6)

Consequently we have

‖IPα f1‖LΨ (E) .
1

Ψ−1
(
r−γ
) ∫ ∞

2kr
Ψ−1

(
t−γ
)
‖f‖LΦ(E(x,t))

dt

t
. (4.7)

Estimation of IPα f2: Let y be an arbitrary point from E .
A geometric observation shows that y ∈ E , z ∈ {E(x, 2kr) implies 1

2kρ(x − z) ≤
ρ(y − z) ≤ 2k+1

2 ρ(x− z). Therefore, by Lemma 2.2∣∣IPα f2(y)
∣∣ . ∫

{E(x,2kr)

|f(z)|
ρ(x− z)γ−α

dz ≈
∫

{E(x,2kr)
|f(z)|dz

∫ ∞
ρ(x−z)

dt

tγ+1−α

≈
∫ ∞

2kr

∫
2kr≤ρ(x−z)<t

|f(z)|dz dt

tγ+1−α .
∫ ∞

2kr

∫
E(x,t)

|f(z)|dz dt

tγ+1−α

.
∫ ∞

2kr
‖f‖LΦ(E(x,t)) t

α Φ−1
(
t−γ
)dt
t

.
∫ ∞

2kr
‖f‖LΦ(E(x,t)) Ψ

−1
(
t−γ
)dt
t
. (4.8)

Thus the function IPα f2(y), with fixed x and r, is dominated by the expression not de-
pending on y. Then we integrate the obtained estimate for IPα f2(y) in y over E , we get

‖IPα f2‖LΨ (E) .
1

Ψ−1
(
r−γ
) ∫ ∞

2kr
‖f‖LΦ(E(x,t)) Ψ

−1
(
t−γ
)dt
t
. (4.9)
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Gathering the estimates (4.7) and (4.9) we arrive at (4.5).
Let now Φ be an arbitrary Young function. It is obvious that

‖IPα f‖WLΦ(E) ≤ ‖IPα f1‖WLΦ(E) + ‖IPα f2‖WLΦ(E).

By the boundedness of the operator IPα from LΦ(Rn) to WLΦ(Rn), provided by Theorem
3.2, we have

‖IPα f1‖WLΦ(E) . ‖f‖LΦ(E(x,2kr)).

By using (4.6), (4.9) and Lemma 2.1 we arrive at (4.4).

Theorem 4.1 Let 0 < α < γ, Φ, Ψ Young functions and (Φ, Ψ) satisfy the conditions (3.1)
and (3.2). Assume that the functions (ϕ1, ϕ2) and (Φ, Ψ) satisfy the conditions (3.1), (3.2)
and ∫ ∞

r
Ψ−1

(
t−γ
)
ess inf
t<s<ı

ϕ1(x, s)

Φ−1
(
s−γ
) dt
t
≤ C ϕ2(x, r), (4.10)

where C does not depend on r. Then the operator IPα is bounded from MP
Φ,ϕ1

(Rn) to
WMP

Ψ,ϕ2
(Rn) and forΦ ∈ ∇2, the operator IPα is bounded fromMP

Φ,ϕ1
(Rn) toMP

Ψ,ϕ2
(Rn).

Proof. Note that
(
ess inf
x∈A

f(x)
)−1

= ess sup
x∈A

1
f(x) is true for any real-valued nonnegative

function f and measurable on A and the fact that ‖f‖LΦ(E(x,t)) is a nondecreasing function
of t

‖f‖LΦ(E(x,t))

ess inf
0<t<s<∞

ϕ1(x,s)

Φ−1
(
s−γ
) = ess sup

0<t<s<∞

Φ−1
(
s−γ
)
‖f‖LΦ(E(x,t))

ϕ1(x, s)

≤ sup
x∈Rn,r>0

Φ−1
(
s−γ
)
‖f‖LΦ(E(x,s))

ϕ1(x, s)
= ‖f‖MP

Φ,ϕ1

.

Since (ϕ1, ϕ2) and (Φ, Ψ) satisfy the condition (4.10),∫ ∞
r
‖f‖LΦ(E(x,t))Ψ

−1
(
t−γ
)dt
t

≤
∫ ∞
r

‖f‖LΦ(E(x,t))

ess inf
t<s<∞

ϕ1(x,s)

Φ−1
(
s−γ
) ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−γ
)Ψ−1

(
t−γ
)dt
t

. ‖f‖MP
Φ,ϕ1

∫ ∞
r

(
ess inf
t<s<∞

ϕ1(x, s)

Φ−1
(
s−γ
))Ψ−1

(
t−γ
)dt
t

. ϕ2(x, r)‖f‖MP
Φ,ϕ1

. (4.11)

Then by (4.10) and (4.11) we get

‖IPα f‖MP
Ψ,ϕ2

. sup
x∈Rn,r>0

1

ϕ2(x, r)

∫ ∞
r

Ψ−1
(
t−γ
)
‖f‖LΦ(E(x,t))

dt

t
. ‖f‖MP

Φ,ϕ1

.

The estimate ‖IPα f‖WMP
Ψ,ϕ2

. ‖f‖MP
Φ,ϕ1

can be proved similarly by the help of local
estimate (4.4).

Remark 4.2 Note that Theorem 4.1 in the isotropic case P = I were proved in [8], see
also [6,17].
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For proving our main results, we need the following estimate.

Lemma 4.4 If E0 := E(x0, r0), then rα0 . IPα χE0(x) for every x ∈ E0.

Proof. It is well-known that

MP
α f(x) ≤ 2γ−αMP

α f(x), (4.12)

where MP
α (f)(x) = sup

E3x
|E|−1+α

γ
∫
E |f(y)|dy.

Now let x ∈ E0. By using (4.12), we get

IPα χE0(x) &MP
α χE0(x) & MP

αχE0(x) & sup
E3x
|E|−1+α

γ |E ∩ E0|

& |E0|−1+α
γ |E0 ∩ E0| = rα0 .

The following theorem gives necessary and sufficient conditions for Spanne-type bound-
edness of the operator IPα from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

Theorem 4.2 (Spanne-type result) Let 0 < α < γ, (Φ, Ψ) be Young functions, and let
ϕ1 ∈ ΩΦ,P , ϕ2 ∈ ΩΨ,P .

1. If the functions (Φ, Ψ) satisfy the conditions (3.1) and (3.2), then the condition∫ ∞
r

Ψ−1
(
r−γ
)
ess inf
r<s<ı

ϕ1(s)

Φ−1
(
s−γ
) dt
t
≤ C ϕ2(t), (4.13)

for all t > 0, where C > 0 does not depend on t, is sufficient for the boundedness of IPα
from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

2. If the function ϕ1 ∈ GΦ, then the condition

tαϕ1(t) ≤ Cϕ2(t), (4.14)

for all t > 0, where C > 0 does not depend on t, is necessary for the boundedness of IPα
from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

3. Let the functions (Φ, Ψ) satisfy the conditions (3.1) and (3.2). If ϕ1 ∈ GΦ satisfies the
condition ∫ ∞

r

Ψ−1
(
t−γ
)

Φ−1
(
t−γ
) ϕ1(t)

dt

t
≤ Crαϕ1(t), (4.15)

for all t > 0, where C > 0 does not depend on t, then the condition (4.14) is necessary and
sufficient for the boundedness of IPα from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

Proof. The first statement of the theorem follows from Theorem 4.1.
We shall now prove the second part. Let E0 = E(x0, t0) and x ∈ E0. By Lemma 4.4 we

have tα0 . IαχE0(x). Therefore, by Lemma 2.1 and Lemma 4.2

tα0 . Ψ−1(|E0|−1)‖IPα χE0‖LΨ (E0) . ϕ2(t0)‖IPα χE0‖MP
Ψ,ϕ2

. ϕ2(t0)‖χE0‖MP
Φ,ϕ1

≤ Cϕ2(t0)

ϕ1(t0)

Since this is true for every t0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem.

The following Guliyev-type local estimate for the commutator of the parabolic fractional
integral operator [b, IPα ] in Orlicz space is valid.
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Lemma 4.5 Let 0 < α < γ, b ∈ BMO(Rn), Φ, Ψ Young functions and (Φ, Ψ) satisfy the
conditions (3.1) and (3.2). Let Ψ−1(r) ≈ Φ−1(r) r

−α
γ and Φ ∈ ∆2∩∇2, then the inequality

‖[b, IPα ]f‖LΨ (E(x0,r)) .
‖b‖∗

Ψ−1
(
r−γ
) ∫ ∞

2kr

(
1 + ln

t

r

)
Ψ−1

(
t−γ
)
‖f‖LΦ(E(x0,t))

dt

t

holds for any ball E(x0, r) and for all f ∈ Lloc
Φ (Rn).

Proof. For E = E(x0, r), write f = f1 + f2 with f1 = fχ
2kB

and f2 = fχ
{
(2kE)

, where k

is the constant from the triangle inequality, so that∥∥[b, IPα ]f∥∥LΨ (E)
≤
∥∥[b, IPα ]f1

∥∥
LΨ (E)

+
∥∥[b, IPα ]f2

∥∥
LΨ (E)

.

By the boundedness of the operator [b, IPα ] from LΦ(Rn) to LΨ (Rn) provided by Theo-
rem 3.3, we obtain

‖[b, IPα ]f1‖LΨ (E) ≤ ‖[b, IPα ]f1‖LΨ (Rn) . ‖b‖∗ ‖f1‖LΦ(Rn) = ‖b‖∗ ‖f‖LΦ(2kE). (4.16)

As we proceed in the proof of Lemma 4.3, we have for x ∈ E∣∣[b, IPα ](f2)(x)
∣∣ . ∫

{E(x,2kr)

|b(y)− b(x)| |f(y)|
ρ(x0 − y)γ−α

dy.

Then

‖[b, IPα ]f2‖LΨ (E) .
∥∥∥∫

{E(x,2kr)

|b(y)− b(x)| |f(z)|
ρ(x0 − y)γ−α

dy
∥∥∥
LΨ (E)

. J1 + J2 =
∥∥∥∫

{E(x,2kr)

|b(y)− bE | |f(y)|
ρ(x0 − y)γ−α

dy
∥∥∥
LΨ (E)

+
∥∥∥∫

{E(x,2kr)

|b(·)− bE | |f(y)|
ρ(x0 − y)γ−α

dy
∥∥∥
LΨ (E)

.

For the term J1 by Lemma 2.1 we obtain

J1 ≈
1

Ψ−1
(
r−γ
) ∫

{E(x,2kr)

|b(y)− bE | |f(y)|
ρ(x0 − y)γ−α

dy

and split it as follows:

J1 .
1

Ψ−1
(
r−γ
) ∫

{E(x,2kr)
|b(y)− bE | |f(y)|dy

∫ ∞
ρ(x0−y)

dt

tγ+1−α

≈
∫ ∞

2kr

∫
2kr≤ρ(x0−y)<t

|b(y)− bE | |f(y)|dy
dt

tγ+1−α

.
∫ ∞

2kr

∫
E(x0,t)

|b(y)− bE | |f(y)|dy
dt

tγ+1−α .

Applying Hölder’s inequality, by Lemmas 2.2 and 3.1 and (3.3) we get

J1 .
1

Ψ−1
(
r−γ
) ∫ ∞

2kr

∫
E(x0,t)

|b(y)− bE(x0,t)||f(y)|dy
dt

tγ+1−α

+
1

Ψ−1
(
r−γ
) ∫ ∞

2kr
|bE(x0,r) − bE(x0,t)|

∫
E(x0,t)

|f(y)|dy dt

tγ+1−α
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.
1

Ψ−1
(
r−γ
) ∫ ∞

2kr

∥∥b(·)− bE(x0,t)

∥∥
L
Φ̃

(E)
‖f‖LΦ(E(x0,t))

dt

tγ+1−α

+
1

Ψ−1
(
r−γ
) ∫ ∞

2kr
|bE(x0,r) − bE(x0,t)|‖f‖LΦ(E(x0,t))Φ

−1
(
t−γ
) dt

t1−α

. ‖b‖∗
1

Ψ−1
(
r−γ
) ∫ ∞

2kr

(
1 + ln

t

r

)
‖f‖LΦ(E(x0,t))Ψ

−1
(
t−γ
)dt
t
.

For J2 we obtain

J2 ≈ ‖b(·)− bB‖LΨ (E)

∫
{E(x,2kr)

|f(y)|
ρ(x0 − y)γ−α

dy

.
‖b‖∗

Ψ−1
(
r−γ
) ∫

{E(x,2kr)

|f(y)|
ρ(x0 − y)γ−α

dy

.
‖b‖∗

Ψ−1
(
r−γ
) ∫ ∞

2kr
‖f‖LΦ(E(x,t)) Ψ

−1
(
t−γ
)dt
t
.

gathering the estimates for J1 and J2, we get

‖[b, IPα ]f2‖LΨ (E) .
‖b‖∗

Ψ−1
(
r−γ
) ∫ ∞

2kr

(
1 + ln

t

r

)
Ψ−1

(
t−γ
)
‖f‖LΦ(E(x0,t))

dt

t
. (4.17)

By using (4.6) we unite (4.17) with (4.16), which completes the proof.

Theorem 4.3 Let 0 < α < γ, b ∈ BMO(Rn), Φ, Ψ Young functions and (Φ, Ψ) satisfy
the conditions (3.1) and (3.2). Let Ψ−1(r) ≈ Φ−1(r) r

−α
γ , Φ ∈ ∆2 ∩∇2, and the functions

(ϕ1, ϕ2) and (Φ, Ψ) satisfy the condition∫ ∞
r

(
1 + ln

t

r

)
Ψ−1

(
t−γ
)
ess inf
t<s<ı

ϕ1(x, s)

Φ−1
(
s−γ
) dt
t
≤ C ϕ2(x, r), (4.18)

where C does not depend on x, r. Then the operator [b, IPα ] is bounded from MP
Φ,ϕ1

(Rn) to
MP
Ψ,ϕ2

(Rn).

Proof. The proof is similar to the proof of Theorem 4.1 thanks to Lemma 4.5.

Remark 4.3 Note that Theorem 4.3 in the isotropic case P = I were proved in [9].

For proving our main results, we need the following estimate.

Lemma 4.6 If b ∈ L1
loc(Rn) and E0 := E(x0, r0), then

rα0 |b(x)− bE0 | . |b, IPα |χE0(x) for every x ∈ E0.

Proof. It is well-known that

MP
b,αf(x) ≤ 2γ−αMP

b,αf(x), (4.19)

where MP
b,α(f)(x) = sup

E3x
|E|−1+α

γ
∫
E |b(x)− b(y)||f(y)|dy.
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Now let x ∈ E0. By using (4.19), we get

|b, IPα | &MP
b,αχE0(x) & MP

b,αf(x) = sup
B3x
|B|−1+α

γ

∫
E
|b(x)− b(y)|χE0dy

= sup
E3x
|E|−1+α

γ

∫
E∩E0
|b(x)− b(y)|dy & |E0|−1+α

γ

∫
E0∩E0

|b(x)− b(y)|dy

& |E0|−1+α
γ

∣∣∣ ∫
E0
(b(x)− b(y))dy

∣∣∣ = rα0 |b(x)− bE0 |.

The following theorem gives necessary and sufficient conditions for Spanne-type bound-
edness of the operator [b, IPα ] from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

Theorem 4.4 Let 0 < α < γ, b ∈ BMO(Rn), (Φ, Ψ) be Young functions, and let ϕ1 ∈
ΩΦ,P , ϕ2 ∈ ΩΨ,P .

1. Let Ψ−1(t) ≈ t−α/γ Φ−1(t) and Φ, Ψ ∈ ∆2 ∩∇2, then the condition∫ ∞
r

(
1 + ln

t

r

)
Ψ−1

(
t−γ
)
ess inf
t<s<ı

ϕ1(s)

Φ−1
(
s−γ
) dt
t
≤ C ϕ2(r), (4.20)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of [b, IPα ]
from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

2. If Ψ ∈ ∆2 and ϕ1 ∈ GΦ, then the condition (4.14) is necessary for the boundedness
of |b, IPα | from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

3. Let Ψ−1(t) ≈ t−α/γ Φ−1(t) and Φ, Ψ ∈ ∆2 ∩∇2. If ϕ1 ∈ GΦ satisfies the condition∫ ∞
r

(
1 + ln

t

r

)
tα ϕ1(t)

dt

t
≤ Crαϕ1(r), (4.21)

for all r > 0, where C > 0 does not depend on r, then the condition (4.14) is necessary
and sufficient for the boundedness of |b, IPα | from MP

Φ,ϕ1
(Rn) to MP

Ψ,ϕ2
(Rn).

Proof. The first statement of the theorem follows from Theorem 4.3.
We shall now prove the second part. Let E0 = E(x0, r0) and x ∈ E0. By Lemma 4.6 we

have rα0 |b(x)− bE0 | . |b, IPα |χE0(x). Therefore, by Lemma 3.1 and Lemma 4.2

rα0 .
‖|b, IPα |χE0‖LΨ (E0)

‖b(·)− bE0‖LΨ (E0)
.

1

‖b‖∗
‖|b, IPα |χE0‖LΨ (E0)Ψ

−1(|E0|−1)

.
1

‖b‖∗
ϕ2(r0)‖|b, IPα |χE0‖MP

Ψ,ϕ2

. ϕ2(r0)‖χE0‖MP
Φ,ϕ1

.
ϕ2(r0)

ϕ1(r0)
.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem.
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