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Abstract. In this paper study the Hardy-Morrey classes of analytic functions inside and outside the unit
disk generated by the norm of the Morrey space on the unit circle. Since the Morrey space is not separable,
therefore, the analogue of the Riesz theorem in these classes differs from the classical version.
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1 Introduction

Morrey space was introduced in connection with the study of the smoothness properties
of the solution of an elliptic equation with coefficients from the BMO (boundary mean os-
cillation) space in 1938 by S. Morrey. Recently, interest in the study of various problems
of mathematics in these spaces has greatly increased. Many problems of harmonic analysis
are studied in Morrey spaces in the works of various mathematicians (see e.g. [2–5, 7–14,
17, 19]). More detailed about related issues can be found in monographs [1, 15, 16]. Mor-
rey spaces are not separable. Therefore, approximation problems in these spaces have their
own characteristics. In [2–5], subspaces of Morrey spaces generated by a shift operator in
which continuous functions are dense are distinguished. Applying the method of Riemann
boundary value problems in these works, the basic properties of some perturbed trigono-
metric systems in these subspaces are studied. In this case, the solvability of the Riemann
boundary value problem in Hardy-Morrey classes is essentially used. It should be noted that
the Riesz theorem plays a key role in theory of Hardy classes.

In this paper Hardy-Morrey classes of analytic functions inside and outside the unit disk
generated by the norm of the Morrey space on the unit circle. Since the Morrey space is
not separable, therefore, the analogue of the Riesz theorem in these classes differs from the
classical version.

2 Needful information

In this section we state some notations and facts which will be used to obtain our main
results. Let’s first define the Morrey space on the unit circle γ = {z ∈ C : |z| = 1} on the
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complex plane C. Next, ω = int γ will denote the unit ball in C. By L0(−π, π) we denote
the linear space of all (Lebesgue-) measurable functions on (−π, π).

Lp,α (γ) , 1 ≤ p < +∞, 0 ≤ α ≤ 1, will denote the normed space of all measurable
functions f(·) on γ with the finite norm

‖f‖Lp,α(γ) = sup
B

(∣∣∣B⋂ γ
∣∣∣α−1

γ

∫
B

⋂
γ
|f (ξ)|p |dξ|

)1/p

< +∞,

(|B
⋂
γ|γ −is the linear measure of intersection B

⋂
γ), where sup is taken over all balls

centered at γ with an arbitrary positive radius. Lp,α (γ) is a Banach space with respect to
this norm. We also define the space Lp,α(−π, π), 1 ≤ p < +∞, 0 ≤ α ≤ 1, which consists
of measurable functions f(·) on (−π, π) with the finite norm

‖f‖Lp,α(−π,π) = sup
I⊂[−π,π]

(
|I|α−1

∫
I
|f (t)|p |dt|

)1/p

< +∞,

where sup is taken over all intervals I ⊂ [−π, π]. It is not difficult to see that the cor-
respondence f (t) =: F

(
eit
)
, t ∈ (−π, π), F (·) ∈ Lp,α (γ) establishes an isometric

isomorphism between the spaces Lp,α (γ) and Lp,α(−π, π). Therefore, in what follows we
will equate these spaces and denote Lp,α with the norm ‖·‖p,α.

It is not difficult to see that for 0 ≤ α1 ≤ α2 ≤ 1 the following continuous embedding
holds: Lp,α1 ⊂ Lp,α2 . Moreover, it is clear that Lp,1 = L1(−π, π) and Lp,0 = L∞(−π, π).
We also have Lp,α ⊂ L1(−π, π), ∀α ∈ [0, 1] , ∀p ≥ 1.

It is valid the following

Lemma 2.1 [2] The space L∞ (and so C [−π, π] too) is not dense in Lp,α for 1 ≤ p <
+∞ and ∀α ∈ (0, 1).

It follows that the sequence of bounded functions cannot be complete in Lp,α. In what
follows, we will assume, if needed, that the function f ∈ Lp,α is periodically (with period
2π) extended to the whole real axisR. Following Lemma 2.1, we will consider the subspace
Mp,α of functions f(·) the shifts of which are continuous inLp,α, i.e. ‖f (·+ δ)− f(·)‖p,α →
0, δ → 0.

Lemma 2.2 [2] The space Mp,α, 1 ≤ p < +∞, 0 < α ≤ 1, is Banach and C∞0 [−π, π] is
dense in it.

Define the Morrey-Hardy class Hp,α
+ , 1 ≤ p < +∞, 0 ≤ α ≤ 1, of functions f(·)

analytic inside ω endowed with the norm

‖f‖Hp,α
+

= sup
0<r<1

‖fr(·)‖p,α ,

where fr (t) = f
(
reit
)
. It is not difficult to see that the inclusion Hp,α

+ ⊂ H+
1 , 1 ≤ p <

+∞, holds, whereH+
1 − is a usual Hardy class. Therefore, every function f(·) ∈ Hp,α

+ has
non-tangential boundary values f+(·) on γ.

Also let
MHp,α

+ =
{
F ∈ Hp,α

+ : F+ ∈Mp,α
}
.

Absolutely similar to the classical case, we define the Morrey-Hardy class outside the unit
circle ω. Let ω− = C\ω̄ (ω̄ = ω

⋃
γ). We will say that the function f analytic in ω− has
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a finite order m at infinity, if its Laurent decomposition at infinitely remote point has the
following form

f (z) =
m∑

k=−∞
akz

k, am 6= 0. (2.1)

Thus, for m > 0 function f has a pole of order m at z = ∞; for m = 0 it is bounded
in the vicinity of z = ∞; and in case m < 0 it has a zero of order (−m) at z = ∞. Let
f (z) = f0 (z) + f1 (z), where f0 (z) is a principal part (i.e. f0 (z) =

∑m
k=0 akz

k), and
f1 (z) regular part of decomposition (2.1). Consequently, f0 (z) ≡ 0 for m < 0 and f0 is a
polynomial of order m, i.e. deg f0 = m, if m ≥ 0. We say that the function f belongs to
the class mH

p,α
− , if deg f0 ≤ m and F ∈ Hp,α

+ , where F (z) = f1

(
1
z̄

)
, z ∈ ω.

Similarly we define

mMHp,α
− =

{
F ∈ mH

p,α
− : F− ∈Mp,α

}
.

We also need the following Riesz-Fichtenholz theorem.
Theorem R-F. In order to the function Φ(·) belong to the class H1, it is necessary and
sufficient that it can be represented as the Poisson-Stieltjes integral(

z = ρeiσ
)

Φ (z) =
1

2π

∫ π

−π
P (ρ, σ − s) dµ (s) ,

or in the form of a Poisson-Lebesgue integral

Φ (z) =
1

2π

∫ π

−π
Φ+
(
eis
)
P (ρ, σ − s) ds,

or in the form of a Cauchy-Lebesgue integral

Φ (z) =
1

2π

∫ π

−π

Φ+
(
eis
)
eisds

eis − z
,

or in the form of a Cauchy- Stieltjes integral

Φ (z) =
1

2π

∫ π

−π

eisdµ (s)

eis − z
,

where P (·, ·) is the Poisson kernel

P (ρ, s− ϕ) =
1− ρ2

1− 2ρ cos (s− ϕ) + ρ2
= Re

eis + ρeiϕ

eis − ρeiϕ
,

µ(·) is a function of bounded variation on [−π, π].
Regarding this theorem, one can see, e.g., monographs [6, 18].
In obtaining the main results, we will also use the following properties of the Poisson

kernel.

Theorem 2.1 The Poisson kernel P(·, ·) has the following properties:
i) 1

2π

∫ π
−π P (r, s) ds = 1, ∀r ∈ [0, 1) ;

ii) sup
|s|≥σ

|P (r, s)| → 0, r → 1− 0, ∀δ > 0;

iii)
∫
|s|≥δ P (r, s) ds→ 0, r → 1− 0, ∀δ > 0.
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An the end of this section an analogue of Minkowski inequality in Morrey space will be
given.

Proposition 2.1 Let F : [−π, π] × [−π, π] → C be a measurable function and F (·; s) ∈
Lp,α , 1 ≤ p < +∞ , 0 < α < 1 , for ∀s ∈ [−π, π] . Then it is valid∥∥∥∥∫ π

−π
F (·; s) ds

∥∥∥∥
p,α

≤
∫ π

−π
‖F (·; s) ds‖p,α ds .

3 Main results

The classical Riesz theorem has the following analogue with respect to the Hardy-Morrey
classes.

Theorem 3.1 Let 1 ≤ p < +∞, 0 < α < 1.
Then:
α) ‖F (·)‖Hp,α

+
= ‖F+(·)‖p,α ,∀F ∈ H

p,α
+

(
‖F (·)‖

mH
p,α
−

= ‖F−(·)‖p,α , ∀F ∈ mH
p,α
−

)
;

β) For F ∈ Hp,α
+

(
F ∈ mH

p,α
−
)

the relation lim
r→1−0

‖Fr(·)− F+(·)‖p,α = 0(
lim

r→1+0
‖Fr(·)− F−(·)‖p,α = 0

)
holds if and only if F (·) ∈MHp,α

+

(
F (·) ∈ mMHp,α

−
)
,

where Fr (t) = F
(
reit
)
.

Proof. Let us show the validity of α) with respect to F ∈ Hp,α
+ . The case F ∈ mH

p,α
− is

proved similarly. So, let F ∈ Hp,α
+ . Then it is clear that F (·) ∈ H+

p , where H+
p is a usual

Hardy class. By the classical Riesz theorem, we have∫ π

−π

∣∣F (reit)− F+
(
eit
)∣∣p dt→ 0, r → 1− 0.

Hence we obtain that ∃ {rn}n∈N ⊂ (0, 1):rn → 1 − 0, n → ∞, such that the sequence{
F
(
rne

it
)}

n∈N converges to F+
(
eit
)

a.e. t ∈ [−π, π]. Let E ⊂ [−π, π]−be an arbitrary
interval. It is clear that

∣∣F (rneit)∣∣p → ∣∣F+
(
eit
)∣∣p, a.e. t ∈ E. We have

1

|E|1−α

∫
E

∣∣F (rneit)∣∣p dt ≤ sup
I⊂[−π,π]

(
1

|I|1−α

∫
I

∣∣F (rneit)∣∣p dt) ≤ ‖F‖pHp,α
+

.

Considering this relation from Fatou’s theorem we get∫
E

∣∣F+
(
eit
)∣∣p dt ≤ sup

n

∫
E

∣∣F (rneit)∣∣p dt ≤ |E|1−α ‖F‖pHp,α
+

, ∀E ⊂ [−π, π] .

This immediately implies that F+(·) ∈ Lp,α and ‖F+(·)‖p,α ≤ ‖F‖Hp,α
+

. Let us that the
converse inequality also holds. By R-F Theorem, the function F (·) has a representation in
the form of a Lebesgue-Poisson integral

F
(
ρeiσ

)
=

1

2π

∫ π

−π
F+

(
eis
)
P (ρ, σ − s) ds =

1

2π

∫ π

−π
F+

(
ei(σ−s)

)
P (ρ, s) ds.

We have
(
Fr (t) = F

(
reit
))

‖Fr(·)‖p,α =

∥∥∥∥ 1

2π

∫ π

−π
F+

(
ei(t−s)

)
P (r, s) ds

∥∥∥∥
p,α

≤
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1

2π

∫ π

−π

∥∥∥F+
(
ei(· −s)

)∥∥∥
p,α
P (r, s) ds. (3.1)

It is easy to see that the norm ‖·‖p,α is invariant with respect to the shift, i.e.∥∥∥F+
(
ei(·−s)

)∥∥∥
p,α

=
∥∥F+(·)

∥∥
p,α

.

Then taking into account

1

2π

∫ π

−π
P (r, s) ds = 0,∀r ∈ (0, 1) ,

from (3.1) we obtain

‖Fr(·)‖p,α ≤
∥∥F+(·)

∥∥
p,α
⇒ ‖F (·)‖Hp,α

+
≤
∥∥F+(·)

∥∥
p,α

.

As a result we have ‖F (·)‖Hp,α
+

= ‖F+(·)‖p,α.
Let us prove the part β). Let F (·) ∈MHp,α

+ . So, for F (·) we have a representation

Fr (t) =
1

2π

∫ π

−π
F+ (s)Pr (r, t− s) ds.

Using the 2π -periodicity of the function F+(·) (F+ (s) =: F+
(
eis
)
) , we obtain

Fr (t) =
1

2π

∫ π

−π
Pr (s)F+ (t− s) ds.

Consequently∥∥Fr (t)− F+ (t)
∥∥
p,α

=

∥∥∥∥ 1

2π

∫ π

−π
Pr (s)F+ (t− s) ds− 1

2π

∫ π

−π
Pr (s)F+ (t) ds

∥∥∥∥
p,α

≤

≤ 1

2π

∫ π

−π
Pr (s)

∥∥F+ (· − s)− F+ (· )
∥∥
p,α

ds.

Let δ > 0−be an arbitrary number. Then from the previous inequality we obtain∥∥Fr (t)− F+ (t)
∥∥
p,α
≤ sup
|s|≤δ

∥∥F+ (· − s)− F+ (· )
∥∥
p,α

1

2π

∫
|s|≤δ
Pr (s) ds+

+
1

2π

∫
|s|>δ
Pr (s)

∥∥F+ (· − s)− F+ (· )
∥∥
p,α

ds.

Paying attention to Theorem 2.1 i) and the relation∥∥F+ (· − s)− F+ (· )
∥∥
p,α
≤
∥∥F+ (· − s)

∥∥
p,α

+
∥∥F+ (· )

∥∥
p,α

= 2
∥∥F+ (· )

∥∥
p,α

,

we have∥∥Fr (t)− F+ (t)
∥∥
p,α
≤ sup
|s|≤δ

∥∥F+ (· − s)− F+ (· )
∥∥
p,α

+
‖F+ (· )‖p,α

π

∫
|s|>δ
Pr (s) ds.

Let ε > 0− be an arbitrary number. Then from F+(·) ∈Mp,α follows that ∃δε > 0 : ∀δ ∈
(0, δε) the following inequality

sup
|s|≤δ

∥∥F+ (· − s)− F+ (· )
∥∥
p,α

<
ε

2
,
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is fulfilled. Take ∀δ ∈ (0, δε) and fix. Then from Theorem 2.1 iii) follows that ∃r0 ∈ (0, 1) :
∀r ∈ (r0, 1):

‖F+ (· )‖p,α
π

∫
|s|>δ
Pr (s) ds <

ε

2
,

holds. As a result we have∥∥Fr(·)− F+(·)
∥∥
p,α

< ε,∀r ∈ (r0, 1) .

From the arbitrariness of ε > 0 it follows

lim
r→1−0

∥∥Fr(·)− F+(·)
∥∥
p,α

= 0. (3.2)

On the contrary, let the relation (3.2) be true. Show that F+(·) ∈Mp,α. We have∥∥F+ (· − s)− F+ (· )
∥∥
p,α
≤
∥∥F+ (· − s)− Fr (· − s)

∥∥
p,α

+

+ ‖Fr (· − s)− Fr (· )‖p,α +
∥∥Fr (· )− F+ (· )

∥∥
p,α

.

Let ε > 0 be an arbitrary number. Then, taking into account the invariance of the norm
‖·‖p,α with respect to the shift and relation (3.2), hence we obtain that ∃r0 ∈ (0, 1) : ∀r ∈
(r0, 1): ∥∥Fr (· )− F+ (· )

∥∥
p,α

<
ε

4
.

For fixed r ∈ (r0, 1), the function Fr (· ) is continuous and Fr(·) ∈ Mp,α. Then ∃δ0 > 0 :
∀δ ∈ (0, δ0) we have

‖Fr (· − s)− Fr (· )‖p,α <
ε

2
, ∀s : |s| ≤ δ.

As a result we have
sup
|s|≤δ

∥∥F+ (· − s)− F+ (· )
∥∥
p,α
≤ ε,

and it means F+(·) ∈ Mp,α. The case mMHp,α
− class is proved quite similarly to the case

MHp,α
+ . Theorem is proved.
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