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Maximal operator with rough kernel and its commutators in
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Abstract. Let 2 € Lg(S™™1) be a homogeneous function of degree zero with q > 1. In this paper, we
study the boundedness of the maximal operator with rough kernels M, and its commutators [b, M) on
generalized weighted Morrey spaces My, ,(w). We find the sufficient conditions on the pair (o1, 2) with
¢ <p<oop#landw € Ap/q/ orl < p< qand wiTP € Ap//q/ which ensures the boundedness
of the operators Mg, from one generalized weighted Morrey space Mp o, (w) to another Mp, ,,(w) for
1 < p < oo. We find the sufficient conditions on the pair (@1, p2) withb € BMO(R™) and ¢’ < p < oo,
p#FLweA, orl<p<g wi? ¢ Ay 1qr which ensures the boundedness of the operators [b, M ]
Sfrom Mp o, (w) to Mp p,(w) for 1 < p < oo. In all cases the conditions for the boundedness of the
operators Tg, |b, T] are given in terms of supremal-type inequalities on (1, ¢2) and w, which do not
assume any assumption on monotonicity of p1(x,r), w2(z,7) inr.
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1 Introduction

It is well-known that the commutator is an important integral operator and it plays a key
role in harmonic analysis. In 1965, Calderon [6,7] studied a kind of commutators, appearing
in Cauchy integral problems of Lip-line. Let K be a Calderén-Zygmund singular integral
operator and b € BMO(R™). A well known result of Coifman, Rochberg and Weiss [8]
states that the commutator operator [b, K|f = K(bf) — b K f is bounded on L,(R™) for
1 < p < oo. The commutator of Calderén-Zygmund operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second order
(see, for example, [9-11,15,24,26)).

The classical Morrey spaces were originally introduced by Morrey in [34] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [9,10,12,
15,19]. Guliyev, Mizuhara and Nakai [17,33,38] introduced generalized Morrey spaces
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MP#(R™) (see, also [18,19,21,39]). Recently, Komori and Shirai [31] considered the weighted
Morrey spaces LP"(w) and studied the boundedness of some classical operators such as
the Hardy-Littlewood maximal operator, the Calderén-Zygmund operator on these spaces.
Guliyev [20] gave a concept of generalized weighted Morrey space M,, ,(w) which could
be viewed as extension of both generalized Morrey space M, ,, and weighted Morrey space
LP*(w). In [20] Guliyev also studied the boundedness of the classical operators and its
commutators in these spaces Mp#,(w), see also Guliyev et al. [3,11,13,22,25,26,28,29].

Watson [40] and independently by Duoandikoetxea [14] established weighted L,, bound-
edness for the singular integral operators with rough kernels and their commutators.

Let " ! = {z € R" : |z| = 1} the unit sphere of R” (n > 2) equipped with the
normalized Lebesgue measure do = do (z').

Suppose that (2 satisfies the following conditions.

(1) £2is a homogeneous function of degree zero on R™. That is,

2(tx) = 2(x) (1.1)

forallt > 0 and x € R™.
Let f € LllOC (R™). The maximal operator with rough kernel M, is defined by

Maf(e) =sup|Bla.0) [ |26~ y)l|£)ldy
t>0 (z,t)
The commutators generated by a suitable function b and the operator My, is formally
defined by

[b, Mol f = Mq(bf) — bMo(f).
It is obvious that when (2 = 1, M|, is the Hardy-Littlewood maximal operator M. For
b € LY°(R™) the commutator of the maximal operator M, 4 is defined by

Mg pf(x) = sup !B(%tﬂ_l/ 12z — )| |b(x) = b(y)||f(y)ldy.  (1.2)
t>0 B(z,t)

Therefore, it will be an interesting thing to study the property of M. The main purpose
of this paper is to show that maximal operator with rough kernels M, is bounded from one
generalized weighted Morrey space M), ,, (w) to another M, ,,(w), 1 < p < oco. We find
the sufficient conditions on the pair (@1, ¢2) withb € BMO(R™) and ¢’ < p < oo, p # 1,
we Ay gorl <p<g, wl™? e Ay /¢ Which ensures the boundedness of the commutator
operators [b, M| from M, ., (w) to M), ,,(w) for 1 < p < oo.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A = B and say that A and B are
equivalent.

2 Preliminaries

Next we will give the weighted boundedness of maximal operator M, with rough kernel
and its commutator. In their proof, the weighted boundedness of the maximal operator M,
with rough kernel (for its definition, see (1.2)) is needed, while the latter itself is of great
significance.

Theorem 2.1 [14] Suppose that §2 satisfies the condition (1.1) and 2 € L,(S"1), 1 <
q < oo. Then forevery ¢ < p <oo,p# landw € A,y orl < p < q, p # oo and

wli=? € A

P/q
there is a constant C independent of f such that

p'/q"
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Theorem 2.2 [4] Suppose that {2 satisfies the condition (1.1) and {2 € Lq(Snfl), 1<
q < oc. Let also b € BMO(R"). Then for every ¢ < p < oo, p # 1 andw € A,y or

l<p<gqp#ocoandw' " e Ay g there is a constant C independent of f such that

For a function b defined on R"™, we denote

(0, ifb(z) >0
b (@) ‘_{|b(x)\, if b(z) < 0

and b (z) := |b(z)| — b~ (). Obviously, b*(z) — b~ (z) = b(z).
The following relations between [b, M] and M}, are valid :
Let b be any non-negative locally integrable function. Then

|[b, M]f(x)] < My(f)(x),  xe€R"

holds for all f € L} (R™).

loc
If b is any locally integrable function on R™, then

[0, M]f(x)] < My(f)(x) +2b" ()M f(z),  xeR" 2.1

holds for all f € L{ (R™) (see, for example, [1]).

loc
In the sequel M (R4 ), M+ (R4) and MM T (R ; 1) stand for the set of Lebesgue-measurable
functions on R , and its subspaces of nonnegative and nonnegative non-decreasing func-
tions, respectively. We also denote

A={peM(R;1): lim p=0}.
t—0+

Let u be a continuous and non-negative function on R . We define the supremal operator
S, by

(5ug)(t) := llugll Lo (t.00), T € (0,00),
The following theorem was proved in [5].

Theorem 2.3 [5] Suppose that v and ve are nonnegative measurable functions such that
0 < [lv1llpo(0,) < 00 for everyt > 0. Let u be a continuous nonnegative function on R.

Then the operator S, is bounded from Loy, (R) 10 Loo 1, (R) on the cone A if and only
if

ng“(uvlHZ;("OO>)HLOO(R+) < 0.
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3 Generalized weighted Morrey spaces

The classical Morrey spaces M, y were originally introduced by Morrey in [34] to study
the local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [16,32].

We recall that a weight function w is in the Muckenhoupt class A, [35], 1 < p < oo, if

[w]a, : = suplw]|a,(B)
B

—sup(L;‘/n (xym> <u;|j;u4xﬂﬂdx>pl (3.1)

where the sup is taken with respect to all the balls B and ]% + 1% = 1. Note that, for all balls
B using Holder’s inequality, we have that

1 1 _
wl %y = (B wl % g o™ 2, > 1. (3.2)
For p = 1, the class A; is defined by the condition Mw(z) < Cw(x) with [w]a, =
Muw(z) f A = A = inf
5611]15 w@z) o and forp = oo As = Ur<peoo Ap and [w]a 1§111)1<Oo[w},4p.

Remark 3.1 It is known that

—p g’ ,
W' € Ay = N ) = BT T 10 P )

. i o R
Moreover, we can write w'™? € A, g = w'™? € A, because of w'? € A, /g C
A, . Therefore, we get

’wl_pl S Ap’/q’ = ’U)l_pl S A
1 1
= [ 1Y ) = 1B e 1 Pl 33)

But the opposite is not true.

Remark 3.2 Let’s write w'™* € Ay /g and used the definitions A, classes we get the
following

a(p—1) a(p—1)

_/ _/ —_
W € Ay gy = [P ID = B S P,
1—p/11/p - 1—p'  1/7 1/p
= W = 1B e Iy el 64

where the following equalities are provided.

oy M4 9 d_dp-1) <Q>’:q <P/>':P(q—1).
p’p plg=1)" p plg—1)" \p ’

Then from eq.(3.3) and eq.(3.4) we have

1—p’ !/ ol 1pl 1/p
w eAp/q [ ]Ap//q
1 /

= [Blafw! P ) 10" P I ku”p . (3.5)

7L5(B)

We define the generalized weighed Morrey spaces as follows.
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Definition 3.1 [20] Let 1 < p < oo, ¢ be a positive measurable function on R™ x (0, 00)
and w be non-negative measurable function on R™. We denote by M, ,(w) the generalized

weighted Morrey space, the space of all functions f € L;)?;(R”) with finite norm

_1
£ty o) = sup (@, )" w(B(@, )7 | fllL,.oBe):
z€R™,r>0

where Ly, ,(B(x,r)) denotes the weighted Ly-space of measurable functions f for which

1

P

1ALy (B = 1 X s 1Lpw@n) = ( / |f (y)l”w(y)dy>

B(x,r)
Furthermore, by W M,, ,(w) we denote the weak generalized weighted Morrey space of

all functions f € WL;SEU(R”) for which

_1
| fllw aty. o (w) = G}Egpwsﬂ(xﬂ“)*lw(ff(xﬂ“)) P llwy.w(Br) < 00

where W Ly, .,(B(z, 1)) denotes the weak Ly, .,-space of measurable functions f for which

1

1A lwWLywB@r)) = 1 Xp0n WL, @) =supt (/ w(y)dy) .
" Bl T >0 \J{yeB@n): 1)t}

Remark 3.3 (1) If w = 1, then M, ,(1) = M, is the generalized Morrey space.
k=1
(2) If p(z,r) = w(B(x,r)) » , then My (w) = Ly .(w) is the weighted Morrey
space.
K 1
(3) If o(z,r) = v(B(z,r))rw(B(z,r)) », then M, (w) = Ly (v, w) is the two
weighted Morrey space.
A—n
(4) Ifw = 1and p(z,r) =7 » with0 < A < n, then M, ,(w) = L, \(R") is the
classical Morrey space and WM, ,(w) = W Ly, (R™) is the weak Morrey space.
1
(5) If (z,r) = w(B(z,r)) », then M), ,(w) = Ly.,(R™) is the weighted Lebesgue
space.

The following statement, was proved in [30].
Theorem 3.1 Let 1 < p < oo, w € A, and (1, p2) satisfy the condition

1
ess nf 1 (2, T)w(B(z, 7))

sup
> w(B(z,t))

where C does not depend on x and r. Then the operator M is bounded from M, ,, (w) to
M, o, (w) for p > 1 and from My ,, (w) to WM o, (w).
The following statement, was proved in [30], see also [20].

Theorem 3.2 Let 1 < p < oo, w € A,, b € BMO(R™) and (1, p2) satisfy the condition

S C‘p?(x')r)a (36)

3=

sup
t>r

¢\ ess inf o1 (z, T)w(B(x, T))%
< > < CQOQ(.’E,T), (37)

1 —f—ln* t<T<00 .
" w(B(z,t))7

where C' does not depend on x and r. Then the operator My, is bounded from M, ., (w) to
MPv‘PQ (w)'
Note that, in the case w = 1 Theorem 3.1 was proved in [23,37], see also [2].
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4 Maximal operator with rough kernels M, in the spaces M, ,(w)

In the following lemma we get Guliyev weighted local estimate (see, for example, [17,
19] in the case w = 1 and [20] in the case w € A,,) for the operator T’;.

Lemma 4.1 Suppose that (2 be satisfies the condition (1.1) and 2 € Ly(S"!), 1 < ¢ <
00

Ifd <p<oo,p#landw € A,,,, then the inequality

P/q
1 1
Mo (F)Ly.wBr) Sw(B(@,r))r sup 1f 2y (Bt w(B(,t)

holds for any ball B(x,r), and for all f € Lgffu (R™).
Ifl<p<qgp#ocandw'™ c A

' /q'» then the inequality
| M ()l (B S ol SUD 111, (500 07
pw(B(z,r) ~S Lﬁ(B(Jcm)) > pow(B(xt)) Lq%’p(B(w,t))

holds for any ball B(x,r), and for all f € L?S (R™).

loc
p7w

Proof. Let (2 be satisfies the condition (1.1) and {2 € Lq(S"_l), 1 <qg< o0
Note that

1
120z = Iy B2 < co |92Ly(sn-1) [BO,E+ |2 = wol)] 7, 4.1

where co = (nv,) Y7 and v, = | B(0,1)| (see, [23]).
For arbitrary zp € R", set B = B(x,r) for the ball centered at x¢ and of radius 7,
2B = B(xg,2r). We represent f as

f=h+fe i) =FWxsW), f2y) = F(Y)xeyp ), r>0  42)

and have
Mo (H)lz,..s) < IMa(f)llz,..s) + [Me(f)lL,.5)-

Since f1 € Lpw(R™), Mg (fi) € Lpw(R™) and from the boundedness of My in
Lpw(R™) forw € A,/ and ¢ < p < 00, p # 1 (see Theorem 2.2) it follows that

1Ma () l2,.08) < IMe (f1) L, . @&

1
S 1920 pgesny [wla, 1fillz, e
q/

1
=120z, sn-1) Wi, fllz,.c8)
q/

|—=

1 1 _
S 120z, sn-1) [w]h, w(B)? Sup £l 2,0 (Bayw(B(z,t) ».

q

Let z be an arbitrary point in B = B(x,r). If B(z,t) N CB(CL‘, 2r) # @, thent > r.
Indeed, if y € B(z,t)N GB(x,Qr),then wegett > ly—z| > |lz—y|—|z—z| >2r—r=r.



102 Maximal operator with rough kernel and its commutators in . ..

On the other hand, B(z,t) N CB(ulc, 2r) C B(z,2t). Indeed, if y € B(z,t) N CB(x, 2r),
then we get |z — y| < |y — 2| + |z — 2| < t+ r < 2t. Hence, forall z € B

Mo fa(z) = sup |B(z. 1) ! / 1902 — )] | f20)\dy
t>0

B(z,t)

t>r

< sup| B, 26)| ! / 120z — )| 1))y
B(z,t) (z,2r)

< sup | Bz, 26)[ ! / 120z — )| 1/ (v)ldy

t>r

)

— sup | Bz, £)| ! /B L, 12C =Dl wldy

t>2r

By applying Holder’s inequality for ¢ < p < co,p# landw € A, /q'» We get

Mo fa(z) < sup [B(a, 1) / 1926 =)l )y

t>2r B(z,t)

S tS;lQP |B(z,t)| 7102z - MeoB@) 1L, By

1
S 1921 5m-1) 5P 1B iy 107 P,y 1B+ = 2D

/)/

S

1 _1 L
S 920 Ly (sm-1y [w ]ﬁﬂ sup B, )" N f | 2y (Ba ) w( B2 1)) o [B(a, )7 |B0,t+7)|

-

1
~ (|2, (sm-1) [}, sup £l 2.0 (B w(B(z,t)) P (4.3)

q

Moreover, for all ¢’ < p < oo, p # 1 the inequality

1 1
Mg (f2) IL,.08) S 120 L, (sm1) [w]ﬁﬁw(B)” sup 1 £l 2.0 (Bt w(B(z,t)) P

q

is valid. Thus

|=

1 1 _
IMo(Flz,..8) S 192l 1,51y [w]h , w(B)? sup £l 2.0 (Baeyw(B(z,t) 7.

q

Letalsol < p < ¢, p # oo and w' P € Ay - Since f1 € Lpw(R™), Mg (f1) €

Ly (R™) and from the boundedness of Mg, in L, ,(R™) for w'~?" € Ap g and1l <p <gq
(see Theorem 2.2) it follows that

\\H

IMa (1) |2,.08) < IMa (f) L, S 19202, sm-1) [wl_p]f;i [FEY PG

q

\\H

~ 2,501y [0 T I N2

ql
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Ifl<p<gqp+#ooandw' ™ € A
inequality,

o qs then Minkowski theorem and Holder

Mo (f2)llL, . B) < (/B (fgg\B(wvt)!_l/B( t)lﬂ(w—y)llf(y)\dy> w(w)dw>p

)

< sup |B(x, )| / 12 =), i £

t>2r

)

1
< B(z,t)|™! O — » d
NtS;JQI;| (z,t)] /z 192(- = y)llL,B) ||w||L(q/p>,(B) |f(y)ldy

,t

1
S 120sysen ol sup B0 [ o 1BOT =35 170 dy

1
SN2 zgesm1 lw HL( Joyr(B) 5 SUP\B 2 )|y (Bay) [BO, 7+ 8]

L / 7 1
S 1201z, (sn-1) HwHZL(B) Sup B ) |y By 10 PIT (3 ay 1B )]

q—p

1 , L 1
SN zsn 1017, 5y 52 1B O Ul o 10717, g5y 1B 17

q—p

1 1
is obtained. By applying (3.3) for ||w! ' HE’I(B(QC ) and (3.5) for w7 () We have the
following inequality o

1Mo (f)llL,..3)
1

1 1
N2y [0 1 Ty 590 WAl ey 1017 sy
q/ q—p

is valid. Thus

1 1 _1
Ll P e o A A3 P ooy L PR e

q q9—p

Thus we complete the proof of Lemma 4.1.

Theorem 4.1 Suppose that (2 be satisfies the condition (1.1) and 2 € Ly(S™1), 1 < ¢ <
oo. Let also, for ¢ < p < oo, w € Ay, g the pair (1, p2) satisfies the condition (3.6) and

forl<p<gqw' ™ e Ay g the pair (o1, 2) satisfies the condition

ess inf 1 (z, T)HU}HL 1
t<T<00 o (B(z,7) w(B(x,r))P
Bl < Colen) 2PN
>r w
L o4 (Bt lwll7 L (B(a,)

where C' does not depend on x and r.
Then the operator Mg, is bounded from My, ,, (w) to My, ,,(w). Moreover

1M ()t w) S W1z, ()
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Proof. When ¢/ < p < oo, w € A

p/q» by Lemma 4.1 and Theorem 2.3 with vo(r) =

(pQ(IE,T)il,Vl(T) - gol((L‘,T)il'LU(B(l',T’))_%, g(?”) - HfHLp,w(B(x,r)) andw(r) - w(B(x,r)) P
we have

_1
1Mo ()|, g w) = Eg}}pwwz(wﬂ”)*IW(B(%T)) P | Mo ()L, w(Bzr)

_1
< osup pa(z,r) Tt StgpHfHLp,w(B@,t))w(B(:v,t)) Z

z€R™ r>0
_1
5 Sup @1(1‘,7“)_1 w(B(x?T)) P HfHLp,w(B(x,r))
zeR™,r>0
= 1fllas,4, (w)-
For the case of 1 < p < g, wi? e Ap//q/, by Lemma 4.1 and Theorem 2.3 with
_1 L _ _1
n(r) = eaer) w(Bla )l , ) = o) te(B)
q—p ’
1

g(r) = HfHLP,w(B(g;,T)) and w(r) = HwH;i(B(I o) we have
q—p ?

_1
[Mo(F) a0y w) = e§3p>o<ﬁ2(x,7“)_lw(3(%r)) P [ Mo(f)llz,.o(Br)
1

1 1 _1
<  su x, ) L w(B(x, 7)) P |w||? su wl|, ?
NxeRng>0¢2( ;1) w(B(z,r)) 7| ”Lﬁ(m t>g\|f|lLP,w(B(x,t)) [ ”Lﬁ(s(z,t))

_1
< osup o pi(mr) Tt w(B(@, ) 1l (B
zER™,r>0

= 1fllat,0, (w)-

5 Commutator of maximal operator with rough kernels [b, M,| in the spaces
My, (w)
We recall the definition of the space of BMO(R").
Definition 5.1 Suppose that b € L'°°(R"™), and let
1
foll. = sup [ ) = baapldy < o,
z€R™,r>0 |B(l‘, T)| B(z,r) .

where b _ 1/ b( )d
Pen =B ] Joen

BMOR") = {b € LY(R™) : ||b]|s < co}.
Modulo constants, the space BAM O(R™) is a Banach space with respect to the norm || - ||.

Define

Lemma 5.1 [36] Let w € Ax. Then the norm || - ||« is equivalent to the norm
1
Ol = sup / b(y) —b w(y) dy,
[0 vern o0 W(B(z, 7)) BW)' (¥) = bB(er)wl w(y)

where
1

bB(z,r),w = m /B(a:,r) b(y> w(y) dy.
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The following lemma is proved in [20].
Lemmas5.2 [ Letw € As and b € BMO(R"). Letalso 1 < p < oo, z € R" and
r1,72 > 0. Then,
(—mr / by) — b Putdy)” < 0 (1+ ™) ol
w(B(x,71)) JB(zm) Y7 OB w WY | = o "
where C' > 0 is independent of f, w, x, r1 and ro.
2 Letwe Apandb € BMO(R™). Let also 1 < p < oo, x € R™ and 1,13 > 0. Then,
1 1
b(y) —b
(@@ /B(m,m’ W) = bterae

v w(y)l‘p'dy) 7

<c(t+|m2|) .,
T2

where C' > 0 is independent of b, w, x, r1 and 7.
Remark 5.1 ([27])

(1) The John-Nirenberg inequality : There are constants C', Co > 0, such that for all
be BMO(R™)and 8 > 0

{z € B : |b(z) —bg| > B} < C1|Ble= A/l vB c R™.
(2) The John-Nirenberg inequality implies that

p

1
b« = sup / b(y) — bz |Pdy (5.1)
o 2ERM >0 (!B(%TN B(z,r)’ ®) = baen]

forl < p < 0.
(3) Letb € BMO(R™). Then there is a constant C' > 0 such that

t
6B — bB@y| < Cllbl. ln; for 0 < 2r < t, (5.2)

where C' is independent of b, x, r and ¢.

In the following lemma we get Guliyev weighted local estimate (see, for example, [20]
) for the maximal commutator operator M, ;.

Lemma 5.3 Let 1 < p < coandb € BMO(R™). Suppose that {2 be satisfies the condition
(1.1)and 2 € Ly(S"1), 1 < g < o0

If¢ <p<ocandw € Ay, then the inequality

[Map(Ly.w(Br))
1 t _1
< bllw(B(w,m))> sup (1410 =) | fllL, (0w (Bl ) >
t>2r r

holds for any ball B(x,r), and for all f € ngfu (R™).

Ifl1 <p<qand w'? € A, then the inequality

' /q
[Map(F)|L,.w(Br)

. 1
< 141 7) !
< Jlw 758;128 ( + In , HfHLp,w(B(%t)) HwHLﬁ(E(z,t))

1
”[I:L(B(z ™)
a—p ’

holds for any ball B(x,r), and for all f € L}D?ICU (R™).
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Proof. Let p € (1,00) and b € BMO(R™). For arbitrary zy € R", set B = B(x,r) for
the ball centered at = and of radius r, 2B = B(x, 2r). We represent f as (4.2) and have

[Mop(Nzy.wm) < [Mop(f)llz, ) + [Maos(f)llL, .)
Since fi € Lpw(R™), Moy (fi) € Lpw(R™) and from the boundedness of Mg in
Lpw(R™) forw € A,/ and ¢’ < p < oo (see Theorem 2.2) it follows that

[Map (fi) l,.08) < [Map (f1) L, @

1

S92z, sn-1y [w]fxﬂ 1Bl 1f11l 2, ()
1
~ |92l (sm-1) [w]ﬁg 16l 1 fll L, 0 (2)-

Let z be an arbitrary point in B = B(x,r). If B(z,t) N B(:r, 2r) # @, thent > r.
Indeed, ify € B(z,t)N cB(uc,Zr),thenwegett >ly—z| > |le—y|—|lz—z| >2r—r=r.

On the other hand, B(z,¢) N “B(z, 2r) C B(x, 2t). Indeed, if y € B(z,¢) N "B(a, 2r),
then we get | — y| < |y — 2| + |z — 2| < t+ r < 2t. Hence, forall z € B

Mapfaz) =sup B [ (bly) = )] 1200 = )] £20)| dy

B(z,t)

t>0

— sup|B(z,1)| ! / iy 116 V126 = 2 Sl dy

< sup | Bz, 26)| ! / 1by) — b(=)| 120y — 2)| | ()] dy

t>r B(z,2t)

— sup [B(x, 20)] ! /B 1K) =012 = 1wl dy

t>2r

Therefore, for all z € B we have

Mapfa(2) S sup |B(x,2t)[ 1/ t b(y) = b(2)|[£2(y — 2)[ | f(y)] dy.

t>2r B(z,t)

By applying Holder’s inequality for ¢ < p < 0o, p # land w € A/, we get

t>2r

Mgqpfa(z) < sup B(%t)l_l/B( ) b(y) = b(2)|1£2(z — )| |f (y)ldy

S/tSBQP|B(wvt)’_1”'9(z_')”Lq(B(x,t)) 1(b(y) = b(2)) fllz, (B

Q=

1
S 1201z, sn-1) Sup B, )" 1| 2y (Bt 1 (0(y) = b(2)) w™ /pHL(p/q (Bt B0 T+ [z = 2])]

L _1 1 1
S 120, 5n 1 [0, S0P (B 71, oy wB ()77 B )7 [BO.t 4 1)
q/
1

1
~ |92l sn-1y [w]h, Sup 1N 2y (B w(B(, 1)) 7. (5.3)
q/

Moreover, for all ¢ < p < oo, p # 1 the inequality

1 1
Mg (f2) 1L,.08) S 120 L, (sm1) [w]ﬁﬁw(B)P sup 1 £11 20 (Bt w(B(z,t)) P

q
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is valid. Thus

1 1 _1
Mo (F)lz,.o) S 192l L, sm-1y [w ]Z% w(B)» sup £l 2w (B w(B(z,t) P

q

fl<p<gqgp#ooandw' ™ € A

o/ then Minkowski theorem and Holder
inequality,

||MQ,bf2HLp7w(B)
S (/B (sup |B(z,t)| ! /B(x 5 1b(y) — b(2)|[£2(y — z)] |f(y)|dy>pw(z) dz)

t>2r

=

=

t>2r

S (/B (sup |B(x,t)| 7" /B(x ) 6(y) — bpwl [2(y — 2)] ]f(y)]dy)pw(z) dz>

3=

() (spipenr [ 16 bl 106 2150l () i)

t>2r

=Ji+ Jo.
Let us estimate .JJ;. Applying Holder’s inequality and by Lemma 5.2 we get

Ji = (/B (sup |B(z,t)| ! /Bm) 1b(y) — bp.w| |2(y — 2)| yf(y)ydy)pw(z) dz)

t>2r

3 =

< sup |B(x, )| ! / 12— iyt 160 = bl )]

t>2r

)

1
< sup [B(z,1)| ! 1920y = e, lwllf, ey 10Y) —bpwl | f(y)]dy
(q/p)( )

t>2r

,t

1
S 920z (sm1y [Jw HL( oy (B) 3 sup | B(z, 1) 1/3( ) [B(0,7 + |z —yl)|7 [b(y) — bawl |f(y)| dy

<12l one > BtHl/ b(y) — bp d
SN2l Wl sup B0 [ 1) = bl 01

1
1 / o 7
<12l 1901, oy 50 1B ([ 100) =50 ) Wi

x,t)
1

141 t o L/
< [l 1211z sn1 kuLm,( sup |B(e, )% (1 In )0 2, ) 1 o0

1
1B(@, )7 | fll,.0(B.t)

1 1+
< 16l 19211z, sm-1) Hwnzq () S9p B, DI~ (1+1n )HwHL "o (me)
q—p

1

= bl 142 sy ol o B (e Dl 1 s

In order to estimate .J; note that

s=(f (sopiBaor [ 16)~bsel 120 =2 15widy) wiz) dz)

t>2r

<f§£|3(w ) 1/3(:” (/ |(b(2) = bpw) 2 (y—Z)\pw(Z)dZy |f(w)ldy.

With similar techniques for 1 < p < ¢, w' " e Ay /¢ can be achieved and the proof is
finished.

3=
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Theorem 5.1 Suppose that (2 be satisfies the condition (1.1) and 2 € L,(S" 1), 1 < ¢ <
0. Letb € BMO(R"). Let also, for ¢ < p < oo, w € Apy the pair (p1, p2) satisfies the

condition (3.7) and for 1 < p < g, w7 e Ay g the pair (1, p2) satisfies the condition

ess inf 1 (z, 7')||wHL 1
o0 t t<r<oco 755 (B dt w(B(x,r))?
/ <1+ln ) il — < Cpa(x,1) —5—"—, 54
: " lolly” !

1
755 (Ba.t) ”wuzﬁw(z,r»

where C' does not depend on x and r.
Then the operator Mgy, is bounded from M, ,, (w) to My, ,,(w).

I1Mau ()l a1y gy 0) S N F101, 4, ()

Proof. When ¢’ < p < oo, w € Ay, by Lemma 5.3 and Theorem 2.3 with v(r) =

1
()02('%37")71’ 1/1(7") = (pl(:&r)ilw(B(x?T)) P, g(?") = ”f”Lp,w(B(z,r)) and
1
w(r) = w(B(x,7))” rr~! we have

1
[Ma,u ()l a1y 4y (w) = 6§3p>0<ﬁ2($,7“)_1w(3(90,7“)) P 2o (PN p.w(B@r)

_ _1dt
Sl s eatwn) [ (1 D)1l ey 0B 0)
z€R™,r>0 r t

S bl e;gpwsm(w’)*lw(B(fc,T))*E 112 (B

= [1blll[f 11,5, ()

For the case of 1 < p < g, wl P € Ap//q/, by Lemma 4.1 and Theorem 2.3 with
1

_1 1 _ _1
v(r) = ooz, ) tw(B(z,r)) > ||wH£L(B(M)), vi(r) = o1(z,r)w(B(x,r)) ?,
q—p 47

_1
90) = 17y By and w(r) = oll,?, " we have
q9—p ’

_1
1M b (N agy. () = eggpwm(%r)*lw(f?(wﬂ“)) 7 Nl (HL, w(Bar)

1
< sup ola,r) L w(Ba,r) v |w|)?

zER™, >0 HLL(B)
o dt
< [ (0 ) 1y ey Tl
/r P Loa (B@o) t
S s o) T wB@ ) 1w = 1. )
zeR™,r>0
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