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Abstract. On the Rd the Dunkl operators
{
Dk,j

}d
j=1

are the differential-difference operators associ-

ated with the reflection group Zd2 on Rd. We study some embeddings into the Morrey space (Dk-Morrey
space) Lp,λ(µk), 0 ≤ λ < d + 2γk and modified Morrey space (modified Dk-Morrey space) L̃p,λ(µk)
associated with the Dunkl operator on Rd. As applications we get boundedness of the fractional maximal
operator Mk,β , 0 ≤ β < d+ 2γk, associated with the Dunkl operator (fractional Dk-maximal operator)
from the spaces Lp,λ(µk) to L∞(Rd) for p = d+2γk−λ

β and from the spaces L̃p,λ(µk) to L∞(Rd) for
d+2γk−λ

β ≤ p ≤ d+2γk
β .
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1 Introduction

Dunkl operators are differential reflection operators associated with finite reflection
groups which generalize the usual partial derivatives as well as the invariant differential
operators of Riemannian symmetric spaces. They play an important role in harmonic anal-
ysis and the study of special functions of several variables. These operators are associated
with the differential-difference Dunkl operators on Rd. Rosler in [21] shows that the Dunkl
kernel verify a product formula. This allows us to define the Dunkl translations τx, x ∈ Rd.

In the theory of partial differential equations, together with weighted Lp,w(Rd) spaces,
Morrey spaces Lp,λ(Rd) play an important role. Morrey spaces were introduced by C. B.
Morrey in 1938 in connection with certain problems in elliptic partial differential equations
and calculus of variations (see [17]). Later, Morrey spaces found important applications to
Navier-Stokes ([16,24]) and Schrödinger ([18–20]) equations, elliptic problems with dis-
continuous coefficients ([3,11]), and potential theory ([1,2,4]). An exposition of the Morrey
spaces can be found in the book [13].

In the present work, we study some embeddings into the Dk-Morrey and modified Dk-
Morrey spaces. As applications we give boundedness of the fractionalDk-maximal operator
in the Dk-Morrey and modified Dk-Morrey spaces.
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The paper is organized as follows. In Section 2, we present some definitions and aux-
iliary results. In section 3, we give some embeddings into the Dk-Morrey and modified
Dk-Morrey spaces. In section 4, we prove the boundedness of the fractional Dk-maximal
operator Mk,β from the spaces Lp,λ(µk) to L∞(Rd) for p = d+2γk−λ

β and from the spaces

L̃p,λ(µk) to L∞(Rd) for d+2γk−λ
β ≤ p ≤ d+2γk

β .
Finally, we make some conventions on notation. ByA . B we mean thatA ≤ CB with

some positive constant C independent of appropriate quantities. If A . B and B . A, we
write A ≈ B and say that A and B are equivalent.

2 Preliminaries

We consider Rd with the Euclidean scalar product 〈 · , · 〉 and its associated norm ‖x‖ :=√
〈x, x〉 for any x ∈ Rd. For any v ∈ Rd \ {0} let σv be the reflection in the hyperplane

Hv ⊂ Rd orthogonal to v:

σv(x) := x−
(2〈x, v〉
‖v‖2

)
v, x ∈ Rd.

A finite set R ⊂ Rd \ {0} is called a root system, if σvR = R for all v ∈ R. We assume
that it is normalized by ‖v‖2 = 2 for all v ∈ R.

The finite groupG generated by the reflections
{
σv
}
v∈R is called the reflection group (or

the Coxeter-Weyl group) of the root system. Then, we fix a G-invariant function k : R→ C
called the multiplicity function of the root system and we consider the family of commuting
operators Dk,j defined for any f ∈ C1(Rd) and any x ∈ Rd by

Dk,jf(x) :=
∂

∂xj
f(x) +

∑
v∈R+

kv
f(x)− f(σv(x))

〈x, v〉
〈v, ej〉, 1 ≤ j ≤ d,

where C1(Rd) denotes the set of all functions f : Rd → R such that
{ ∂f
∂xj

}d
j=1

are contin-

uous on Rd,
{
ei
}d
i=1

are the standard unit vectors of Rd and R+ is a positive subsystem.
These operators, defined by Dunkl [9], are independent of the choice of the positive subsys-
tem R+ and are of fundamental importance in various areas of mathematics and mathemat-
ical physics.

Throughout this paper, we assume that kv ≥ 0 for all v ∈ R and we denote by hk the
weight function on Rd given by

hk(x) :=
∏
v∈R+

|〈x, v〉|kv , x ∈ Rd.

The function hk isG-invariant and homogeneous of degree γk, where γk :=
∑

v∈R+
kv.

Closely related to them is the so-called intertwining operator Vκ (the subscript means
that the operator depends on the parameters κi, except in the rank-one case where the sub-
script is then a single parameter). The intertwining operator Vκ is the unique linear isomor-
phism of ⊕n≥0Pn such that

V (Pn) = Pn, Vk(1) = 1, DiVk = Vk
∂

∂xi
for any i ∈ {1, ..., d}
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with Pn being the subspace of homogeneous polynomials of degree n in d variables. The
explicit formula of Vk is not known in general (see [22]). For the group G := Zd2 and
hk(x) :=

∏d
i=1 |xi|ki for all x ∈ Rd, it is an integral transform

Vkf(x) := bk

∫
[−1,1]d

f
(
x1t1, · · · , xdtd

) d∏
i=1

(1 + ti)
(
1− t2i

)ki−1
dt, x ∈ Rd. (2.1)

We denote by µk the measure on Rd given by dµk(x) := hk(x)dx, and we introduce the
Mehta-type constant ck, by

c−1k :=

∫
Rd
e−|x|

2/2dµk(x).

For y ∈ Rd, the initial problemDk,ju(·, y)(x) = yju(x, y), j = 1, . . . , d, with u(0, y) =
1 admits a unique analytic solution on Rd, which will be denoted by Ek(x, y) and called
Dunkl kernel (see e.g., [9,12]). This kernel has the Laplace-type representation [22]:

Ek(x, z) =

∫
Rd
e<y,z>dΓx(y), x ∈ Rd, z ∈ Cd, (2.2)

where < y, z >:=
∑d

i=1 yizi and Γx is a probability measure on Rd, such that

supp(Γx) ⊂ {y ∈ Rd : |y| ≤ |x|}.

This kernel possesses the following properties: for x, y ∈ Rd, we have

Ek(x, y) = Ek(y, x), Ek(x, 0) = 1, Ek(−ix, y) = Ek(ix, y), |Ek(±ix, y)| ≤ 1. (2.3)

Let B(x, r) := {y ∈ Rd : |x − y| < r} denote the ball in Rd that centered in x ∈ Rd
and having radius r > 0, Br = B(0, r). Then having

µk(Br) =

∫
Br

dµk(x) = bk r
d+2γk , (2.4)

where

bk =

(
ak

d+ 2γk

)
and ak :=

(∫
Sd−1

h2k(x) dσ(x)

)−1
,

Sd−1 is the unit sphere on Rd with the normalized surface measure dσ.
We denote by Lp(µk) ≡ Lp(Rd, dµk), 1 ≤ p ≤ ∞, the space of measurable functions

f on Rd, such that

‖f‖Lp(µk) :=
(∫

Rd
|f(x)|pdµk(x)

)1/p
<∞, 1 ≤ p <∞,

‖f‖L∞(Rd) := ess sup
x∈Rd

|f(x)| <∞.

For f ∈ L1(µk) the Dunkl transform is defined (see [10]) by

Fk(f)(x) :=
∫
Rd
Ek(−ix, y)f(y)dµk(x), x ∈ Rd.
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The Dunkl transform Fk extends uniquely to an isometric isomorphism of L2(µk) onto
itself. In particular,

‖Fkf‖L2(µk) = ‖f‖L2(µk). (2.5)

The Dunkl transform allows us to define a generalized translation operator on L2(µk)
by setting Fk(τxf)(y) = Ek(ix, y)Fk(f)(y), y ∈ Rd. It is the definition of Thangavelu
and Xu given in [25]. It plays the role of the ordinary translation τxf(·) = f(x + ·) in Rd,
since the Euclidean Fourier transform satisfies F(τxf)(y) = eixyF(f)(y).

Note that from (2.3) and (2.5), the definition makes sense and

‖τxf‖L2(µk) ≤ ‖f‖L2(µk).

Rösler [23] introduced the Dunkl translation operators for radial functions. If f are radial
functions, f(x) = F (|x|), then

τxf(y) =

∫
Rd
F (
√
|z|2 + |y|2 + 2 < y, z >) dΓx(y), x ∈ Rd,

where Γx is the representing measure given by (2.2).
This formula allows us to establish the following result, see [25,26].
For all 1 ≤ p ≤ 2 and for all x ∈ Rd, the Dunkl translation τx : Lrad

p (µk)→ Lp(µk) is
a bounded operator, and for f ∈ Lrad

p (µk),

‖τxf‖Lp(µk) ≤ ‖f‖Lp(µk). (2.6)

If G = Zd2, then for all 1 ≤ p ≤ ∞ and for all x ∈ Rd, the Dunkl translation τx :
Lp(µk)→ Lp(µk) is a bounded operator, and for f ∈ Lp(µk),

‖τxf‖Lp(µk) ≤ C0‖f‖Lp(µk). (2.7)

In the analysis of this generalized translation a particular role is played by the space (cf.
[22,23,25,27])

Ak(Rd) = {f ∈ L1(µk) : Fkf ∈ L1(µk)}.

The operator τx satisfies the following properties:

Proposition 2.1 Assume that f ∈ Ak(Rd) and g ∈ L1(µk), then

(i)

∫
Rd
τxf(y) g(y)dµk(y) =

∫
Rd
f(y) τ−xg(y)dµk(y);

(i) τxf(y) = τ−yf(−x).

The maximal operator Mk associated with the Dunkl operator on Rd is given by

Mkf(x) := sup
r>0

(
µk(Br)

)−1 ∫
Br

τx|f |(y) dµk(y), x ∈ Rd

and the maximal commutator Mb,k associated with the Dunkl operator on Rd and with a
locally integrable function b ∈ Lloc

1 (µk) is defined by (see [7,8,15])

Mb,kf(x) := sup
r>0

(
µk(Br)

)−1 ∫
Br

|b(x)− b(y)| τx|f |(y) dµk(y), x ∈ Rd.
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Theorem 2.1 [8] 1. If f ∈ L1(µk), then for every β > 0

µk {x ∈ R :Mkf(x) > β} ≤ C

β

∫
Rd
|f(x)| dµk(x),

where C > 0 is independent of f .
2. If f ∈ Lp(µk), 1 < p ≤ ∞, then Mkf ∈ Lp(µk) and

‖Mkf‖Lp(µk) ≤ Cp ‖f‖Lp(µk),

where Cp > 0 is independent of f .

Corollary 2.1 If f ∈ Lloc1 (µk), then

lim
r→0

1

µk(B(0, r))

∫
B(0,r)

∣∣τxf(y)− f(x)∣∣ dµk(y) = 0

for a. e. x ∈ Rd.

Corollary 2.2 If f ∈ Lloc1 (µk), then

lim
r→0

1

µkB(0, r)

∫
B(0,r)

τxf(y)dµk(y) = f(x)

for a. e. x ∈ Rd.

3 Some embeddings into the Dk-Morrey and modified Dk-Morrey spaces

Definition 3.1 [14] Let 1 ≤ p < ∞, 0 ≤ λ ≤ d + 2γk and [t]1 = min{1, t}, t > 0.
We denote by Lp,λ(µk) Morrey space (≡ Dk-Morrey space) and by L̃p,λ(µk) the modified
Morrey space (≡ modifiedDk-Morrey space), associated with the Dunkl operator as the set
of locally integrable functions f(x), x ∈ R, with the finite norms

‖f‖Lp,λ(µk) := sup
x∈Rd, t>0

(
t−λ

∫
Bt

τx|f |p(y) dµk(y)
)1/p

,

‖f‖
L̃p,λ(µk)

:= sup
x∈Rd, t>0

(
[t]−λ1

∫
Bt

τx|f |p(y) dµk(y)
)1/p

,

respectively.

If λ < 0 or λ > d+ 2γk, then L̃p,λ(µk) = Θ, where Θ is the set of all functions equivalent
to 0 on R.

Note that
Lp(µk) ⊂� L̃p,0(µk) = Lp,0(µk),

‖f‖
L̃p,0(µk)

= ‖f‖Lp,0(µk) ≤ C0‖f‖Lp(µk).

L̃p,λ(µk) ⊂� Lp(µk) and ‖f‖Lp(µk) ≤ ‖f‖L̃p,λ(µk), (3.1)

L̃p,λ(µk) ⊂� Lp,λ(µk) and ‖f‖Lp,λ(µk) ≤ ‖f‖L̃p,λ(µk). (3.2)
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Definition 3.2 [5] Let 1 ≤ p <∞, 0 ≤ λ ≤ d+ 2γk. We denote by WLp,λ(µk) weak Dk-
Morrey space and by WL̃p,λ(µk) the modified weak Dk-Morrey space as the set of locally
integrable functions f(x), x ∈ Rd with finite norms

‖f‖WLp,λ(µk) := sup
r>0

r sup
x∈Rd, t>0

(
t−λµk {y ∈ Bt : τx|f |(y) > r}

)1/p
,

‖f‖
WL̃p,λ(µk)

:= sup
r>0

r sup
x∈Rd, t>0

(
[t]−λ1 µk {y ∈ Bt : τx|f |(y) > r}

)1/p
,

respectively.

We note that

Lp,λ(µk) ⊂WLp,λ(µk) and ‖f‖WLp,λ(µk) ≤ ‖f‖Lp,λ(µk)

and

L̃p,λ(µk) ⊂WL̃p,λ(µk) and ‖f‖
WL̃p,λ(µk)

≤ ‖f‖
L̃p,λ(µk)

.

Lemma 3.1 Let 1 ≤ p <∞. Then

Lp,d+2γk(µk) = L∞(Rd),

and
‖f‖Lp,d+2γk

(µk) ≈ ‖f‖L∞(Rd).

Proof. Let f ∈ L∞(Rd). Then by (2.4) we have

L∞(Rd) ⊂� Lp,d+2γk(µk)

and
‖f‖Lp,d+2γk

(µk) . ‖f‖L∞(Rd).

Let f ∈ Lp,d+2γk(µk). By the Lebesgue’s Theorem we have (see section 2, Corolarry 2)

lim
t→0

µk(Bt)
−1
∫
Bt

τx|f(y)|p dµk(y) = |f(x)|p.

Then

|f(x)| =
(
lim
t→0

µk(Bt)
−1
∫
Bt

τx|f(y)|p dµk(y)
)1/p

. ‖f‖Lp,d+2γk
(µk).

Therefore f ∈ L∞(Rd) and

‖f‖L∞(Rd) . ‖f‖Lp,d+2γk
(µk).

Thus Lp,d+2γk(µk) = L∞(Rd) and ‖f‖Lp,d+2γk
(µk) ≈ ‖f‖L∞(Rd).



F.A. Muslumova 141

Lemma 3.2 Let 1 ≤ p <∞, 0 ≤ λ ≤ d+ 2γk. Then

L̃p,λ(µk) = Lp,λ(µk) ∩ Lp(µk)

and

‖f‖
L̃p,λ(µk)

= max
{
‖f‖Lp,λ(µk), ‖f‖Lp(µk)

}
.

Proof. Let f ∈ L̃p,λ(µk). Then by (3.1) and (3.2) we have

L̃p,λ(µk) ⊂� Lp,λ(µk) ∩ Lp(µk)

and
max

{
‖f‖Lp,λ(µk), ‖f‖Lp(µk)

}
≤ ‖f‖

L̃p,λ(µk)
.

Let f ∈ Lp,λ(µk) ∩ Lp(µk). Then by Proposition 2.1 we have

‖f‖
L̃p,λ(µk)

= sup
x∈Rd,t>0

(
[t]−λ1

∫
Bt

τx|f |p(y) dµk(y)
)1/p

= max

{
sup

x∈Rd,0<t≤1

(
t−λ

∫
Bt

τx|f |p(y) dµk(y)
)1/p

,

sup
x∈Rd,t>1

(∫
Bt

τx|f |p(y) dµk(y)
)1/p

}
≤ max

{
‖f‖Lp,λ(µk), C0‖f‖Lp(µk)

}
.

Therefore, f ∈ L̃p,λ(µk) and the embedding Lp,λ(µk) ∩ Lp(µk) ⊂� L̃p,λ(µk) is valid.
Thus L̃p,λ(µk) = Lp,λ(µk) ∩ Lp(µk) and

‖f‖
L̃p,λ(µk)

= max
{
‖f‖Lp,λ(µk), ‖f‖Lp(µk)

}
.

From Lemmas 3.1 and 3.2 for 1 ≤ p <∞ we have

L̃p,d+2γk(µk) = L∞(µk) ∩ Lp(µk). (3.3)

Lemma 3.3 Let G = Zd2 and 0 ≤ λ ≤ d+ 2γk. Then

L d+2γk
d+2γk−λ

(µk) ⊂� L1,λ(µk) and ‖f‖L1,λ(µk) ≤ C0b
λ

d+2γk
k ‖f‖L d+2γk

d+2γk−λ
(µk).

Proof. The embedding is a consequence of Hölder’s inequality and (2.7). Indeed,

‖f‖L1,λ(µk) = sup
x∈Rd,t>0

t−λ
∫
Bt

τx|f |(y) dµk(y)

≤ sup
x∈Rd,t>0

t−λ (µkBt)
λ

d+2γk

(∫
Bt

(
τx|f |(y)

) d+2γk
d+2γk−λ dµk(y)

) d+2γk−λ
d+2γk

≤ C0b
λ

d+2γk
k ‖f‖L d+2γk

d+2γk−λ
(µk).

On the Dk-Morrey spaces the following embedding is valid.
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Lemma 3.4 LetG = Zd2, 0 ≤ λ < d+2γk and 0 ≤ β < d+2γk−λ. Then for p = d+2γk−λ
β

Lp,λ(µk) ⊂ L1,d+2γk−β(µk) and ‖f‖L1,d+2γk−β(µk)
≤ b

1/p′

k ‖f‖Lp,λ(µk),

where 1/p+ 1/p′ = 1.
Proof. The embedding is a consequence of Hölder’s inequality and (2.7). Indeed,

‖f‖L1,d+2γk−β(µk)
= sup

x∈Rd,t>0

tβ−d−2γk
∫
Bt

τx|f |(y) dµk(y)

≤ b
1
p′
k sup

x∈Rd,t>0

t
β− d+2γk

p

(∫
Bt

(
τx|f |(y)

)p
dµk(y)

) 1
p

≤ b
1
p′
k ‖f‖Lp,λ(µk).

On the modified Dk-Morrey spaces the following embedding is valid.
Lemma 3.5 Let G = Zd2, 0 ≤ λ < d + 2γk and 0 ≤ β < d + 2γk − λ. Then for
d+2γk−λ

β ≤ p ≤ d+2γk
β

L̃p,λ(µk) ⊂� L̃1,d+2γk−β(µk) and ‖f‖
L̃1,d+2γk−β(µk)

≤ C0b
λ

d+2γk
k ‖f‖

L̃p,λ(µk)
.

Proof. Let 0 < λ < d + 2γk, 0 < β < d + 2γk − λ, f ∈ L̃p,λ(µk) and d+2γk−λ
β ≤ p ≤

d+2γk
β . By the Hölder’s inequality we have

‖f‖
L̃1,d+2γk−β(µk)

= sup
x∈Rd, t>0

[t]β−d−2γk1

∫
Bt

τx|f |(y) dµk(y)

. sup
x∈Rd, t>0

(
[t]1 t

−1)−(d+2γk)/p
′
[t]
β− d+2γk−λ

p

1

×
(
[t]−λ1

∫
Bt

τx|f |p(y) dµk(y)
)1/p

≈ sup
x∈Rd, t>0

(
[t]1 t

−1)d+2γk−β ([t]1 t−1)−(d+2γk)/p
′
[t]
β− d+2γk−λ

p

1

×
(
[t]−λ1

∫
Bt

τx|f |p(y) dµk(y)
)1/p

. ‖f‖
L̃p,λ(µk)

sup
t>0

(
[t]1 t

−1) d+2γk
p
−β

[t]
β− d+2γk−λ

p

1 .

Note that

sup
t>0

(
[t]1 t

−1) d+2γk
p
−β

[t]
β− d+2γk−λ

p

1 = max{ sup
0<t≤1

t
β− d+2γk−λ

p , sup
t>1

t
β− d+2γk

p } <∞

if and only if
d+ 2γk − λ

β
≤ p ≤ d+ 2γk

β
.

Therefore f ∈ L̃1,d+2γk−β(µk) and

‖f‖
L̃1,d+2γk−β(µk)

. ‖f‖
L̃p,λ(µk)

.

Remark 3.1 Note that, in the case of d = 1, Lemmas 3.1, 3.2, 3.3, 3.4, 3.5 were proved in
[6].
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4 Some applications

In this section, using the results of section 3, we get the boundedness of the fractional Dk-
maximal operator in the Dk-Morrey and modified Dk-Morrey spaces.

For 0 ≤ β < d+ 2γk we define the fractional maximal functions

Mk,βf(x) := sup
t>0

µk
(
Bt
)−1+ β

d+2γk

∫
Bt

τx|f |(y) dµk(y)

and
Mp,k,βf(x) := (Mk,β|f |p)1/p (x).

In the case β = 0, we denote Mp,k,0f by Mp,kf . Note that M1,kf =Mkf .

Lemma 4.1 Let 1 ≤ p <∞, 0 ≤ β < d+ 2γk and f ∈ Lp,d+2γk−β(µk). Then Mp,k,βf ∈
L∞(Rd) and the following relation

‖Mp,k,βf‖L∞(Rd) = b
( β
d+2γk

−1) 1
p

k ‖f‖Lp,d+2γk−β(µk)

is valid.

Proof.

‖Mp,k,βf‖L∞(Rd) = b
( β
d+2γk

−1) 1
p

k sup
x∈Rd,t>0

(
tβ−d−2γk

∫
Bt

τx|f |p(y) dµk(y)
)1/p

= b
( β
d+2γk

−1) 1
p

k ‖f‖Lp,d+2γk−β(µk)
.

Taking β = 0 in Lemma 4.1 and using Lemma 3.1, we get for Mp,kf the following result.

Corollary 4.1 Let 1 ≤ p <∞. Then

‖Mp,kf‖L∞(Rd) ≈ ‖f‖L∞(Rd).

Lemma 4.2 Let 1 ≤ p <∞, 0 ≤ β < d+ 2γk and f ∈ L̃p,d+2γk−β(µk). Then Mp,k,βf ∈
L∞(Rd) and the following equality

‖Mp,k,βf‖L∞(Rd) = b
( β
d+2γk

−1) 1
p

k ‖f‖
L̃p,d+2γk−β(µk)

is valid.

Corollary 4.2 Let G = Zd2, 0 ≤ λ < d+2γk and 0 ≤ β < d+2γk−λ. Then the operator
Mk,β is bounded from Lp,λ(µk) to L∞(Rd) for p = d+2γk−λ

β . Moreover

‖Mk,βf‖L∞(Rd) ≤ b
β

d+2γk
− 1
p

k ‖f‖Lp,λ(µk).

Corollary 4.3 Let G = Zd2, 1 ≤ p <∞, 0 ≤ λ < d+2γk, 0 ≤ β < d+2γk−λ. Then the
operator Mk,β is bounded from L̃p,λ(µk) to L∞(Rd) for d+2γk−λ

β ≤ p ≤ d+2γk
β . Moreover

‖Mk,βf‖L∞(Rd) ≤ b
β

d+2γk
− 1
p

k ‖f‖
L̃p,λ(µk)

.

Remark 4.1 Note that, in the case of d = 1, Lemmas 4.1 and 4.2 were proved in [6].
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