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Analytical expressions for curved surface area of revolution and
arc-length of an ellipse: A hypergeometric mechanism
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Abstract. In this paper analytical expressions of curved surface area of revolution of an arc between two
arbitrary points lying on an ellipse about major and minor axes and the arc-length between two arbitrary
points lying on an ellipse are obtained in terms of Gauss’ hypergeometric function, Appell’s function of
first kind and Kampé de Fériet’s double hypergeometric function. Moreover, we have also discussed the
perimeter of orbit of some known planets and other special cases.
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1 Introduction and Preliminaries

For the sake of conciseness of the paper we have used the following notations
N := {1, 2, 3, . . . }; N0 := N ∪ {0} = {0, 1, 2, 3, . . . }; Z := {0,±1,±2,±3, . . . };
Z− := {−1,−2,−3, . . . }; Z−0 := Z− ∪ {0} = {0,−1,−2,−3, . . . }; and Z := Z−0 ∪ N,
where the symbols N and Z are the set of natural numbers and set of integers respectively,
the symbols R and C are the set of real numbers and set of complex numbers respectively.
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The Pochhammer symbol (α)p, (α, p ∈ C), is defined by

(α)p :=
Γ (α+ p)

Γ (α)
=



1, (p = 0;α ∈ C \ {0})
α(α+ 1) · · · (α+ n− 1), (p = n ∈ N;α ∈ C)
(−1)nk!
(k−n)! , (α = −k; p = n;n, k ∈ N0; 0 ≤ n ≤ k)
0, (α = −k; p = n;n, k ∈ N0;n > k)
(−1)n
(1−α)n , (p = −n;n ∈ N;α ∈ C \ Z).

(1.1)
It being understood conventionally that (0)0 = 1, and assumed tacitly that the Gamma quo-
tient exists.

If a, p ∈ C and r = 0, 1, 2, 3, . . . , then

a+ pr =
a
(a+p

p

)
r(

a
p

)
r

, such that each Pochhammer symbol is well defined. (1.2)

(α)m+n = (α)m(α+m)n = (α)n(α+ n)m, (1.3)
Γ (z + 1) = zΓ (z). (1.4)

The generalized hypergeometric function of one variable pFq [2, p.8] is defined by

pFq

[
α1, α2, . . . , αp;

β1, β2, . . . , βq;
z

]
= pFq

[
(αp);

(βq);
z

]
=
∞∑
n=0

p∏
j=1

(αj)n

q∏
j=1

(βj)n

zn

n!

= 1 +
∞∑
n=1

p∏
j=1

(αj)n

q∏
j=1

(βj)n

zn

n!
, (1.5)

where, (αp) is a set of parameters α1, α2, · · · , αp with similar interpretation for (βq). By
convention the empty product is treated as unity and empty sum is treated as zero, p, q ∈ N0.
Note: When the value of any one numerator parameter or argument or both are equal to zero
then value of such pFq series will be unity.

Convergence conditions of pFq
1 When p ≤ q then |z| <∞,
2 When p = q + 1 then |z| < 1,
3 When p = q + 1 and |z| = 1 then <(ω) > 0,
4 When p = q + 1, |z| = 1 and z 6= 1 then − 1 < <(ω) ≤ 0,

where, ω :=
q∑
j=1

βj−
p∑
j=1

αj , andαj ∈ C(j = 1, 2, 3, . . . , p);βj ∈ C\Z−0 (j = 1, 2, 3, . . . , q).

The Binomial expansion in terms of hypergeometric function can be written as

(1− z)−a = 1F0

[
a;

−;
z

]
=
∞∑
n=0

(a)nz
n

n!
, (1.6)

where a ∈ C and |z| < 1.
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Kampé de Fériet’s double hypergeometric function
(
[1, p. 150, eq 29], [3, p. 112], see

also [5]
)

Fp:q; k`:m;n

[
(ap) : (bq); (ck);

x, y
(α`) : (βm); (γn);

]
=

∞∑
r=0

∞∑
s=0

p∏
j=1

(aj)r+s
q∏
j=1

(bj)r
k∏
j=1

(cj)s

∏̀
j=1

(αj)r+s
m∏
j=1

(βj)r
n∏
j=1

(γj)s

xr

r!

ys

s!
, (1.7)

where denominator parameters (α`), (βm), (γn) are neither zero nor negative integers.

Convergence conditions of Fp:q; k`:m;n

(
[10, pp. 153-157, sections 3 & 4] see also [12, p.

424,eq. 27]
)

1 When p+ q < `+m+ 1, p+ k < `+ n+ 1 then |x| <∞ and |y| <∞,
2 When p+ q = `+m+ 1, p+ k = `+ n+ 1, p > ` then |x|

1
p−` + |y|

1
p−` < 1,

3 When p+ q = `+m+ 1, p+ k = `+ n+ 1, p ≤ ` then max{|x|, |y|} < 1.

Appell’s function of first kind F1 (Special case of eq. 1.7)

F1

[
a; b, c; d;x, y

]
=

∞∑
m,r=0

(a)m+r(b)m(c)r
(d)m+r

xmyr

m!r!
, (1.8)

where, max{|x|, |y|} < 1 and d ∈ C \ Z−0 .

The following results will be required in our present investigation.

Some reduction formulas
The following reduction formula is available in all textbooks of integral calculus∫

cosn x dx = C +
sinx cosn−1 x

n
+

(n− 1)

n

∫
cosn−2 x dx, (1.9)

where C is the constant of the integration and n is positive integer.
From reduction formula (1.9) we can write∫

cos2r+1 t dt = C +
sin t cos2r t

2r + 1
+

2r

2r + 1

∫
cos2r−1 t dt; r ≥ 0, (1.10)∫

cos2r t dt = C +
sin t cos2r−1 t

2r
+

(2r − 1)

2r

∫
cos2r−2 t dt; r ≥ 1. (1.11)

By the successive applications of reduction formula (1.9) in the right hand side of eqs. (1.10)
and (1.11) we can find integrals in finite series form containing Pochhammer symbol∫

cos2r+1 t dt = C +
sin t

(
1
)
r(

3
2

)
r

( r∑
m=0

(
1
2

)
m
cos2m t

m!

)
; r ≥ 0, (1.12)

∫
cos2r t dt = C +

t
(
1
2

)
r

r!
+

sin t cos t
(
1
2

)
r

r!

( r−1∑
m=0

m! cos2m t(
3
2

)
m

)
; r ≥ 1. (1.13)

Integrals (1.12) and (1.13) can be verified with the reduction formulas (1.10) and (1.11) by
taking r = 1, 2, 3, 4, . . .
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Double series identity [11, p. 100,eq 2.1(2)]
∞∑
r=0

r∑
m=0

Φ(r,m) =

∞∑
r=0

∞∑
m=0

Φ(r +m,m), (1.14)

∞∑
r=0

r−1∑
m=0

Φ(r,m) =

∞∑
r=0

∞∑
m=0

Φ(r +m+ 1,m), (1.15)

provided that series involved are absolutely convergent.

Note: The empty sum
−1∑
m=0

Φ(0,m) is treated as zero.

Integral representation of Gauss’ hypergeometric function [4, p.115, eq. 2.12(7)]

2F1

[
a, b;

c;
z

]
=

2Γ (c)

Γ (b)Γ (c− b)

π
2∫

0

sin2b−1 t cos2c−2b−1 t

(1− z sin2 t)a
dt, (1.16)

where, <(c) > <(b) > 0 and |z| < 1.

Put c = 1, b = 1
2 , a = −1

2 and z = k2 in eq. (1.16) we get complete elliptic integral
of second kind [9, p.71, Q. 20]

π
2∫

0

√
(1− k2 sin2 θ)dθ =

π
2∫

0

√
(1− k2 cos2 θ)dθ = π

2
2F1

[
−1

2 ,
1
2 ;

1;
k2
]
, (1.17)

where |k2| < 1.
Some hypergeometric representations(see table of Prudnikov et al.[7])

[7, p.468, entry 3]

2F1

[
−1

2 ,
1
2 ;

3
2 ;

z

]
=

1

2

[√
(1− z) + sin−1

√
z√

z

]
, (1.18)

[7, p.469, entry 10]

2F1

[
−1

2 , 1;
3
2 ;

z

]
=

1

2

[
1 + (1− z)tanh

−1√z√
z

]
, (1.19)

[7, p.473, entry 76]

2F1

[
1
2 ,

1
2 ;

3
2 ;

z

]
=

sin−1
√
z√

z
, (1.20)

[7, p.473, entry 83]

2F1

[
1
2 , 1;
3
2 ;

z2

]
=

tanh−1(z)

z
=

1

2z
`n
(1 + z

1− z

)
, |z| < 1. (1.21)

In this paper any values of parameters and arguments leading to the results which do not
make sense are tacitly excluded.
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2 Main formulas for curved surface area of revolution and arc-length of an ellipse

The exact expressions of the curved surface area ”C.S.A.” of revolution of an arc ÂB be-
tween two arbitrary points A(a cos t1, b sin t1) and B(a cos t2, b sin t2) lying on an ellipse
x2

a2
+ y2

b2
= 1 about the y-axis (minor-axis) and x-axis(major axis) and the length of that arc

ÂB are obtained in terms of Gauss’ hypergeometric function 2F1, Appell’s function F1 and
Kampé de Fériet’s double hypergeometric function F 2:2;1

2:1;0

Curved surface area of oblate spheroid obtained by revolving an arc of the ellipse
about minor axis

C.S.A. = 2a2π
{
sin (t2) F1

[
− 1

2
;
1

2
, 1;

3

2
; e2 cos2 t2, e

2
]

− sin (t1) F1

[
− 1

2
;
1

2
, 1;

3

2
; e2 cos2 t1, e

2
]}
. (2.1)

Curved surface area of prolate spheroid obtained by revolving an arc of the ellipse
about major axis

C.S.A. = 2abπ

{
cos (t1) 2F1

[
−1

2 ,
1
2 ;

3
2 ;

e2 cos2 t1

]
− cos (t2) 2F1

[
−1

2 ,
1
2 ;

3
2 ;

e2 cos2 t2

]}
.(2.2)

Arc-length of an arc AB of the ellipse

ÂB = at2 2F1

[
−1

2 ,
1
2 ;

1;
e2
]
− ae2 sin t2 cos t2

4
F2:2;1
2:1;0

1
2 ,

3
2 : 1, 1; 1;

e2 cos2 t2, e
2

2, 2 : 3
2 ; −;

−
− at1 2F1

[
−1

2 ,
1
2 ;

1;
e2
]
+
ae2 sin t1 cos t1

4
F2:2;1
2:1;0

1
2 ,

3
2 : 1, 1; 1;

e2 cos2 t1, e
2

2, 2 : 3
2 ; −;

 , (2.3)

where a is the length of semi-major axis and e is the eccentricity of the ellipse. Here, all
three series F1, 2F1 and F 2:2;1

2:1;0 are convergent since e < 1 and e cos t < 1. Therefore, our
expressions given in eqs. (2.1), (2.2) and (2.3) are convergent and are believed to be new.

Derivation of formula (2.1)
Consider the equation of ellipse

x2

a2
+
y2

b2
= 1 (Cartesian form), (2.4)

when, a > b, then b2 = a2(1 − e2) or a2−b2
a2

= e2 < 1, a and b are semi-major and semi-
minor axes of the ellipse respectively and e(< 1) is called the eccentricity of ellipse.

Its parametric form is given by

x = a cos t, y = b sin t. (2.5)

Since given ellipse (2.4) is symmetrical about x − axis and y − axis both, without any
loss of generality, we shall find the arc-length between two arbitrary points lying in positive
quadrant only(i.e. 0 ≤ t1 < t2 ≤ π

2 ).
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𝐴(𝑎 cos 𝑡1 , 𝑏 sin 𝑡1) 

(𝑎, 0) (0,0) (−𝑎, 0) 𝑥 

𝑦 

𝑦′ 

𝑥′ 

(0, −𝑏) 

(0, 𝑏) 𝐵(𝑎 cos 𝑡2 , 𝑏 sin 𝑡2) 

Fig. 1 Ellipse x2

a2
+ y2

b2
= 1

The curved surface area of revolution of an arc about the y − axis between two arbitrary
points A and B lying on any parametric curve is given by

S = 2π

t2∫
t1

x

√{(dx
dt

)2
+
(dy
dt

)2}
dt. (2.6)

Put dxdt = −a sin t,
dy
dt = b cos t in eq. (2.6) and integrating w. r. to t over the interval [t1, t2]

s.t. 0 ≤ t1 < t2 ≤ π
2 .

The curved surface area of Oblate spheroid generated by the revolution of an arc about
the y−axis (i.e. minor axis) between two arbitrary pointsA andB lying on ellipse is given
by

C.S.A. = 2aπ

t2∫
t1

cos t
√(

a2 sin2 t+ b2 cos2 t
)
dt = 2aπ

t2∫
t1

cos t
√{

a2 − (a2 − b2) cos2 t
}
dt,

= 2a2π

t2∫
t1

cos t

√{
1−

(a2 − b2
a2

)
cos2 t

}
dt = 2a2π

t2∫
t1

cos t

√(
1− e2 cos2 t

)
dt,

= 2a2π

t2∫
t1

(cos t) 1F0

[
−1

2 ;

−;
e2 cos2 t

]
dt; since e2 cos2 t < 1, ∀ t,

= 2a2π

∞∑
r=0

e2r
(
− 1

2

)
r

r!

t2∫
t1

cos2r+1 t dt. (2.7)

Using integral (1.12) in eq. (2.7) we get,

S = 2a2π

∞∑
r=0

e2r
(
− 1

2

)
r

r!

{
sin t

(
1
)
r(

3
2

)
r

r∑
m=0

(
1
2

)
m
cos2m t

m!

}t2
t1

= 2a2π

{
(sin t)

∞∑
r=0

r∑
m=0

e2r
(
− 1

2

)
r(

3
2

)
r

(
1
2

)
m
cos2m t

m!

}t2
t1

(2.8)
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Now using double series identity (1.14) in eq. (2.8), we get

S = 2a2π

{
(sin t)

∞∑
r=0

∞∑
m=0

e2(r+m) cos2m t
(
− 1

2

)
r+m

(
1
2

)
m

m!
(
3
2

)
m+r

}t2
t1

(2.9)

or

C.S.A. = 2a2π

{
(sin t) F1

[
− 1

2
;
1

2
, 1;

3

2
; e2 cos2 t, e2

]}t2
t1

. (2.10)

After simplification we get our required result (2.1). Simillarly, on using eqs. (1.13) and
(1.15) we have easily derived the expressions given in eqs. (2.2) and (2.3).

3 Case Study

Case 1. On putting t1 = 0 and t2 = π
2 in eq. (2.1) we get curved surface area of hemi-oblate

spheroid in the form:

C.S.A. = 2a2π F1

[
− 1

2
;
1

2
, 1;

3

2
; 0, e2

]
,

= 2a2π 2F1

[
−1

2 , 1;
3
2 ;

e2

]
,

= a2π
{
1 + (1− e2)tanh

−1(e)

e

}
,

= a2π
{
1 +

(1− e2
2e

)
`n
(1 + e

1− e

)}
. (3.1)

Therefore, total curved surface area of oblate spheroid is given by

2a2π
{
1 +

(1− e2
2e

)
`n
(1 + e

1− e

)}
. (3.2)

When e → 0 ellipse tends to circle, therefore total curved surface area of resulting
sphere is 4πa2, where a is the radius of the sphere (on applying L’ Hôpital’s rule for 0

0
form in eq. (3.2)).

Case 2. On putting t1 = 0 and t2 = π
2 in eq. (2.2) we get curved surface area of hemi-

prolate spheroid in the form:

C.S.A. = 2abπ 2F1

[
−1

2 ,
1
2 ;

3
2 ;

e2

]
= abπ

{√
(1− e2) + sin−1(e)

e

}
. (3.3)

Therefore, total curved surface area of prolate spheroid is given by

2abπ
{√

(1− e2) + sin−1(e)

e

}
. (3.4)

When e → 0( or b → a) ellipse tends to circle, therefore total curved surface area of
resulting sphere is 4πa2, where a is the radius of the sphere (on applying L’ Hôpital’s
rule for 0

0 form in eq. (3.4)).
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Case 3. To obtain the perimeter of the ellipse we shall put t1 = 0 and t2 = π
2 in eq. (2.3)

and multiply by 4, we get the perimeter (p)

p = 2aπ 2F1

[
−1

2 ,
1
2 ;

1;
e2
]
, (3.5)

where a is the semi-major axis and e is the eccentricity of the ellipse.

According to Kepler’s first law: “Each planet’s path around the Sun is an ellipse with the
Sun at one focus of the ellipse [6, p. 56]”. So the results of this paper can also be used
in astronomy.

The length of semi-major axis (a) and orbital eccentricity (e) of each planet is taken from
NASA website then perimeter (p) of each orbit is calculated by our result (3.5) which is
shown in last column of table 1.

S. No. Name of Planet Length of Semi-Major Axis (a) Orbital Eccentricity (e) Perimeter of Orbit (p)
(in K.M.) (in K.M.)

1 Mercury 5.791× 107 0.2056 3.59983× 108

2 Venus 1.0821× 108 0.0068 6.798956× 108

3 Earth 1.496× 108 0.0167 9.39899× 108

4 Mars 2.2792× 108 0.0934 1.428935× 109

5 Jupiter 7.7857× 108 0.0484 4.889033× 109

6 Saturn 1.43353× 109 0.0542 9.000516× 109

7 Uranus 2.87246× 109 0.0472 1.803814× 1010

8 Neptune 4.49506× 109 0.0086 2.824277× 1010

Table 1 Table for perimeter of each orbit

If b = a, then eccentricity e will be zero and the equation of ellipse x2

a2
+ y2

b2
= 1 reduces to

the equation of circle x2+y2 = a2 therefore, the perimeter p given by eq. (3.5) becomes
p = 2aπ which is the circumference of the circle, since 2F1

[
− 1

2
, 1

2
;

1;
0
]
= 1.

Remark

We have also derived some formulas [8] for arc-length between two arbitrary points lying
on hyperbola x2

a2
− y2

b2
= 1 and rectangular hyperbola xy = c2.

Conclusion

We conclude our present investigation by observing that solutions of such problems can be
obtained in an analogous manner.
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