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Abstract. This paper presents a new exponentially fitted three point scheme for solving singularly per-
turbed delay problems with boundary layer at left (or right) end of the domain. Scheme is derived using
the exact and approximate rule of integration with finite difference approximations of first derivative. A
fitting factor is introduced in the scheme using the concept of singular perturbation. Thomas algorithm is
used to solve the resulting tri-diagonal system. Convergence analysis of the proposed method is given. Ap-
plicability of the method is shown by implementing it on several linear and nonlinear example problems
with the various values of the delay parameter δ and the perturbation parameter ε. Numerical results in
terms of maximum absolute errors are presented to illustrate the efficiency of the method. It is observed
that the method is able to approximates the solution very well.
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1 Introduction

It is well known that the delay differential equations arise very frequently in the mathe-
matical modeling of various practical phenomena, such as hydrodynamics of liquid helium
[9], thermo-elasticity [6], first exit time problem in the modeling of the activation function
of neuronal variability [24], second-sound theory [10], reaction-diffusion equations [3], dif-
fusion in polymers [27], a variety of model for physiological processes or diseases [28]
etc. A singularly perturbed delay differential equation(SPDDE) is a differential equation in
which highest derivative is multiplied with a small parameter and which contains at least
one delay or advance term. In recent papers [14-18] the terms negative or left shift and
positive or right shift have been used for delay and advance respectively. An useful dis-
cussion on such small delay problems can be found throughout the literature on epidemics
and population where these small shifts play an important role in the modeling of various
real life problems[21]. A good number of articles [12, 13, 34] and high level monographs
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[2,4,5,21,8,11,29,31,32] are in literature which describe the various numerical and analyt-
ical methods for the solution of singular perturbation problems. Lange and Miura [22-26]
suggested some asymptotic approaches in their study of a class of boundary value prob-
lems for linear second order differential-difference equations in which the highest order
derivatives is multiplied by a small positive parameter. Kadalbajoo and Sharma [14,16,19]
considered numerical techniques by/using finite difference schemes for solving singularly
perturbed delay differential-difference equations. In [7], an improved reproducing kernel
method is applied for solving singularly perturbed differential-difference equation. Kadal-
bajoo and Kumar [17] presented B-Spline collocation method with fitted mesh technique
to solve singularly perturbed differential-difference equation on uniform mesh. Kadalba-
joo and Ramesh [15] proposed hybrid and midpoint upwind schemes on shishkin mesh,
for capturing the behaviour of the solutions, inside and outside of the layer region respec-
tively. Patidar and Sharma [33] presented non-standard finite difference methods to solve
singularly perturbed differential-difference equations with small delay. Ramos [35] used full
exponential method and partial exponential method for solving a singularly perturbed delay
differential equations with small delay. In this paper we have suggested an exponentially
fitted numerical integration scheme based on uniform mesh for solving singularly perturbed
delay differential equations having delay in convection term which has the boundary layer
at left and right end of the domain respectively. An exact and approximate rule of integra-
tion with finite difference approximations of first derivatives is used to obtain a three term
recurrence relationship.

The paper is organized as follows: Statement of the problem is given in Section: 2. A
brief discussion on determination of the fitting factor with left and right end boundary layer
problems are presented in the subsections 2.1 and 2.2 respectively. In Section: 3, Conver-
gence analysis of the proposed method is given. Numerical illustrations with the results in
terms of maximum absolute errors are presented in tables in Section: 4. Conclusions and
Discussions are presented in the last Section: 5. Paper ends with the references.

2 Statement of the continuous problem:

We consider the following second order singularly perturbed delay differential equations
with delay in the convection term:

εy′′(t) + p(t)y′(t− δ) + q(t)y(t) = r(t); 0 ≤ t ≤ 1 (2.1)

subject to the interval and boundary conditions:

y(t) = η(t), −δ ≤ t ≤ 0, and y(1) = γ (2.2)

where ε (0 < ε << 1) is a perturbation parameter and γ are known finite constant and
δ = o(ε) is the small delay. Also p(t), q(t), r(t) and η(t) are sufficiently smooth functions.
For a function y(x) be a smooth solution to the problem (1)-(2), it must satisfy the boundary
value problem (1)-(2), be continuous on [0, 1] and be continuously differentiable on (0, 1).

For δ = 0, the problem becomes an ordinary singularly perturbed problems. Depending
on the nature of the coefficient functions, such problems exhibits boundary and/or interior
layer behavior when singular perturbation parameter ε tends to zero. The solution of the
boundary value problem (1) with (2) exhibits layer behavior at the left or right end points
of the interval depending on whether p(t) > 0 or p(t) < 0 on [0, 1] .

In this paper, both the cases, i.e., when the solution exhibits boundary layer behavior on
the left side and on the right side are studied.

We assume that p(t) ≥ K > 0 and q(t) < 0 for∀t ∈ [0, 1]. Under these assumptions the
above problem (1)with (2) has unique solution which exhibits a boundary layer at t = 0.
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Since, here we assume that the delay parameter is smaller than the perturbation parameter
(i.e., δ < ε), approximating y′(t− δ) by the linear interpolation, we have

y′(t− δ) ≈ y′(t)− δy′′(t) (2.3)

Substituting (3) in to equation (1), we get

Lτy(t) = (ε− δp(t))y′′(t) + p(t)y′(t) + q(t)y(t) = r(t); 0 ≤ t ≤ 1
Lτy(t) = µy′′(t) + p(t)y′(t) + q(t)y(t) = r(t); 0 ≤ t ≤ 1
Lτy(t) = εy′′(t) + a(t)y′(t) + b(t)y(t) = f(t); 0 ≤ t ≤ 1

(2.4)

with the boundary condition y(0) = η(0) = η0 (say), y(1) = γ (2.5)

where a(t) = εp(t)
ε−δp(t) , b(t) = εq(t)

ε−δp(t) , f(t) = εr(t)
ε−δp(t)

Here we assume that µ = (ε−δp(t)) > 0, then we have a(t) ≥ a∗ > 0 and b(t) ≥ −b∗ < 0
for some positive constants a∗, b∗.
For appropriate choices of δ such that 0 ≤ µ = ε− δζ << 1, where ζ = min

0≤t≤1
p (t) .

The operatorLτ = ε d
2

dt2
+a(t) ddt+b(t)I in (4) satisfies the following minimum principle.

Lemma 2.1 Suppose ψ(t) is a smooth function satisfying ψ(0) ≥ 0, ψ(1) ≥ 0. Then
Lτψ(t) ≤ 0, ∀t ∈ (0, 1) implies ψ(t) ≥ 0, ∀t ∈ [0, 1].

Proof. Let k ∈ [0, 1] be such that ψ(k) < 0 andψ(k) = min
x∈[0,1]

ψ(x). Clearly k /∈ {0, 1} ,

therefore ψ′(k) = 0 andψ′′(k) ≥ 0. Therefore, we obtain
Lτψ(k) = (ε− δp(x))ψ′′(k) + p(k)ψ′(k) + p(k)ψ(k) > 0,

or, Lτψ(k) = εψ′′(k) + a(k)ψ′(k) + b(k)ψ(k) > 0,
which is a contradictory to our assumption. Hence it is proved that ψ(k) ≥ 0 and thus
ψ(t) ≥ 0 ∀t ∈ [0, 1].

Lemma 2.2 Let y(t) be the solution of the problem (4)and (5) then we have

‖y‖ ≤ θ−1 ‖f‖+ max(|η0|, |γ|). (2.6)

where ‖ · ‖ is the L∞ norm given by ‖y‖ = max
0≤t≤1

|y(t)|.

Proof. Let ψ±(t) be two barrier functions define by
ψ±(t) = θ−1 ‖f‖+ max(|η0|, |γ|)± y(t)

Then this implies,
ψ±(0) = θ−1 ‖f‖+ max(|η0|, |γ|)± y(0)

= θ−1 ‖f‖+ max(|η0|, |γ|)± η0 since y(0) = η(0) = η0
≥ 0

ψ±(1) = θ−1 ‖f‖+ max(|η0|, |γ|)± y(1)
= θ−1 ‖f‖+ max(|η0|, |γ|)± γ since y(1) = γ

⇒ Lτψ
±(t) = ε(ψ±(t))

′′
+ a(t)(ψ±(t))

′
+ b(t)ψ±(t)

= b(t)
[
θ−1 ‖f‖+ max(|η0|, |γ|)

]
± Lτy(t)

= b(t)
[
θ−1 ‖f‖+ max(|η0|, |γ|)

]
± f(t) using (2.4)

As b(t) ≤ −θ < 0 implies b(t)θ−1 ≤ −1 and since ‖f‖ ≥ f(t), we have

⇒ Lτψ
±(t) ≤ (−‖f‖ ± f(t)) + b(t) max(|η0|, |γ|) ≤ 0, ∀t ∈ [0, 1]. (2.7)

Thus by the minimum principle we obtain, ψ± ≥ 0∀t ∈ [0, 1]. Now in order to compute
the error in our numerical integration approximations we shall require a bounded for the
derivative of the solution y(t) that is valid for all τ ∈ (0, 1].
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By using Lemma 1, we obtain the required estimate.

Theorem 2.1 Let y(t) be the solution of the Problem (4) and (5), then∥∥y(m)
∥∥ ≤ C(ε− δK)−m form = 1, 2, 3. where C is a positive constant

independent of ε.

Proof. Let t ∈ (0, 1) and let Vt = (c, c+β) be a neighborhood of t, where β > ε i.e. β =
ε − δ ‖p‖ is a constant and also c being a positive constant chosen so that t ∈ Vt and
Vt ⊂ (0, 1), then by mean value theorem there exist a point ξ ∈ Vt such that

y′(ξ) = y(c+(ε−δK))−y(c)
ε−δK

so
(ε− δK)

∥∥y′(ξ)∥∥ ≤ 2 ‖y‖ (2.8)

Now differentiating (4) from ξ to t and taking the modulus on both the sides and by using
the fact that the maximum norm of a function is always greater than the value of the function
over the domain, we obtain

(ε−δK)|y′(t)| ≤ (ε−δK)|y′(ξ)|+‖f‖ |t−ξ|+
t∫
ξ

|a(x)y′(x)|dx+ ‖b‖ ‖y‖ |t−ξ|. (2.9)

we known that
t∫
ξ

|a(x)y′(x)|dx ≤ (2 ‖a‖+
∥∥a′∥∥ |t− ξ|) ‖y‖ , (2.10)

with inequalities (8), (10) and using the fact |t− ξ| < β and Lemma 2, from (9) we obtain
‖y′(t)‖ ≤ C(ε− δK)−1,

where C = ‖f‖ + (2 + 2 ‖a‖+ ‖a′‖+ ‖b‖)
(
θ−1 ‖f‖+ max (|η0|, |γ|)

)
which is a posi-

tive independent of ε. The bounds for ‖y′′‖ and ‖y′′′‖ can be obtained similarly by Miller
and O’Riordan [30] using the techniques given by Kellogg and Tsan [20].

In order to prove that the numerical method is ε -uniform, one needs more information
about the exact solution. Let us decompose the solution y into a smooth (v) and a singular
(z) component as follows:-

y = v + z,
where v and z are smooth and singular components respectively. The smooth component
z can be written in three term asymptotic expansion as v(t) = v0(t) + (ε− δK) v1(t) +

(ε− δK)2v2(x) and v0, v1 and v2 and defined to be the solution of the problems as follows:-

a(t)v′0(t) + b(t)v0(t) = f(t), t ∈ (0, 1), v0(1) = y(1),
a(t)v′1(t) + b(t)v1(t) = −(ε− δp(t))v′′0(t)/(ε− δK); t ∈ (0, 1), v0(1) = 0,
Lτv2(t) = −(ε− δp(t))v′′1(t)/(ε− δK), t ∈ (0, 1), v2(0) = 0, v2(1) = 0.

The smooth component v is the solution of

Lτv(t) = f(t), t ∈ (0, 1), v(0) = v0(0) + (ε− δK)v1(0), v(1) = y(1) (2.11)

and the singular component z is the solution of the homogeneous problem

Lτz(t) = 0, t ∈ (0, 1), z(0) = y(0)− v(0), z(1) = 0. (2.12)

Now we can state the following theorem on the bounds for the solutions and derivatives of
(11) and (12).
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Theorem 2.2 Let y be the solution of (4) and (5) and let y = v + z. For 0 ≤ m ≤ 3 and
for sufficiently small ε, v, z and their derivatives satisfy the following bounds:∥∥∥v(m)

∥∥∥ ≤ C(ε− δK)2−m, (2.13)

|z(t)| ≤ C exp (−Kt/(ε− δK)) , t ∈ (0, 1), (2.14)∥∥∥u(m)
∥∥∥ ≤ C(ε− δK)−m exp (−Kt/(ε− δK)) , t ∈ (0, 1). (2.15)

Proof. For the proof of the above theorem can be found in [14].

2.1. Description of the method for left-End Boundary Layer Problems:
The solutions of (4) with (5) are known to be of the following form (cf.[32], pp.22-26):

y(t) = y0(t) +
p(0)

p(t)
(η0 − y0(0)) e

−
t∫
0

(
p(t)
µ
− q(t)
p(t)

)
dt

+ o(ε) (2.16)

where y0(t) denotes the solution of the following problem:

p(t)y′0(t) + q(t)y0(t) = r(t); u0(1) = γ (2.17)

Under the consideration of Taylor’s series expansions for p(t) and q(t) about the point
′t = 0′ upto their first terms only, the equation (16) becomes:

y(t) = y0(t) + (η0 − y0(0)) e
−
(
p(0)
µ
− q(0)
p(0)

)
t
+ o(ε) (2.18)

Further, considering equation (18) at the point t = ti = ih, i = 0, 1, 2, ..., N and taking the
limit as h→ 0 we obtain

lim
h→0

y(ih) = y0(0) + (η0 − y0(0)) e
−
(
a2(0)−µb(0)

a(0)

)
iρ

+ o(ε) (2.19)

where ρ = h/µ.
Now,writing the equation (4) in the following form:

µy′′ + [A(t)]′ +B(t)y(t) = C(t); 0 ≤ x ≤ 1 (2.20)

where, A(t) = p(t)y(t), B(t) = q(t) − p′(t) andC(t) = r(t) and using the usual rule of
exact and trapezoidal rule of integration over [ti, ti+1] (i = 1, 2, . .., N − 1) the equation
(20) becomes:

µy′i+1 − µy′i + pi+1yi+1 − piyi +
h

2
[Bi+1yi+1 +Biyi] =

h

2
[Ci+1 + Ci] (2.21)

Now approximating the first order derivative y′i+1 using non-symmetric finite difference
analogue:

y′i+1 = yi−1−4yi+3yi+1

2h + o
(
h2
)

and y′i by mixed finite difference analogue(a combination of central and upwind finite dif-
ference approximations):

y′i = α
(
yi+1−yi−1

2h

)
+ (1− α)

(
yi+1−yi

h

)
+ o (h) with α = 1

2

i.e.,
y′i ≈

3yi+1−2yi−yi−1

4h + o (h)



166 An exponentially fitted scheme for solving singularly perturbed delay problems

with notations: y(ti) = yi, y(ti+1) = yi+1, B(ti) = Bi, C(ti) = Ci, p(ti) = pi etc. in
(21) , we get:

µ
2h (yi−1 − 4yi + 3yi+1)− µ

3h (2yi+1 − yi − yi−1)− (piyi − pi+1yi+1)
+h

2 [Bi+1yi+1 +Biyi] = h
2 [Ci+1+Ci] ; 0 ≤ i ≤ N − 1

(2.22)
Now, we introduce a fitting factor σ(ρ) in the above scheme (22)as,

σ(ρ)3µ
4h (yi−1 − 2yi + yi+1)− (piyi − pi+1yi+1) + h

2 [Bi+1yi+1 +Biyi]
= h

2 [Ci+1 + Ci] ; 0 ≤ i ≤ N − 1
(2.23)

with y(0) = η and y(1) = γ.
The fitting factor σ(ρ) is to be determined in such a way that the solution of (23) converges
uniformly to the solution of (4)-(5). In the limit as h→ 0 the equation (23) becomes:

lim
h→0

[
3σ(ρ)
4ρ (y(ih− h)− 2y(ih) + y(ih+ h))

]
− lim
h→0

[p(ih)y(ih)

−p(ih+ h)y(ih+ h)] = 0
(2.24)

under the assumption that 1
2 [Bi+1yi+1 +Biyi] and 1

2 [Ci+1 + Ci] are bounded. Substitut-
ing equation (19) in equation (24) and simplifying, we get a constant fitting factor

σ(ρ) =
4p(0)ρ

6

 e
−
(
p2(0)−µq(0)

p(0)

)
ρ
2

sinh
((

p2(0)−µq(0)
p(0)

)
ρ
2

)
 (2.25)

Rearranging the equation (23) we get a scheme as a three term recurrence relationship of
the form:

Eiyi−1 − Fiyi +Giyi+1 = Hi, (i = 1, 2, 3, ..., N − 1) (2.26)
where

Ei = 3σµ
4h

Fi = 6σµ
4h + pi − h

2Bi
Gi = 3σµ

4h + pi+1 + h
2Bi+1

Hi = h
2 [Ci + Ci+1]

Equation (26) gives a system of (N − 1) equations with (N − 1) unknowns y1 to yN−1.
These (N − 1) equations together with the Eq. (5) are sufficient to solve the tri-diagonal
system by using Thomas Algorithm also called ”Discrete Invariant Imbedding algorithm”.
The conditions for the discrete invariant embedding algorithm to be stable are : Ei >
0, Fi > 0, Fi ≥ Ei + Gi provided p(x) is decreasing function and (Bi + Bi+1) ≤ 0
and |Ei| ≤ |Gi|; provided

(
pi+1 + h

2Bi+1

)
≥ 0 In this method, if the assumptions a(x) >

0, b(x) < 0 and (ε−δa(x)) > 0 hold, one can easily show that the conditions given in (24)
hold and thus the invariant imbedding algorithm is stable.
Thus the coefficient matrix of the tri-diagonal system of equations (26) with boundary con-
ditions (5) is diagonally dominant and hence non-singular.

2.2. Description of the method for Right-End Boundary Layer Problems:
We now assume that p(t) ≤ K < 0 throughout the interval [0, 1] , where K is some

negative constant. This assumption merely implies that the boundary layer for equation (4)-
(5) will be in the neighborhood of t = 1. From the theory of singular perturbation, it is
known that the solution of (4) with (5) is of the from [cf. O Malley[32]; pp. 22-26]:

y(t) = y0(t) +
p(1)

p(t)
(γ − y0(1)) e

1∫
t

(
p(t)
µ
− q(t)
p(t)

)
dt

+ o(ε) (2.27)
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where y0(t) represents the solution of the reduced problem:
p(t)y′0(t) + q(t)y0(t) = r(t); y0(0) = η.

For appropriate choices of δ such that 0 ≤ µ = ε − δω << 1, where ω = max
0≤t≤1

p(t). By

expanding p(t) and q(t) in (27) with the help of the Taylor’s series about the point ′t = 1′

and restricting to their first terms, we obtain:

y(t) = y0(t) + (γ − y0(1)) e

(
p(1)
µ
− q(1)
p(1)

)
(1−t)

+ o(ε) (2.28)

Further, considering equation(28) at the point t = ti = ih, i = 0, 1, 2, ..., N and taking the
limit as h→ 0 we obtain

lim
h→0

y(ih) = y0(0) + (γ − y0(1)) e

(
p2(1)−µq(1)

p(1)

)(
1
µ
−iρ

)
+ o(ε) (2.29)

where ρ = h/µ. Integrating equation (20) in [ti−1, ti] using the exact and trapezoidal rule
of integration, we Obtain

µy′i − µy′i−1 + piyi − pi−1yi−1 +
h

2
[Biyi +Bi−1yi−1] =

h

2
[Ci + Ci−1] (2.30)

Now approximating the first order derivative y′i−1 using non-symmetric finite difference
analogue:

y′i−1 = −3yi−1+4yi−yi+1

2h + o
(
h2
)

and y′i by mixed finite difference analogue(a combination of central and upwind finite dif-
ference approximations):

y′i = α
(
yi+1−yi−1

2h

)
+ (1− α)

(
yi+1−yi

h

)
+ o (h) with α = 1

2

i.e.,
y′i ≈

3yi+1−2yi−yi−1

4h + o (h)
with notations: y(ti) = yi, y(ti+1) = yi+1, B(ti) = Bi, C(ti) = Ci, p(ti) = pi etc. in
(30) , we obtain the following scheme:

µ
(
3yi+1−2yi−yi−1

4h

)
− µ

(
−3yi−1+4yi−yi+1

2h

)
+ piyi − pi−1yi−1

+h
2 [Biyi +Bi−1yi−1] = h

2 [Ci + Ci−1] ; 0 ≤ i ≤ N − 1
(2.31)

An introduction of a fitting factor σ(ρ) in the above scheme (31) gives:
σ(ρ)5µ

4h (yi−1 − 2yi + yi+1)− (pi−1yi−1 − piyi) + h
2 [Biyi +Bi−1yi−1]

= h
2 [Ci + Ci−1] ; 0 ≤ i ≤ N − 1

(2.32)

with y(0) = η and y(1) = γ.
The fitting factor σ(ρ) is to be determined in such a way that the solution of (32) converges
uniformly to the solution of (4)-(5).
In the limit as h→ 0 the equation (32) becomes:

lim
h→0

[
5σ(ρ)
4ρ (y(ih− h)− 2y(ih) + y(ih+ h))

]
− lim
h→0

[p(ih− h)y(ih− h)

−p(ih)y(ih)] = 0
(2.33)

under the assumption that 1
2 [Biyi +Bi−1yi−1] and 1

2 [Ci + Ci−1] are bounded. Substitut-
ing equation (29) in equation (33) and simplifying, we get a constant fitting factor

σ(ρ) =
4p(0)ρ

10

 e

(
p2(0)−µq(0)

p(0)

)
ρ
2

sinh
((

p2(0)−µq(0)
p(0)

)
ρ
2

)
 (2.34)
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Rearranging the equation (32) we get a scheme as a three term recurrence relationship of
the form:

Eiyi−1 − Fiyi +Giyi+1 = Hi, (i = 1, 2, 3, ..., N − 1) (2.35)

where
Ei = 5σµ

4h − pi−1 + h
2Bi−1

Fi = 10σµ
4h − pi −

h
2Bi

Gi = 5σµ
4h

Hi = h
2 [Ci + Ci−1]

Equation (35) gives a system of (N − 1) equations with (N − 1) unknowns y1 to yN−1.
These (N − 1) equations together with the equation (5) are sufficient to solve the tridi-
agonal system by using Thomas Algorithm also called ’Discrete Invariant Imbedding al-
gorithm’. The conditions for the discrete invariant embedding algorithm to be stable are :
Ei > 0, Fi > 0, Fi ≥ Ei +Gi; provide p(x) is decreasing function and (Bi−1 +Bi) ≤ 0.
and

|Ei| ≤ |Gi|; Provide
(
−pi−1 +

h

2
Bi

)
≤ 0 (2.36)

In this method, if the assumptions a(x) > 0, b(x) < 0 and (ε − δa(x)) > 0 hold, one can
easily show that the conditions given in (35) hold and thus the invariant embedding algo-
rithm is stable.

3 Convergence analysis:

In this section we will discuss the error analysis of the proposed method and show that the
method is of first order accurate on uniform mesh. Writing the tridiagonal system (26) in
matrix-vector form [1]:, we get

DY = M (3.1)

where D = (ui,j) , 1 ≤ i, j ≤ N − 1 is a tri-diagonal matrix of order N-1, with

ui,i+1 = −
(
3σµ
4 + hpi+1 + h2

2 Bi+1

)
ui,i = 6σµ

4 + hpi − h2

2 Bi
ui,i−1 = −3σµ

4

where M = (gi) is a column vector with gi = −h2

2 [Ci = Ci+1], i = 1, 2, ..., N − 1 with
local truncation error

τi(h) = h2
[
piyi + p′iy

′
i +

3µ

4
y′′i − Ci

]
+ o(h3) (3.2)

We also have
DY − τ(h) = M (3.3)

where Y =
(
Y 0, Y 1, Y 2, ..., Y N

)T denotes the actual solution and τ(h) = (τ1(h), τ2(h), ..., τN (h))T

is the local truncation error.
From the equations (37) and (39), we get

D
(
Y − Y

)
= τ(h) (3.4)

Thus, we obtain the error equation

DE = τ(h) (3.5)
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where E = Y − Y = (e0, e1, e2, ..., eN )T .
Let Si be the sum of elements of the ith row of D, then we have

S1 =
∑N−1

j=1 u1,j = 3σµ
4 + h [p1 − p2]− h2

2 [B1 +B2] for i = 1

Si =
∑N−1

j=1 ui,j = h [pi − pi+1]− h2

2 [Bi +Bi+1] ; for i = 2(1)N − 2.

SN−1 =
∑N−1

j=1 uN−1,j = 3σµ
4 + hpN−1 − h2

2 BN−1 for i = N − 1

Since 0 < ε << 1, for a given h, the matrix D is irreducible and monotone. Hence D−1
exists and D−1 ≥ 0.
From the error equation (41), we have

E = D−1τ(h) (3.6)

and
||E|| ≤ ||D−1||||τ(h)||

Let uk,i be the (k, i)th elements of D−1. Since uk,i ≥ 0, from the theory of matrices we
have

N−1∑
i=1

uk,iSi = 1; k = 1, 2, ..., N − 1 (3.7)

Therefore, it follows that
N−1∑
i=1

ūk,i ≤ 1
min

0≤i≤N−1
Si

= 1
h|pi−pi+1|

for some i between 1 and N-1.
Now, we define ∥∥D−1∥∥ = max

0≤k≤N−1

N−1∑
i=1
|ūk,i|

and ‖τ(h)‖ = min
0≤k≤N−1

|τ(h)|.
Therefore, from equations (38),(42)and (43) we obtain

ej =
N−1∑
i=1

ūk,iτi (h) ; j = 1 (1)N − 1

Which implies

||ej || ≤
kh2

h|pi − pi+1|
; j = 1(1)N − 1 (3.8)

where k = pi|yi|+ p′i|y′i|+
3µ
4 |y
′′
i | − Ci is constant independent of h.

Therefore, using the definitions and equation (44), we obtain:

||E|| = o(h)

Thus the method proposed is a first order convergent method on uniform mesh for left end
layer problems.
As above, we can show that the scheme: (35) derived for the solution of right layer problems
is of first order convergence on uniform mesh.

4 Algorithm of the method and Numerical Illustrations:

To solve problems of the form given in equation (1)-(2), we have followed the following
algorithm:
Step 1. Modify the Singularly Perturbed Delay Differential Equation (1) to the form (4).
Step 2. Introduce the fitting parameter in (4) and determine its value using the theory of
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singular perturbation.
Step 3. Solve the tri-diagonal system (26) for the left layer problems and (35 )for the right
layer problems with the boundary conditions (5) using Thomas Algorithm by taking differ-
ent values of the perturbation and the delay parameter.

We have implemented the above algorithm on five standard linear/nonlinear example
problems having boundary layer at left/right end of the underlying interval for different
values of delay parameter δ and perturbation parameter ε. These problems are chosen due
to their wide discussion in the literature. The exact solutions for these problems are not
known. Numerical solution in terms of the maximum absolute errors are computed using
double - mesh principles given by

ZN = min
1≤i≤N−1

∣∣yNi − y2N2i ∣∣ , i = 1, 2, ..., N − 1 (4.1)

Where yNi is the numerical solution obtained on the mesh {xi}N−11 at the nodal point xi
and xi = x0+ ih, i = 1, 2, ..., N−1 and y2N2i is the numerical solution on a mesh, obtained
by halving of the original mesh size h with 2N number of mesh intervals.

Example 1 First we consider the singularly perturbed convection delay problem with vari-
able coefficient exhibiting left-end boundary layer

εy′′(x) + e−0.5xy′(x− δ) − y(x) = 0; x ∈ [0, 1]
subject to the interval and boundary conditions

y(x) = 1, −δ ≤ x ≤ 0and y(1) = 1
The exact solution is not known for this problem. The absolute maximum errors are given
in Tables 1,2 for δ = 0.1 ∗ ε and δ = 0.5 ∗ ε respectively.

The computational results(Absolute Maximum Error)presented in Table-1, 2 for exam-
ple problem-1 show that the present scheme is capable of producing uniformly convergent
solution in case when ε tends to zero for any fixed value of the step size h = 1/N .

Table 1 Computational results(MAE) for various values of ε and N for example problem-1 with δ = 0.1 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 8.56280E-04 1.09428E-03 2.33239E-03 2.26283E-03 1.48615E-03 8.34912E-04
10−4 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 1.07288E-06
10−6 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−8 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−10 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−15 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−20 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−30 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07

Example 2 We consider the singularly perturbed convection delay nonlinear problem with
constant coefficient exhibiting left-end boundary layer

εy′′(x) + y(x)y′(x− δ)− y(x) = 0; x ∈ [0, 1]
subject to the interval and boundary conditions

y(x) = 1,−δ ≤ x ≤ 0, y(1) = 1
The linear form is:

εy′′(x) + y′(x− δ) − y(x) = 0; x ∈ [0, 1] with y(0) = 1 and y(1) = 1
The exact solution is not known for this problem. The absolute maximum errors are given
in Tables 3,4 for δ = 0.1 ∗ ε and δ = 0.5 ∗ ε respectively.
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Table 2 Computational results(MAE) for various values of ε and N for example problem-1 with δ = 0.5 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 8.02726E-04 2.56807E-04 6.98358E-04 1.35913E-03 1.22151E-03 7.77215E-04
10−4 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−6 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−8 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−10 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−15 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−20 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07
10−30 8.02338E-04 1.99616E-04 4.99785E-05 1.29044E-05 3.15905E-06 9.53674E-07

The computational results(Absolute Maximum Error)presented in Table-3, 4 for exam-
ple problem-2 show that the present scheme is capable of producing uniformly convergent
solution in case when ε tends to zero for any fixed value of the step size h = 1/N .

Table 3 Computational results(MAE) for various values of ε and N for example problem-2 with δ = 0.1 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 3.76940E-04 4.19140E-04 8.56072E-04 8.40575E-04 5.50807E-04 2.98828E-04
10−4 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−6 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−8 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−10 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−15 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−20 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−30 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07

Table 4 Computational results(MAE) for various values of ε and N for example problem-2 with δ = 0.5 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 3.56883E-04 1.10626E-04 2.57373E-04 5.01603E-04 4.39823E-04 2.84374E-04
10−4 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−6 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−8 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−10 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−15 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−20 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07
10−30 3.56883E-04 8.97944E-05 2.22325E-05 5.96046E-06 2.92063E-06 7.15256E-07

Example 3 We consider the singularly perturbed delay nonlinear problem exhibiting left-
end boundary layer

εy′′(x) + 2y′(x− δ) + exp(y(x)) = 0, x ∈ [0, 1]
subject to the interval and boundary conditions

y(x) = 0,−δ ≤ x ≤ 0, y(1) = 0
The linear form is:

εy′′(x) + 2y′(x− δ) + y(x) = −1; x ∈ [0, 1] with y(0) = 0 and y(1) = 0
The exact solution is not known for this problem. The absolute maximum errors are given
in Tables 5 for δ = 0.1 ∗ ε.

The computational results(Absolute Maximum Error)presented in Table-5 for example
problem-3 show that the present scheme is capable of producing uniformly convergent so-
lution in case when ε tends to zero for any fixed value of the step size h = 1/N .
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Table 5 Computational results(MAE) for various values of ε and N for example problem-3 with δ = 0.1 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 1.66178E-04 4.02927E-05 1.10924E-04 3.77297E-04 4.20749E-04 2.83182E-04
10−4 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07
10−6 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07
10−8 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07
10−10 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07
10−15 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07
10−20 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07
10−30 1.65641E-04 4.58956E-05 1.19209E-05 3.45707E-06 2.98023E-07 2.38419E-07

Example 4 Now we consider an example of variable coefficient singularly perturbed delay
differential equation exhibiting right-end boundary layer:

εy′′(x) − exy′(x− δ) − xy(x) = 0; x ∈ [0, 1]
subject to the boundary conditions

y(0) = 1 and y(1) = 1
The exact solution is not known for this problem. The absolute maximum errors are given
in Tables 6,7 for δ = 0.1 ∗ ε and δ = 0.5 ∗ ε respectively.

The computational results(Absolute Maximum Error)presented in Table-6, 7 for exam-
ple problem-4 show that the present scheme is capable of producing uniformly convergent
solution in case when ε tends to zero for any fixed value of the step size h = 1/N .

Table 6 Computational results(MAE) for various values of ε and N for example problem-4 with δ = 0.1 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 3.52561E-04 1.42097E-04 3.61681E-04 4.13740E-03 2.21390E-02 5.56450E-02
10−4 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06
10−6 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06
10−8 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06
10−10 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06
10−15 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06
10−20 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06
10−30 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.25170E-06

Table 7 Computational results(MAE) for various values of ε and N for example problem-4 with δ = 0.5 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 3.62873E-04 2.80082E-04 7.30276E-04 9.68742E-03 3.57798E-02 7.07997E-02
10−4 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06
10−6 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06
10−8 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06
10−10 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06
10−15 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06
10−20 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06
10−30 3.51191E-04 9.26852E-05 2.41399E-05 5.66244E-06 2.20537E-06 1.43051E-06

Example 5 Finally we consider an example of constant coefficient singularly perturbed de-
lay differential equation exhibiting right-end boundary layer:

εy′′(x) − y′(x− δ) − y(x) = 0; x ∈ [0, 1]
subject to the boundary conditions

y(0) = 1 and y(1) = −1
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The exact solution is not known for this problem. The absolute maximum errors are given
in Tables 8,9 for δ = 0.1 ∗ ε and δ = 0.5 ∗ ε respectively.

The computational results(Absolute Maximum Error) presented in Table-8, 9 for exam-
ple problem-5 show that the present scheme is capable of producing uniformly convergent
solution in case when ε tends to zero for any fixed value of the step size h = 1/N .

Table 8 Computational results(MAE) for various values of ε and N for example problem-5 with δ = 0.1 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 4.27544E-04 6.99192E-04 1.26231E-03 1.33480E-03 9.66229E-04 5.69962E-04
10−4 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 4.08292E-06
10−6 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−8 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−10 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−15 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−20 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−30 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07

Table 9 Computational results(MAE) for various values of ε and N for example problem-5 with δ = 0.5 ∗ ε.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256
10−2 6.74665E-04 1.34805E-03 1.86940E-03 1.56067E-03 1.04945E-03 5.34110E-04
10−4 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 1.34110E-06
10−6 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−8 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−10 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−15 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−20 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07
10−30 3.56942E-04 8.97646E-05 2.23517E-05 5.87106E-06 1.25170E-06 7.15256E-07

5 Discussion and Conclusions

A numerical integration method with an exponential fitting factor has been presented for
solving singularly perturbed delay differential equations, whose solutions exhibit layer be-
havior on one end(left or right) point of the interval considered. The effect of a negative
shift on the boundary layer solutions has been investigated and presented in Tables 1-9.

One can easily observed from these Tables:1 − 9 that the presented fitted scheme is
capable of producing highly accurate uniformly convergent solution for any fixed value of
step size h = (1/N) > ε, when perturbation parameter ε tends to zero. The main feature of
the proposed fitted scheme is that it does not depends on the very fine mess size.
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