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Abstract. A complete asymptotics of the solution of a boundary value problem on a rectangle is con-
structed for one-characteristic nonclassic type differential equation of third order, degenerating into non-
linear hyperbolic equation. The remainder term is estimated.
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1 Introduction and problem statement

When some studying real phenomena with nonuniform passages from one physical
characterstics to other ones, it is necessary to study singularly perturbed boundary value
problems. The problem of dynamics of solids with cavities containing viscous fluid are the
examples for such problems. Singularly perturebed boundary value problems have attracted
attention of such prominent scientsist as N.N. Bogolyubov, Yu.A. Mitropolskii, V. Vazov,
A.N. Tikhonov, L.S. Pontryagin, K. Friedrichs, M.I. Vishik, L.A. Lusternik and others. In
[1], [2] by M.I. Vishik and L.A. Lusternik were essential development of theory of singu-
larly perturbed problems for partial equations. The asymptotic method developed by them
(at present it is called the Vishik-Lusternik method) is widespread. The Vishik-Lusternik
method for constructing asymptotics in a small parameter of solutions of boundary value
problems for linear differential equations is carried on other classes of nonlinear differential
equations as well. However, study of nonlinear singularly perturbed boundary value prob-
lems with this method is accompanied with bulky calculations. The study of every nonlinear
equation requires from the researcher a special approach. It should be noted that the major-
ity of the investigated perturbed partial differential equations referred to one of three classic
types.

In [1] M.I. Vishik and L.A. Lusternik introduced the so called one-characteristic linear
equations that are not classical equations. They called the 2k + 1 odd order equation of the
form, A1(A2ku) + B2ku = f one-characteristic if A1 is a first order operator, A2k is an
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elliptic operator of order 2k, whileB2k is any differential operator of order at most 2k. In the
paper [1], they studied mutual degenerations of one-characteristic and elliptic equations. In
[3]-[5], the boundary value problems stated for a third order one-characteristic differential
equation degenerated into a second order parabolic equation in a rectangular domain, finite
half-strip and infinite strip are considered and complete asymptotics of the solutions of these
problems with respect to a small parameter are constructed. In this paper, we consider a
boundary value problem stated in a rectangular domain for an one-characteristic differential
equation degenerating into a first order nonlinear hyperbolic one.

In the rectangular domain D = {(x, y)| 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} we consider the fol-
lowing boundary value problem:

Lεu ≡ ε2
∂

∂x
(∆u)− ε∆u+

∂u

∂x
+
∂u

∂y
+ F (x, y, u) = 0, (1.1)

u|x=0 = u|x=1 = 0,
∂u

∂x

∣∣∣∣
x=1

= 0, 0 ≤ y ≤ 1, (1.2)

u|y=0 = u|y=1 = 0, 0 ≤ x ≤ 1. (1.3)

where ε > 0 is a small parameter, ∆ ≡ ∂2

∂x2
+ ∂2

∂y2
is a Laplace operator, F (x, y, u) is a

given function satisfying the following conditions:

F (x, y, 0) 6≡ 0, (x, y) ∈ D, (1.4)

∂F (x, y, u)

∂u
≥ γ2 > 0, (x, y, u) ∈ D\ {(x, y) ∈ D|x = y} × (−∞,+∞). (1.5)

Note that the function F (x, y, u) may depend on the variable u both linearly and nonlin-
early. In the case of linear dependence we consider

F (x, y, u) = a(x, y)u− f(x, y), a(x, y) ≥ γ2, (x, y) ∈ D. (1.6)

The goal of the paper to construct asymptotic expansion of the solution of problem
(1.1)-(1.3) with respect to a small parameter. For that we conduct iterative processes.

2 Conducting the first iterative process

In the first iterative process, the approximate solution of the equation

LεW = 0 (εn+1) (2.1)

is sought in the form:

W =W0 + εW1 + ...+ εnWn =W0 + δW. (2.2)

Here we denote δW =
n∑
i=1
εiWi. Substituting the expression of W in (2.2) in the equality

(2.1), we write the expansion of the function F (x, y,W0 + δW ) at the point (x, y,W0)
in Taylor formula, after making grouping with respect to the same order powers of ε, for
determining Wi(x, y) ; i = 0, 1, ..., n we obtain the following equalities:

∂W0

∂x
+
∂W0

∂y
+ F (x, y,W0) = 0, (2.3)

∂Wj

∂x
+
∂Wj

∂y
+
∂F (x, y,W0)

∂W0
Wj = fj(W0,W1, ...,Wj−1); j = 1, 2, ..., n. (2.4)
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Here fj(W0,W1, ...,Wj−1) denote the known functions expressed by the functionsW0,W1,
. . . ,Wj−1, themselves, their first, second and third order derivatives. We can write their ex-
plicit expressions, but their formulas are very bulky. Below we give explicit expressions of
the functions f1 and f2:

f1(W0) = ∆W0, (2.5)

f2(W0,W1) = ∆W1 −
∂

∂x
(∆W0)−

1

2!

∂2F (x, y,W0)

∂W0
2

W1
2. (2.6)

As can be seen, equality (2.3) is nonlinear, equalities (2.4) are linear. We will find the
solutions of equations (2.3), (2.4) satisfying the boundary conditions

Wi|x=0 = 0, 0 ≤ y ≤ 1; Wi|y=0 = 0, 0 ≤ x ≤ 1; i = 0, 1, ..., n. (2.7)

Thus, from (2.3) and for i = 0 from (2.7) we get that the function W0(x, y) is the solution
of the boundary value problem

∂W0

∂x
+
∂W0

∂y
+ F (x, y,W0) = 0 ; W0|x=0 = 0, W0|y=0 = 0. (2.8)

The problem (2.8) is said to be a degenerate problem corresponding to problem (1.1), (1.3).
When the function F (x, y, u) is linearly dependent on u (see (1.6)) the problem correspond-
ing to degenerate problem (1.1)-(1.3) is in the form

∂W0

∂x
+
∂W0

∂y
+ a(x, y)W0 = f(x, y) ; W0|x=0 = 0, W0|y=0 = 0. (2.9)

Researches show that even if the f(x, y) is a rather smooth function, the solution of
problem (2.9) has a singularity on the line y = x being the bisector of the first quarter. But
the right hand side of each of the equations (2.4) where the functions W1,W2, ...,Wn will
be defined, contain the preceding functions themselves and their derivatives. Therefore,
to complete the first iterative process, the function W0(x, y) should be a rather smooth
function.

The following proposition was proved in [6].
Lemma 2.1 Assume that when F (x, y, u) ∈ Ck (D × (−∞,+∞)) and the function

F (x, y, u) is linearly dependent on the variable u satisfies the condition

∂if(x, y)

∂xi1∂yi2

∣∣∣∣
x=y

= 0 ; i = i1 + i2; i = 0, 1, ..., k; 0 ≤ x ≤ 1 (2.10)

when is linearly in dependent of the variable u, satisfies the conditions

F (x, y, u)|x=y = 0; 0 ≤ x ≤ 1, u ∈ (−∞, +∞), (2.11)

∂iF (x, y, 0)

∂xi1∂yi2∂ui3

∣∣∣∣
x=y

= 0 ; 0 ≤ x ≤ 1; i = i1 + i2 + i3; i = 1, 2, ..., k . (2.12)

Here k is an arbitrary natural number. Then problem (2.8) has a unique solution and this
solution satisfies the conditions W0(x, y) ∈ Ck(D) and

∂iW0(x, y)

∂xi1∂yi2

∣∣∣∣
x=y

= 0 ; i = i1 + i2 ; i = 0, 1, ..., k ; 0 ≤ x ≤ 1. (2.13)

We do not give here the proof of Lemma 2.1. One can see the proof process in the proof
of theorem 1 [6] p. 108. We should only note that when the function F (x, y, u) is linearly
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dependent on the variable u, the solution of the degenerate problem, i.e. the solution of
problem (2.9) is determined by the formula

W0 =



x∫
0

f(ξ, ξ + y − x) exp

[
−

x∫
ξ

a(τ, τ + y − x)dτ

]
dξ, 0 ≤ x < y ≤ 1,

y∫
0

f(x− y + ξ, ξ) exp

[
−

y∫
ξ

a(x− y + ξ, ξ)dτ

]
dξ, 0 ≤ y < x ≤ 1.

(2.14)

In this case, when the condition (2.10) is satisfied, using the formula (2.14) one can easily
prove that condition (2.13) is satisfied.

When the function F (x, y, u) is linearly independent of the variable u, the fulfilment of
condition (2.13) is proved by using the nonlinear integral equation

W0(x, y) =


−

x∫
0

F (τ, τ + y − x,W0(τ, τ + y − x)), 0 ≤ x < y ≤ 1,

−
y∫
0

F (x− y + τ, τ,W0(x− y + τ, τ)), 0 ≤ y < x ≤ 1

that is equivalent to boundary value problem (2.8).
So, we determined the function W0(x, y) being the solution of problem (2.5). For

j = 1 from (2.4) for i = 1 from (2.7) we get that W1(x, y) is the solution of the following
boundary value problem:

∂W1

∂x
+
∂W1

∂y
+ a(x, y)W1 = ∆W0; W1|x=0 = 0, W1|y=0 = 0. (2.15)

Problem (2.15) is a boundary value problem of type (2.9). The only difference is that in the
right hand side of the equation ∆W0 stands instead of f(x, y). According to Lemma 2.1,
in (2.15) the function in the right side of the equation W1 and its all derivatives to the k-2
–order (including k-2 order) become zero for x = y. Therefore, lemma 2.1 can be applied to
boundary value problem (2.15) as well. Continuing the process in such a way, we determine
all the functionsW0,W1, ...,Wn in the right hand side of equality (2.2). Simple calculations
show that for completing the first iterative process and then estimating the remainder term,

for acting on the functionW =
n∑
i=0
εiWi by the operatorLε we must take the natural number

k in the condition of lemma 2.1 as k = 2n+ 3.

Thus, we constructed such a function W =
n∑
i=0
εiWi that this function is an approximate

solution of differential equation (1.1). From (2.7) and (2.2) we have that the constructed
function W satisfies the boundary conditions

W |x=0 = 0, 0 ≤ y ≤ 1 ; W |y=0 = 0 0 ≤ x ≤ 1. (2.16)

But the function W might not satisfy the boundary condition on x = 1 in (1.2) and the
boundary condition on y = 1 in (2.3). To ensure satisfaction of these missing boundary con-
ditions we must construct boundary layer type functions near the boundaries
S1 = {(x, y)|x = 1, 0 ≤ y ≤ 1} and S2 = = {(x, y)| 0 ≤ x ≤ 1, y = 1 } .

For constructing these boundary layer functions we should construct iterative processes.
In order to conduct iterative processes at first must write new expansions of the operator Lε
near S1 and S2 with respect to a small parameter.
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3 Conducting iterative processes for constructing boundary layer type functions

Replace the coordinates near S1 by the formulas 1−x = ετ, y = y. Assume that the func-
tions rj(τ, y) ; j = 0, 1, ..., n + 1 are rather smooth functions determined in the domain
[0, +∞)× [0, 1]. We accept the following denotation:

r =
n+1∑
j=0

εjrj(τ, y) = r0 + δ r. (3.1)

Here δ r denotes δ r = εr1+ε
2r2+ ...+ε

n+1rn+1. Taking into account the above substitu-
tion in the expansion (1.1) of the operator Lε, we expand the function F (1−ετ, y, r0+δr)
at the point (1, y, r0) in Taylor formula, making grouping with respect to the same powers

of ε, we get the following expansion for Lε

(
n+1∑
j=0

εjrj

)
:

Lε,1r ≡ Lε,1

n+1∑
j=0

εjrj

 ≡ ε−1{−(∂3r0
∂τ3

+
∂2r0
∂τ2

+
∂r0
∂τ

)

+ε

[
−
(
∂3r1
∂τ3

+
∂2r1
∂τ2

+
∂r1
∂τ

)
+
∂r0
∂y

+ F (1, y, r0)

]

+

n+1∑
s=2

εs
[
−
(
∂3rs
∂τ3

+
∂2rs
∂τ2

+
∂rs
∂τ

)
+
∂rs−1
∂y

+
∂F (1, y, r0)

∂r0
rs−1

−∂
3rs−2
∂τ ∂y2

− ∂2rs−2
∂y2

+ hs(r0, r1, ..., rs−2)

]}
+ 0(εn+1). (3.2)

Here hs(r0, r1, ..., rs−2) denote the known functions expressed by the functions
r0, r1, ..., rs−2 ; s == 2, 3, ..., n+1. For example the function h3(r0, r1) is determined
by the formula

h3(r0, r1) =
1

2!

∂2F (1, y, r0)

∂r02
r1

2.

Having expanded each functionWi(x, y) =Wi(1−ετ, y) ; i = 0, 1, ..., n constructed
in the first iterative process at the point (1, y) in Taylor formula, writting these expan-
sions in the right hand side of (2.2), we get the following new expansion of the function

W =
n∑
i=0
εiWi(1− ετ, y) in new coordinates (τ, y) with respect to the powers of ε:

W =
n+1∑
j=0

εjωj(τ, y) + 0(εn+2). (3.3)

Here ω0(τ, y) ≡ W0(1, y) and is independent of τ , the remaining functions ωk(τ, y) ;
k = 1, 2, ..., n+ 1 are determined by the formula

ωk =
∑
i+j=k

(−1)i∂
iWj(1, y)

∂xi
τ i; k = 1, 2, ..., n+ 1. (3.4)
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The boundary layer type function near S1 is sough in the form

V =
n+1∑
j=0

εjVj(τ, y) (3.5)

as a solution of the equation

Lε,1 (W + V )− Lε,1W = 0(εn+1). (3.6)

From (3.2), (3.3), (3.5),(3.6) we get that the functions Vj ; j = 0, 1, ..., n + 1 should
be determined as boundary layer type solutions of the following differential equations:

MV0 ≡
∂3V0
∂τ3

+
∂2V0
∂τ2

+
∂V0
∂τ

= 0, (3.7)

MVs = Hs(ω0, ω1, ..., ωs−1, V0, V1, ..., Vs−1) ; s = 1, 2, ..., n+ 1. (3.8)

The functions Hs are the known functions dependent on the functions ω0, ω1, ..., ωs−1,
V0, V1, ..., Vs−1 and their derivatives. Below we give explicit expressions of the functions
H1 and H2:

H1(ω0, V0) =
∂V0(τ, y)

∂y
+
∂F (1, y, ω0 + θ1V0)

∂u
V0, 0 < θ1 < 1 , (3.9)

H2(ω0, ω1, V0, V1) =
∂V1
∂y

+
∂F (1, y, ω0 + V0)

∂u
(ω1 + V1)

−∂F (1, y, ω0)

∂u
ω1 +

∂F (1, y, ω0 + V0)

∂x
(−τ)

−∂F (1, y, ω0)

∂x
(−τ) + ∂3V0

∂τ∂y2
+
∂2V0
∂y2

. (3.10)

The boundary conditions for equations (3.7), (3.8) are found from the requirement that
the sum W + V satisfies the conditions

(W + V )|x=1 = 0,
∂

∂x
(W + V )|x=1 = 0. (3.11)

Having substituted the expressions of W in (2.2), of V in (3.5) in equalities (3.11), and
comparing the same powers of ε, we get

Vi|τ=0 = −Wi|x=1 ; i = 0, 1, ..., n ; Vn+1 = 0 , (3.12)

∂V0
∂τ

∣∣∣∣
τ=0

= 0,
∂Vj
∂τ

∣∣∣∣
τ=0

=
∂Wj−1
∂x

∣∣∣∣
x=1

; j = 1, 2, ..., n+ 1. (3.13)

Now we construct the functions V0, V1, ..., Vn+1. From (3.7) for i = 0 from (3.11)-
(3.13) we get that the function V0(τ, y) is a boundary layer type solution of equality (3.7)
satisfying the following boundary conditions:

V0|τ=0 = −W0(1, y),
∂V0
∂τ

∣∣∣∣
τ=0

= 0. (3.14)

The characteristic equation corresponding to ordinary differential equation (3.7) has two
roots with a negative real part: λ1 = −1

2 − i
√
3
2 , λ2 = −1

2 + i
√
3
2 . The number of the
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boundary conditions missing on the boundary S1 is also two. This fact shows that problem
(1.1)-(1.3) regularly degenerates on the boundary S1.

It is clear that the boundary layer type solution of equation (3.7) satisfying boundary
conditions (3.14) is determined by the formula

V0(τ, y) =
W0(1, y)

λ1 − λ2

(
λ2e

λ1τ − λ1eλ2τ
)
. (3.15)

For s = 1, from (3.8), for i = 1 from (3.12), for j = 1 from (3.13) we obtain that (see
(3.9)) the function V1(τ, y) is a boundary layer type solution of the following problem:

∂3V1
∂τ3

+
∂2V1
∂τ2

+
∂V1
∂τ

=
∂V0(τ, y)

∂y
+
∂F (1, y, ω0 + θ1V0)

∂u
V0, (3.16)

V1|τ=0 = −W1(1, y);
∂V1
∂τ

∣∣∣∣
τ=0

=
∂W0(1, y)

∂x
. (3.17)

According to (3.15), the right hand side of equation (3.16) is a boundary layer type function.
Therefore, problem (3.16), (3.17) has a boundary layer type solution.

Continuing this process, we construct all the functions Vj ; j = 0, 1, ..., n+1 entering
into the right hand side of equality (3.5). The constructed functions Vj are multiplied by
the smoothing functions and for the obtained new functions the previous denotations Vj ;
j = 0, 1, ..., n + 1 are preserved. At the expense of smoothing functions for x = 0 the
functions Vj ; j = 0, 1, ..., n + 1 become zero. Hence, from (3.5) and the first boundary
condition in (2.16) we obtain that the constructed sum W +V in addition to (3.11) satisfies
the boundary condition

(W + V )|x=0 = 0, 0 ≤ y ≤ 1 (3.18)

as well.
According to Lemma 2.1, as for x = y the functions Wi(x, y) ; i = 0, 1, ..., n and

in the special case for x = y = 1 become zero, from the equation (3.8) and boundary
conditions (3.12), (3.13) we get that all functions Vj(τ, y) ; j = 0, 1, ..., n+1 become zero
for y = 0. Hence, from (3.5) and the second boundary condition in (2.16) it follows that
the constructed sum W + V in addition to conditions (3.11), (3.18) satisfies the boundary
condition

(W + V )|y=0 = 0, 0 ≤ x ≤ 1 (3.19)

as well.
However, the sum W + V might not satisfy the boundary condition on S2. Replace

the coordinates near S2 by the formulas x = x, 1 − y = εt. Assume that the func-
tions ϕj(x, t) ; j = 0, 1, ..., n+ 1 are rather smooth functions determined in the domain
[0, 1]× [0, +∞). We accept the following denotation:

ϕ =
n+1∑
j=0

εjϕj(x, t) = ϕ0 + δϕ. (3.20)

Here δϕ denotes δϕ = εϕ1+ε
2ϕ2+...+ε

n+1ϕn+1. We take into account the above replace-
ment in the expansion (1.1) of the operator Lε, expand the function F (x, 1− εt, ϕ0 + δϕ)
at the point (x, 1, ϕ0) in Taylor formula, and after certain transformations get:

Lε,2ϕ ≡ Lε,2
( n+1∑
j=0

εjϕj

)
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≡ ε−1

−
(
∂2ϕ0

∂t2
+
∂ϕ0

∂t

)
+

n+1∑
j=1

[
−
(
∂2ϕj

∂t2
+
∂ϕj

∂t

)
+ gj(ϕ0, ϕ1, ..., ϕj−1

]+ 0(εn+1). (3.21)

Here gj(ϕ0, ϕ1, ..., ϕj−1) denote the known functions expressed by the functions
ϕ0, ϕ1, ..., ϕj−1; j = = 1, 2, ..., n + 1. For example, the functions g1 and g2 are de-
termined by the following formulas:

g1(ϕ0) =
∂ϕ0

∂x
− ∂3ϕ0

∂x∂t2
+ F (x, 1, ϕ0) ,

g2(ϕ1, ϕ0) =
∂ϕ1

∂x
− ∂3ϕ1

∂x∂t2
+
∂F (x, 1, ϕ0)

∂ϕ0
ϕ1 −

∂F (x, 1, ϕ0)

∂y
t .

We expand every functionWi(x, y) =Wi(x, 1−εt) ; i = 0, 1, ..., n at the point (x, 1)
and every function Vj(τ, y) = Vj(τ, 1− ε t) at the point (τ, 1) in Taylor formula, and write
new expansion of the sum W + V with respect to the powers of ε.

Looking for the boundary layer type function near S2 in the form

η =
n+1∑
j=0

εjηj(x, t) (3.22)

as the solution of the equation

Lε,2 (W + V + η)− Lε,2 (W + V ) = 0(εn+1) (3.23)

for determine the functions ηj ; j = 0, 1, ..., n+ 1 we get the following equations:

∂2η0
∂t2

+
∂η0
∂t

= 0 , (3.24)

∂2ηs
∂t2

+
∂ηs
∂t

= Ps ; s = 1, 2, ..., n+ 1. (3.25)

Here Ps denotes η0, η1, ..., ηs−1 and the known functions depedent on the terms in the new
expansion of the sum W + V . For example, the function P1 is determined by the following
formula:

P1 =
∂η0
∂x

+
∂3η0
∂x∂t2

+
∂F (x, 1, W0(x, 1) + V0(τ, 1) + θ2η0)

∂u
η0 , 0 < θ2 < 1.

The boundary conditions for equations (3.24), (3.25) are found from the requirement of
fulfilment of the sum W + V + η the boundary condition

(W + V + η)|y=1 = 0. (3.26)

From (3.26) the following boundary conditions are obtained:

ηi|t=0 = − (Wi + Vi)|y=1 ; i = 0, 1, ..., n ; ηn+1|t=0 = − Vn+1|y=1 . (3.27)

As the functions Vj(τ, y) ; j = 0, 1, ..., n + 1 become zero for y = 1, we can write
boundary conditions (3.27) as follows:

ηi|t=0 = −Wi|y=1 ; i = 0, 1, ..., n ; ηn+1|t=0 = 0 . (3.28)

The characteristic equation corresponding to ordinary differential equations (3.24), (3.25)
has one negative root. One boundary condition on S2 misses. So, problem (1.1)-(1.3) regu-
larly degenerate on the boundary S2 as well.



184 Asymptoics of the solution of a boundary value problem for...

For i = 0, from (3.28) it follows that the function η0(x, t)is a boundary layer type
solution of equation (3.24) satisfying the boundary condition

η0|t=0 = −W0(x, 1). (3.29)

It is clear that the function η0(x, t) is determined by the formula

η0(x, t) = −W0(x, 1)e
−t.

Continuing the process, the functions η1, η2, ..., ηn+1 are determined as boundary layer
type solutions of equations (3.25) satisfying appropriate boundary conditions in (3.28). All
constructed functions ηj are multiplied by the smoothing functions and for the newly ob-
tained functions the previous denotations ηj ; j = 0, 1, ..., n + 1 are preserved. As for
y = 0 the functions ηj ; j = 0, 1, ..., n + 1 become zero at the expense of the smooth
functions, hence from (3.19) and (3.22) it follows that the sum W + V + η in addition to
condition (3.26) satisfies the boundary condition

(W + V + η)|y=0 = 0 (3.30)

as well.
According to Lemma 2.1, as all the functions ηj ; j = 0, 1, ..., n + 1 become zero

together with derivatives for x = 1, by (3.22) the condition η|x=1 = 0 is satisfied. Hence
and from (3.11) we get that the sum W + V + η in addition to conditions (3.26), (3.30)
satisfies the boundary conditions

(W + V + η)|x=1 = 0,
∂

∂x
(W + V + η)|x=1 = 0 (3.31)

as well.
Assume that when the function F (x, y, u) is linearly dependent on the variable u, sat-

isfies the condition

∂kf(0, 1)

∂xk1∂yk2
= 0 ; k = k1 + k2 ; k = 0, 1, ..., 2n+ 3, (3.32)

when is linearly independent on the variable u, satisfies the condition

∂kF (0, 1, 0)

∂xk1∂yk2∂uk3
= 0 ; k = k1 + k2 + k3 ; k = 0, 1, ..., 2n+ 3. (3.33)

Then all the functions ηj ; j = 0, 1, ..., n + 1 will become zero for x = 0. Hence and
from (3.18) we get that the sum W + V + η in addition to conditions (3,26), (3.30), (3.31)
satisfies the boundary condition

(W + V + η)|x=0 = 0 (3.34)

as well.
Thus, we constructed such a function ũ = W + V + η that according to (3.26), (3.30),

(3.31), (3.34) this function satisfies the following boundary conditions:

ũ|x=0 = ũ|x=1 = 0,
∂ũ

∂x

∣∣∣∣
x=1

= 0, 0 ≤ y ≤ 1 (3.35)

ũ|y=0 = ũ|y=1 = 0, 0 ≤ x ≤ 1 . (3.36)
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Summing the equalities (2.1), (3.6), (3.23) side by side, we get that the function ũ is the
solution of the following equation:

Lεũ = 0(εn+1) . (3.37)

We denote the difference between the exact solution u and ũ by of problem (1)-(3) z:

u− ũ = z. (3.38)

z is said to be a remainder term.

4 Estimating the remainder term and the main result

From (3.38) we obtain that the asymptotic expansion of the solution of problem (1.1)-(1.3)
with respect to a small parameter is as follows:

u =
n∑
i=0

εiWi +
n+1∑
j=0

εjVj +
n+1∑
j=0

εjηj + z . (4.1)

We now estimate the remainder term. Acting on the both hand sides of equality (3.38)
by the operator Lε and boundary conditions (1.2), (1.3), we obtain that the function z is the
solution of the following boundary value problem:

Lεz = 0(εn+1) , (4.2)

z|x=0 = z|x=1 = 0,
∂z

∂x

∣∣∣∣
x=1

= 0, 0 ≤ y ≤ 1 , (4.3)

z|y=0 = z|y=1 = 0, 0 ≤ x ≤ 1 . (4.4)

The following proposition is valid.
Lemma 4.1 The following estimation is true for the function z being the solution of

boundary value problem (4.2)-(4.4).

ε2
1∫

0

(
∂z

∂x

∣∣∣∣
x=0

)2

dy + ε

∫∫
D

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]
dxdy+

+c1

∫∫
D

z2dxdy ≤ c2ε2(n+1) . (4.5)

Here the constants c1 > 0 , c2 > 0 are independent of ε.
For proving Lemma 4.1 we scalarly multiply the both hand sides of equation (4.2) by

z and using boundary conditions (4.3), (4.4) we piecewise integrate the obtained terms in
domain D .

The obtained results may be generalized in the form of the following theorem.
Theorem 4.1 Assume that the function F (x, y, u) is included in space

C2n+3 (D × (−∞, +∞)) , when this function is linearly dependent on the variable u sat-
isfies conditions (2.10), (3.32), when is linearly independent of the variable u the conditions
(2.11), (2.12), (3.33). Then the asymptotic expansion of the solution of problem (1.1)-(1.3)
with respect to a small parameter is in the form (4.1). Here theWi-functions are determined
in the first iterative process, Vj , ηj-functions are boundary layer type functions, respec-
tively near x = 1 and y = 1 and are determined by means of the appropriate iterative
processes, z is a remainder term, the estimation (4.5) is valid for it.
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