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The zeros of modified Bessel functions as functions of their order
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Abstract. Zeros of the function aKν (z) + bK′
ν (z) considered as a function of the order are studied,

where Kν (z) is the modified Bessel function of the second kind (Macdonald function). It is proved that,
for fixed z, z > 0 and for any real values a, b, the function aKν (z) + bK′

ν (z) has only a countable
number of simple purely imaginary zeros νn. The asymptotics of the zeros νn as n→ +∞ is found.
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1 Introduction and formulation of the main results

The zeros of the ordinary and modified Bessel functions, like the functions themselves,
have many applications in physics, mechanics, etc. Much of the work on the zeros of Bessel
functions has basically been concerned with the functions of their arguments, i.e., when the
order is fixed (see [1-4] and references therein). There are very few works devoted to the
study of the zeros of Bessel functions considered as functions of an order (see e.g., [5], [6],
[9-11]).

Consider the modified Bessel equation

z2u′′ + zu′ −
(
z2 + ν2

)
u = 0. (1.1)

It is known [1-2] that, the equation (1.2) has a solution Kν (z), which admits the represen-
tation

Kν (z) =

∫ ∞
0

e−zchtch (ν t) dt , |arg z| < π

2
, ν ∈ C. (1.2)

For each fixed z > 0 the function Kν (z) is an entire function of the order ν. In [12], G.
Polya studied the problem of the distribution of the zeros of the modified Bessel function
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Kν (z) for a fixed z > 0. Of particular interest is also the problem of studying the ze-
ros of the function K ′ν (z). It should be noted that the zeros of linear combinations of the
Hankel function and its derivative, which are closely related to the function Kν (z), were
investigated in [4], [10], [11]. It turns out that a similar problem for the linear combination
aKν (z) + bK ′ν (z) can be studied using spectral theory.

In this paper, we study the properties of the zeros of the function aKν (z) + bK ′ν (z),
considered as a function of the order ν, where a and b are real and z > 0. The asymptotics
of the zeros of the function aKν (z) + bK ′ν (z) is found. Moreover, unlike in the works [4],
[10], [11] , the oscillatory property of zeros was established.

Let us formulate the main results of this paper.

Theorem 1.1 For each fixed z > 0 and for any real a and b, where a2 + b2 > 0, the
function aKν (z) + bK ′ν (z) has a countable number of simple, purely imaginary zeros
±iνn, νn > 0, n = 1, 2, .... All zeros are simple and the following asymptotic formula
holds

νn ∼
πn

lnn
, n→ +∞. (1.3)

Theorem 1.2 If iνn = iνn (z) , νn (z) > 0 is the n−th zero of the function aKν (z) +
bK ′ν (z) to be considered as function of the order ν with fixed argument z > 0, then νn (z)
is an increasing function of z.

2 Proof of the Theorem

Let us proceed to the proof of Theorem 1. Consider the equation (1.1) for z > 0 . If we set
z = 2e

x+c
2 , ν = 2iλ and y (x) = u

(
2e

x+c
2

)
, where c is any finite number, then equation

(1.1) takes the form

−y′′ + ex+cy = λ2y, −∞ < x < +∞. (2.1)

Equation (2.1) is a one-dimensional Schrodinger equation with an exponential potential.
One of the solutions of this equation is, obviously, the function

f (x, λ) = K2iλ

(
2e

x+c
2

)
(2.2)

Since the Kν (z) function is an entire function of the order ν , from (2.2) it follows that for
each fixed x, −∞ < x < +∞, solution f (x, λ) of equation (2.1) and its derivative serve
as entire functions with respect to λ. Using the well-known (see [1]) asymptotic equality

Kν (z) =

√
π

2z
e−z

(
1 +O

(
z−1
))
, z → ∞,

we find that, for each fixed λ the solution f (x, λ) belongs to the space L2 (0,∞).
Consider the boundary value problem

−y′′ + ex+cy = λ2y, 0 ≤ x < +∞, (2.3)

αy (0) + βy′ (0) = 0, (2.4)

where α and β are real numbers and are such that α2 + β2 > 0.
Consider also the self-adjoint operator Tc, generated in the Hilbert space L2 (0,+∞) by

the boundary value problem (2.3) - (2.4). Since ex → +∞ as x→ +∞, the spectrum of the
operator Tc, i.e., of problem (2.3) and (2.4), consists [13], [14] of simple real eigenvalues
λ2n = λ2n (c) > 0, n = 1, 2, ..., condensing to +∞.
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On the other hand, it follows from relation f (x, λ) ∈ L2 (0,∞) that λ2n is an eigenvalue
of the operator Tc if and only if ∆ (±λn) = 0, where

∆ (λ) = αf (0, λ) + βf ′ (0, λ) = αK2iλ

(
2e

c
2

)
+ βe

c
2K ′2iλ

(
2e

c
2

)
. (2.5)

Therefore, the function ∆ (λ) has only real zeros ±λn, λn > 0, n = 1, 2, ... Let us show
that the zeros of the function ∆ (λ) are simple.

Let us agree to denote differentiation with respect to λ and x with a dot and a prime,
respectively:

f ′ =
∂

∂x
f, ḟ =

∂

∂λ
f.

Note that from (1.2), (2.2), it follows that, for real λ the following equality holds:

f (x, λ) =

∫ ∞
0

e−zcht cosλtdt,

where z = 2e
x+c
2 . This equality, in turn, implies the validity of the estimate for x > 0

|F (x, λ) | ≤ e
x+c
2 e−e

x+c
2

∫ ∞
0

te−chtcht dt,

where F (x, λ) means any of the functions f (x, λ), ḟ (x, λ) , f ′ (x, λ) , ḟ ′ (x, λ). The last
estimate shows that each of these functions decays like a double exponent as x → +∞
uniformly with respect to λ ∈ (−∞,∞).

Now differentiating the equation

−f ′′ (x, λ) + ex+cf (x, λ) = λ2f (x, λ)

with respect to λ, one obtains satisfies the following equation for ḟ (x, λ)

−ḟ ′′ (x, λ) + ex+cḟ (x, λ) = λ2ḟ (x, λ) + 2λf (x, λ) .

Multiplying the first equation by ḟ (x, λ), the second by - f (x, λ), and then subtracting the
first ratio from the second, we get the equality{

ḟ (x, λ) , f (x, λ)
}′

= 2λ f2 (x, λ) ,

where {u, v} = uv′ − u′v. Integrating the resulting equality from zero to infinity and
assuming λ real, we have

ḟ ′ (0, λ) f (0, λ)− ḟ (0, λ) f ′ (0, λ) = 2λ

∫ +∞

0
f2 (x, λ) dx.

Let, for example, β 6= 0. Multiplying both sides of the last equality by β and using the
definition of the function ∆ (λ), we obtain[
∆̇ (λ)− αḟ (0, λ)

]
f (0, λ)− ḟ (0, λ) [∆ (λ)− αf (0, λ)] = 2βλ

∫ +∞

0
f2 (x, λ) dx,

i.e.

∆̇ (λ) f (0, λ)−∆ (λ) ḟ (0, λ) = 2βλ

∫ +∞

0
f2 (x, λ) dx.



136 The zeros of modified Bessel functions as functions of their order

Setting now λ = λn, we get

∆̇ (λn) f (0, λn) = 2βλn

∫ +∞

0
f2 (x, λn) dx.

Therefore, ∆̇ (λn) 6= 0,i.e. the zeros of the function ∆ (λ) are simple.
Let us now study the asymptotics of the eigenvalues λ2n = λ2n (c). Since the function

q (x) = ex+c satisfies all conditions of Theorem 7.3 from the monograph [13] (see also
[14]), we have ∫ lnλ2n−c

0

√
λ2n − ex+cdx ∼ πn, n→ +∞. (2.6)

Next, we notice that∫ lnλ2n−c
0

√
λ2n − ex+cdx =

∫ λ2n
ec t−1

√
λ2n − tdt

= λn
∫ λ2n
ec

λ2n
t

√
1− t

λ2n
d t
λ2n

= λn
∫ 1
ecλ−2

n
u−1
√
1− udu.

(2.7)

Since the function G (u) = 2
√
1− u− ln

(
1 +
√
1− u

)
+ ln

(
1−
√
1− u

)
is a primitive

function of g (u) = u−1
√
1− u, from formula (2.7), we have∫ lnλ2n−c

0

√
λ2n − ex+cdx = 2λn lnλn

[
1 +O

(
1

lnλn

)]
, n→ +∞.

Comparing this relationship with (2.6), we obtain

λn lnλn =
πn

2
[1 + o (1)] , n→ +∞.

We rewrite the last relation in the form

µn + lnµn = ln
πn

2
+ o (1) , n→ +∞, (2.8)

where
µn = lnλn. (2.9)

It follows from relation (2.8) that (see [8])

µn = ln
πn
2

ln πn
2

+O

(
ln πn

2

ln ln πn
2

)
, n→ +∞.

Hence, taking into account equality (2.9), we have

λn =
nπ

2

(
ln
nπ

2

)−1
[1 + o (1)] , n→ +∞.

Therefore, for the zeros of the function ∆ (λ) we have the asymptotic equality

λn ∼
nπ

2 lnn
, n→ +∞. (2.10)

Further, in the boundary condition (2.4) the values α, β can be arbitrary numbers sat-
isfying condition α2 + β2 > 0. Clearly, the numbers a = α and b = βe

c
2 also have this

property. Setting then z = 2e
c
2 and taking into account that νn = 2λn from (2.5), (2.10),

we find that the function aKν (z) + bK ′ν (z) has countable simple purely imaginary zeros
±iνn, νn > 0, n = 1, 2, ... with asymptotics (1.3). This completes the proof of Theorem
1.1.
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Now we give the proof of Theorem 1.2. By virtue of Theorem 1.1, it follows from the
relation aKν (z) + bK ′ν (z) = 0 that λ2 =

(
ν
2

)2 is an eigenvalue of the boundary value
problem (2.3) and (2.4). Let λ2n (c) be the n−th eigenvalue of boundary value problem (2.3)
and (2.4). If c1 < c2, then, by the minimax principle (see [7]) we have λ2n (c1) < λ2n (c2).
Therefore, if iνn (z) , νn (z) > 0 is the n−th zero of the function aKν (z) + bK ′ν (z), then
the condition 0 < z1 < z2 implies that νn (z1) < νn (z2).
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