A new characterization of simple groups ${}^{2}D_{n}(3)$

Behnam Ebrahimzadeh *

Received: 14.11.2020 / Revised: 10.03.2020 / Accepted: 27.04.2021

Abstract. In this paper, we prove that the simple groups ${}^{2}D_{n}(3)$, where $(n = 2^{e} + 2, e \ge 4)$ can be uniquely determined by its order and the largest elements order.

Keywords. Elements order, the largest elements order, Frobenius group, prime graph.

Mathematics Subject Classification (2010): 2010 Mathematics Subject Classification: 20D06; 20D60

1 Introduction

For a finite group G, the set of prime divisors of |G| is denoted by $\pi(G)$ and the largest element of the set $\pi_e(G)$ of element orders of G is denoted by k(G). The prime graph $\Gamma(G)$ of group G is a graph whose vertex set is $\pi(G)$, and two vertices u and v are adjacent if and only if $uv \in \pi_e(G)$. Moreover, assume that $\Gamma(G)$ has t(G) connected components π_i , for $i = 1, 2, \ldots, t(G)$. In the case where G is of even order, we always assume that $2 \in \pi_1$.

We also denote the set of all the primes dividing n by $\pi(n)$ where n is a natural number. Next, we know that |G| is the product of $m_1, m_2, \dots, m_t(G)$, where m_i is a positive integer with $\pi(m_i) = \pi_i$. All m_i are called the order components of G.

If *H* be a finite group such that |G| = |H| and k(G) = k(H) implies that $G \cong H$, then we say the group *G* is characterizable by using its order and the largest elements order. Next, for example the authors in ([2,4,5,7,13,9]) proved that the simple groups $L_3(q)$ and $U_3(q)$ where *q* is some special power of prime, the simple group $L_2(q)$ where $q = p^n < 125$, the simple K_4 -groups of type $L_2(p)$, where *p* is a prime but not 2^n -1, the projective general linear group PGL(2,q) and suzuki group Sz(q), where q - 1 or $q \pm \sqrt{2q} + 1$ is a prime number are characterizable by using the largest elements order and the order of the group.

In this paper, we prove that the simple groups ${}^{2}D_{n}(3)$, where $(n = 2^{e} + 2, e \ge 4)$, can be uniquely determined by its order and the largest elements order. We note that ${}^{2}D_{n}(3) \cong P\Omega_{2n}^{-}(3)$. In fact, we prove the following main theorem.

Main Theorem. Let G be a group with $|G| = |{}^{2}D_{n}(3)|$ and $k(G) = k({}^{2}D_{n}(3))$, where $(n = 2^{e} + 2, e \ge 4)$. Then $G \cong D_{n}(3)$.

B. Ebrahimzadeh

^{*} Corresponding author

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran E-mail: behnam.ebrahimzadeh@gmail.com

2 Notation and Preliminaries

In this section, we denote the several Lemmas and definition where we for proving the main theorem need them. Hence we have the following Lemmas.

Lemma 2.1 [8] Let G be a Frobenius group of even order with kernel K and complement H. Then

1 t(G) = 2, $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$; 2 |H| divides |K| - 1; 3 K is nilpotent.

Definition 2.1 A group G is called a 2-Frobenius group if there is a normal series $1 \leq H \leq K \leq G$ such that G/H and K are Frobenius groups with kernels K/H and H respectively.

Lemma 2.2 [1] Let G be a 2-Frobenius group of even order. Then

1 $t(G) = 2, \pi(H) \cup \pi(G/K) = \pi_1 \text{ and } \pi(K/H) = \pi_2;$

2 G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.3 [3] If $t(G) \ge 2$, *H* is a π_i -subgroup of *G*, and $H \le G$, then $\prod_{j=1, j \ne i}^{t(G)} m_i \mid (|H| - 1)$

Lemma 2.4 [16] Let G be a finite group with $t(G) \ge 2$. Then one of the following statements holds:

1 G is a Frobenius group;

- 2 G is a 2-Frobenius group.
- 3 *G* has a normal series $1 \leq H \leq K \leq G$ such that *H* and *G*/*K* are π_1 -groups, *K*/*H* is a non-abelian simple group, *H* is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.5 [17] Let q, k, l be natural numbers. Then

$$\begin{aligned} I & (q^{k} - 1, q^{l} - 1) = q^{(k,l)} - 1. \\ 2 & (q^{k} + 1, q^{l} + 1) = \begin{cases} q^{(k,l)} + 1 & \text{if both } \frac{k}{(k,l)} \text{ and } \frac{l}{(k,l)} \text{ are odd,} \\ (2, q + 1) & \text{otherwise.} \end{cases} \\ 3 & (q^{k} - 1, q^{l} + 1) = \begin{cases} q^{(k,l)} + 1 & \text{if } \frac{k}{(k,l)} \text{ is even and } \frac{l}{(k,l)} \text{ is odd,} \\ (2, q + 1) & \text{otherwise.} \end{cases} \end{aligned}$$

In particular, for every $q \ge 2$ and $k \ge 1$, the inequality $(q^k - 1, q^k + 1) \le 2$ holds.

3 Proof of the Main Theorem

In this section, we prove that the main theorem. To do this, we denote the simple groups ${}^{2}D_{n}(3)$ by D. To prove the main theorem we will prove several lemmas as follows. We note that $|D| = \frac{3^{n(n-1)}(3^{n}+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^{n}+1)}$ and $k(D) = 3^{n-1} - 1$.

Theorem 3.1 Let G be a group and $D = {}^2 D_n(3)$ where $(n = 2^e + 2, e \ge 4)$. Then k(G) = k(D) and |G| = |D| if and only if $G \cong D$.

Proof. First, we note that $m_1 = 3^{n(n-1)}(3^n + 1)(3^{n-1} - 1)\prod_{i=1}^{n-2}(3^{2i} - 1)$ and $m_2 = \frac{3^{n-1}+1}{2}$ are two components of D. Next, m_2 be odd order component of G, and also it is one of odd order components of K/H. It follows that $t(K/H) \ge 2$. Now Lemma 2.4 implies that G satisfies one of the following cases.

Lemma 3.1 The group G is not a Frobenius group.

Proof. We prove that G is not a Frobenius group. Opposite, we assume G be a Frobenius group with kernel K and complement H. Then by Lemma 2.4, t(G) = 2 and $\pi(H)$ and $\pi(K)$ are vertex sets of the connected components of $\Gamma(G)$ and |H| divides |K| - 1. So, $|K| = 3^{n(n-1)}(3^n + 1)(3^{n-1} - 1)\prod_{i=1}^{n-2}(3^{2i} - 1)$, $|H| = \frac{3^{n-1}+1}{2}$. Now, suppose that r is a prime divisor of $3^{2i} - 1$ and $G_r \in Syl_r(G)$. Thus, $|G_r| \mid \frac{3^n+1}{4}$ and $G_r \leq G$ it follows that $|G_r| \equiv 1 \pmod{m_2}$. As a result there is the natural number s so that $|G_r| = s(\frac{3^{n-1}+1}{2}) + 1$. On the other hand, we have $|G_r| \leq \frac{3^n+1}{4}$, where that we deduce s = 1, so must be $\frac{(3^{n-1}+1)}{2} + 1$ divides $\frac{3^n+1}{4}$, which is impossible. Hence, G is not a Frobenius group.

Lemma 3.2 The group G is not a 2-Frobenius group.

Proof. We prove that that G is not a 2-Frobenius group. Opposite, we assume G be a 2-Frobenius group, so there a normal series $1 \leq H \leq K \leq G$ such that G/H and K are Frobenius grops with kernel K/H and H, respectively. As a result, t(G) = 2, $\pi(H) \cup \pi(G/K) = \pi_1$ and $\pi(K/H) = \pi_2$ and also G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|. Now, assume r is a prime divisor of $3^{2n} - 1$. Hence, we deduce that $r \mid \frac{3^n+1}{4}$ and $r \nmid (\frac{3^{n-1}-1}{2})$. As a result, $r \nmid |G/K|$, therefore $r \mid |H|$, which is impossible. Hence, G is not a 2-Frobenius group.

Lemma 3.3 The group G is isomorphic to the group D.

Proof. By the third case of Lemma 2.4, G has a normal series $1 \leq H \leq K \leq G$ such that H and G/K are π_1 -groups and also K/H is a non-abelian simple group. On the other hand, every odd order components of G are the odd order component of K/H. So, $t(K/H) \geq 2$. According to the classification of the finite simple groups we know that the possibilities for K/H are alternating group $A_m, m \geq 5$, 26 sporadic groups, simple groups Lie types. First, we assume $G \cong D$. Then, we can see easily prove that . Now, we need prove sufficient

condition, that is if k(G) = k(D) and |G| = |D|, then $G \cong D$. Now, by [11] we have $k(D) = 3^{n-1} - 1$ and also $|D| = \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. Since that K/H is a non-abelian simple group. So, K/H is isomorphic one of the following groups.

Step 1. Let $K/H \cong A_m$, where $m \ge 5$ and m = r, r+1, r+2. Then by [11] $\pi(A_m) = m$ and $|A_m| \mid |G|$. For this purpose, we consider, $3^{n-1} - 1 = m$. Since that $m \ge 5$, so we deduce $3^{n-1} - 1 \ge 5$. As a result, $m \le 3^{n-1} - 1 \le 3^n$, so $m \le 3^n$, where this is impossible. Hence, $K/H \ncong A_m$.

Step 2. If K/H is isomorphic to sporadic simple groups, then by [11], we have $k(S) = \{5,7,11,17,19,23,31,37,59\}$. Now, we consider $3^{n-1} - 1 = 5,7,11,17,19$,

23, 31, 37, 59.Next, for example if $3^{n-1} - 1 = 5$, then we deduce $3^{n-1} = 6$. So, we can see easily this equation is impossible. For other groups, we have a contradiction, similarly. **Step 3.** In this case, we consider K/H is isomorphic to a the group of Lie-types.

3.1. $K/H \ncong B'_n(q')$, where n' > 2 and $C'_n(q')$ with n' > 3 and also q' is power of prime number. For this purpose, we consider $K/H \cong B'_n(q')$. Now by [11], $k(B'_n(q')) = q'^{n'} + q'$ and also $|B'_n(q')| = \frac{q'^{n'^2}\prod_{i=1}^n\prod_{i=1}^{n'}(q'^{2i}-1)}{(2,q'-1)}$. Since that $|B'_n(q')| ||G|$. So, $|\frac{q'^{n'^2}\prod_{i=1}^{n'}\prod_{i=1}^{n'}(q'^{2i}-1)}{(2,q'-1)}|$ $\frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. Now, we consider, $q'^{n'} + q' = 3^{n-1} - 1$, it follows that $q'^{n'} + q' + 1 = 3^{n-1} - 1$ has not any solution. The another value of n, also we have a contradiction. For $K/H \ncong C'_n(q')$, we have a contradiction, similarly.

3.2. If $K/H \cong^3 D_4(q')$, then by [11], $k({}^3D_4(q')) = (q'^3 - 1)(q' + 1)$. Also we know that $|{}^3D_4(q')| \mid |G|$, so $q'{}^{12}(q'^8 + q'^4 + 1)(q'^6 - 1)(q'^2 - 1) \mid \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. Now, we consider $3^{n-1} - 1 = (q'^3 - 1)(q' + 1)$ it follows that $3^{n-1} - 1 = q'^4 + q'^3 - q' - 1$. Thus, $3(3^{n-2} = q'(q'^3 + q'^2 - 1)$ so q' = 3 and $q'^3 + q'^2 - 1 = 3^{n-2}$ which is a contradiction.

3.3. $K/H \cong E_6(q'), E_7(q'), E_8(q'), F_4(q')$. For example if $K/H \cong F_4(q')$, then by [11] $k(F_4(q')) = (q'^3 - 1)(q' + 1)$. On the other hand, $|F_4(q')| = q'^{24}(q'^{12} - 1)(q'^8 - 1)(q'^6 - 1)(q'^2 - 1)$. Since that $|F_4(q')| ||G|$, so $q'^{24}(q'^{12} - 1)(q'^8 - 1)(q'^6 - 1)(q'^2 - 1) |$ $\frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. For this purpose, we consider $3^{n-1} - 1 = (q'^3 - 1)(q' + 1)$. As a result like to proof 3.2, we have a contradiction. For $K/H \cong E_6(q'), E_7(q'), E_8(q')$, we have a contradiction, similarly.

3.4. If $K/H \cong^2 E_6(q')$, then by [11], $k({}^2E_6(q')) = \frac{(q'+1)(q'^2+1)(q'^3-1)}{(3,q'+1)}$. Also, we know that $|{}^2E_6(q')| = \frac{q'^{36}(q'^{12}-1)(q'^9+1)(q'^8-1)(q'^6-1)(q'^5+1)(q'^2-1)}{(3,q'+1)}$. Now, we consider $\frac{(q'+1)(q'^2+1)(q'^3-1)}{(3,q'+1)} = 3^{n-1} - 1$. First, if (3,q'+1) = 1 then $(q'+1)(q'^2+1)(q'^3-1) = 3^{n-1} - 1$. It follows that $q'^6 + q'^5 + q'^4 - q'^2 - q' = 3^{n-1}$, so $3(3^{n-2}) = q'(q'^5 + q'^4 - q' - 1)$. As a result q' = 3 and $3^{n-2} = q'^5 + q'^4 - q' - 1$, which is a contradiction. Now, if (3,q'+1) = 3 then we deduce $\frac{(q'+1)(q'^2+1)(q'^3-1)}{3} = 3^{n-1} - 1$. As a result, $3(3^{n-1} = q'(q'^5 + q'^4 + q'^3 - q' - 1)$, which is a contradiction, similarly.

3.5. If $K/H \cong^2 G_2(3^{2m+1})$, where $m \ge 1$ then by [11], $k({}^2G_2(3^{2m+1})) = 3^{2m+1} + 3^{m+1} + 1$. Also, we know that $|{}^2G_2(3^{2m+1})| = q'^3(q'^3+1)(q'-1)$. Since that $|{}^2G_2(3^{2m+1})| | |G|$. Hence, $q'^3(q'^3+1)(q'-1) | \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. For this purpose, we consider $3^{2m+1} + 3^{m+1} + 1 = 3^{n-1} - 1$. Now, since $m \ge 1$, so $38 \ge 3^{2m+1} + 3^{m+1} + 2 = 3^{n-1}$. As a result $3^{n-1} \ge 38$, so $n \ge 5$. On the other hand, we know that $n = 2^e + 2$, $e \ge 4$, so which is a contradiction.

3.6. If $K/H \cong^2 B_2(q')$, where $q' = 2^{2m+1}$, $m \ge 1$, then by [11], $k({}^2B_2(q')) = q' + \sqrt{2q'} + 1$, also $|{}^2B_2(q')| = q'{}^2(q'{}^2 + 1)(q' - 1)$. Since that $|{}^2B_2(q')| | |G|$ so $q'{}^2(q'{}^2 + 1)(q' - 1) | \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. Now, we consider, $q' + \sqrt{2q'} + 1 = 3^{n-1} - 1$. Hence $2^{2m+1} + 2^{m+1} + 2 = 3(3^{n-2})$. It follows that $2(2^{2m} + 2^m + 1) = 3(3^{n-2})$. As a result we deduce $2 | 3^{n-2}$ and $2^{2m} + 2^m + 1 = 3$, this is impossible, because we deduce m = 0 where $m \ge 1$.

3.7. If $K/H \cong G_2(q')$, then by [11], $k(G_2(q')) = q'^2 + q' + 1$ and also $|G_2(q')| = q'^6(q'^6 - 1)(q'^2 - 1)$. Since $|G_2(q')| ||G|$, so $q'^6(q'^6 - 1)(q'^2 - 1) |\frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. For this purpose, we consider $q'^2 + q' + 1 = 3^{n-1} - 1$ so $q'^2 + q' + 1 = 3^{n-1} - 1 < 3^{n-1} < 3^n$. It follows that $q'^2 \leq 3^n$ thus $q'^6 \leq 3^{3n}$. On the other hand, we have $q'^6 < q'^6(q'^6 - 1)(q'^2 - 1) \leq \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)} \leq 3^n + 1$. As a result $3^{3n} \leq 3^n + 1$, which this is impossible.

3.8. If $K/H \cong^2 A'_n(q')$, where $n' \ge 2$, then by [11], $k({}^2A'_n(q')) = \frac{q'n'+1}{(3,q'+1)}$. On the other hand, we have $|{}^2A'_n(q')| = \frac{q'n'(n'+1)/2\prod_{i=1}^{n'}(q'^{i+1}-(1^{i+1}))}{(n'+1,q'+1)}$. Since that $|{}^2A'_n(q')| | |G|$. So, we have $\frac{q'n'(n'+1)/2\prod_{i=1}^{n'}(q'^{i+1}-(1^{i+1}))}{(n'+1,q'+1)} | \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. For this purpose, we consider $\frac{q'n'+1}{(3,q'+1)} = 3^{n-1} - 1$, so $q'n'+1 = 3^{n-1}$. As a result q' = 3 and n = n' + 2. On ther hand $n = 2^e + 2$ thus $n' = 2^e$ which is impossible. The another case (n', q' + 1) = n' is impossible, similarily.

3.9. If $K/H \cong L_{n'+1}(q')$, where $n \ge 1$, then by [11], $k(L_{n+1}(q')) = \frac{q'^{n'+1}-1}{q'-1(n'+1,q'-1)}$. Also we know that $|L_{n'+1}(q')| = \frac{q'^{n'(n'+1)/2}(q'^{n'}-1)\prod_{i=1}^{n'}(q'^{i+1}-1)}{(n'+1,q'+1)}$. Since that $|L_{n+1}(q')| |$ |G|. So, $\frac{q'^{n'(n'+1)/2}(q'^{n'}-1)\prod_{i=1}^{n'}(q'^{i+1}-1)}{(n'+1,q'+1)} | \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. For this purpose, we consider $\frac{q'^{n'+1}-1}{q'-1(n'+1,q'-1)} = 3^{n-1} - 1$. First if (q'-1,n'-1) = 1 then $\frac{q'^{n'+1}-1}{q'-1} = 3^{n-1} - 1$. As a result $q'^{n'} + q'^{n'-1} + ... = 3^{n-1} - 1$ where this is impossible. For example if q' = 3, then we see that impossible. Now, if (q'-1,n'-1) = n' then we have a contradiction then we see that impossible. Now, if (q'-1, n'-1) = n' then we have a contradiction, similarly. **3.10.** If $K/H \cong D_{n'}(q')$, where $n \ge 4$. Then, by [11], $k(D_{n'}(q')) = \frac{q'^{n'-1}+1(q'+1)}{(4,q'-1)}$. On the other hand, we know that $|D_{n'}(q')| = \frac{q'^{n'(n'-1)}(q'^{n'}-1)\prod_{i=1}^{n'-1}(q'^{2i}-1)}{(4,q'^{n'}-1)}$. Since that $|D_{n'}(q')| \mid |G|$. So, $\frac{q'^{n'(n'-1)}(q'^{n'}-1)\prod_{i=1}^{n'-1}(q'^{2i}-1)}{(4,q'^{n'}-1)} \mid \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. Hence, we consider $\frac{q'^{n'-1}+1(q'+1)}{(4,q'-1)} = 3^{n-1}-1$. Now, if (4,q'-1) = 1, then we deduce $q'^{n'-1}+1(q'+1) = 3^{n-1}-1$. Thus $q'^{n'}+q'^{n'-1}+q'+2 = 3^{n-1}$, this is impossible. The another case is impossible, similarly. impossible, similarly. **3.11.** If $K/H \cong^2 D_{n'}(q')$, where q' > 3 then by [11], $k\binom{2}{D_{n'}(q')} = \frac{q'(q'+1)(q'^{2n'-2}+1)}{2}$. On the other hand, we know $\binom{2}{D_{n'}(q')} = \frac{q'^{n'(n'-1)}(q'^{n'}+1)\prod_{i=1}^{n'-1}(q'^{2i}-1)}{(4,q'^{n'}+1)}$. Now, since that $\binom{2}{D_{n'}(q')} \mid |G|$ so $\frac{q'^{n'(n'-1)}(q'^{n'}+1)\prod_{i=1}^{n'-1}(q'^{2i}-1)}{(4,q'^{n'}+1)} \mid \frac{3^{n(n-1)}(3^n+1)\prod_{i=1}^{n-1}(3^{2i}-1)}{(4,3^n+1)}$. For this purpose, we consider $\frac{q'(q'+1)(q'^{2n'-2}+1)}{2} = 3^{n-1} - 1$. It follows that $3^{n-1} - 1 \leq q'^{2n'}$. Since that $q'^{2n'} \mid |G|$ but $3^{n-1} - 1 \nmid |G|$, which is impossible. Hence, we have the following isomorphic

isomorphic.

3.12. $K/H \cong^2 D_{n'}(3)$. As a result |K/H| = |D|. On the other hand, we know that $H \trianglelefteq$ $K \triangleleft G$, and also $k(K/H) \mid k(D)$ so $3^{n-1} - 1 = 3^{n'-1} - 1$. As a result n = n'. Now, since that |K/H| = |D| and $1 \triangleleft H \triangleleft K \triangleleft G$, we deduce that H = 1 and $G = K \cong D$.

References

- 1. Chen, G.Y.: On the structure of Frobenius groups and 2-Frobenius groups, J. Southwest China Normal University, 20(5), 485-487 (1995).
- 2. Chen, G.Y., He, L.G., Xu, J.H.: A new characterization of sporadic simple groups, Italian journal of pure and mathematics, **30**, 373-392 (2013).
- 3. Chen, G.Y.: A new characterization of sporadic simple groups, Algebra Collog, 31, 49-58 (1996).
- 4. Chen, G.Y., He, L.G.: A new characterization of $L_2(q)$ where $q = p^n < 125$ Italian journal of pure and mathematics, 38, 125-134 (2011).
- 5. Chen, G.Y., He, L.G. A new characterization o simple K_4 -group with type $L_2(p)$ Advanced in mathematics(china), (2012). doi: 10.11845/sxjz.165b.
- 6. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups, Oxford University Press, (1985).
- 7. Ebrahimzadeh, B., Iranmanesh, A., Tehranian, A., Parvizi Mosaed, H.: A Characterization of the suzuki groups by order and the Largest elements order, Journal of Sciences, Islamic Republic of Iran, 27(4), 353-355 (2016).
- 8. Gorenstein, D.: Finite groups, Harper and Row, New York, (1980).

- 9. He, L.G., Chen, G.Y.: A new characterization of $L_3(q)$ $(q \le 8)$ and $U_3(q)$ $(q \le 11)$, J. Southwest Univ. (Natur.Sci.), **27**(33), 81-87 (2011).
- Higman, G.: *Finite groups in which every element has prime power order*, J. London. Math. Soc), **32**, 335-342 (1957).
- 11. Kantor, W.M., Seress, A.: Large element orders and the characteristic of Lie-type simple groups, J. Algebra, **322**, 802-832 (2009).
- 12. Kondrat'ev, A.S.: *Prime graph components of finite simple groups*, Mathematics of the USSR-Sbornik, **67**(1), 35-247 (1990).
- 13. Li, J., Shi, W.J., Yu, D.: A characterization of some PGL(2,q) by maximum element orders, Bull. Korean Math. Soc, **52**(6), 2025-2034 (2015).
- 14. Shi, W.J.: *Pure quantitaive characterization of each finite simple groups*, J. Progress In Nature Science, **4**(3), 316-326 (1994).
- 15. Vasilev, A.V., Grechkoseeva, M.A., Mazurov, V.D.: *Characterization of the finite simple groups by spectrum and order*, Algebra and Logic, **48**, 385-409 (2009).
- 16. Williams, J.S.: Prime graph components of finite groups, J. Algebra, **69**(2), 487-513 (1981).
- 17. Zavarnitsine, A.V.: Recognition of the simple groups $L_3(q)$ by element orders, J. Group Theory, 7(1), 81-97 (2004).