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Abstract. In this paper, we prove that the simple groups 2Dn(3), where (n = 2e + 2, e ≥ 4) can be
uniquely determined by its order and the largest elements order.
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1 Introduction

For a finite group G, the set of prime divisors of |G| is denoted by π(G) and the largest
element of the set πe(G) of element orders ofG is denoted by k(G). The prime graph Γ (G)
of group G is a graph whose vertex set is π(G), and two vertices u and v are adjacent if
and only if uv∈πe(G). Moreover, assume that Γ (G) has t(G) connected components πi,
for i = 1, 2, . . . , t(G). In the case where G is of even order, we always assume that 2 ∈ π1.

We also denote the set of all the primes dividing n by π(n) where n is a natural number.
Next, we know that |G| is the product of m1, m2,. . .mt(G), where mi is a positive integer
with π(mi) = πi. All mi are called the order components of G.
If H be a finite group such that |G| = |H| and k(G) = k(H) implies that G ∼= H , then we
say the group G is characterizable by using its order and the largest elements order. Next,
for example the authors in ([2,4,5,7,13,9]) proved that the simple groups L3(q) and U3(q)
where q is some special power of prime, the simple group L2(q) where q = pn < 125, the
simple K4 -groups of type L2(p), where p is a prime but not 2n-1, the projective general
linear group PGL(2, q) and suzuki group Sz(q), where q − 1 or q ±

√
2q + 1 is a prime

number are characterizable by using the largest elements order and the order of the group.
In this paper, we prove that the simple groups 2Dn(3), where (n = 2e + 2, e ≥ 4), can

be uniquely determined by its order and the largest elements order. We note that 2Dn(3) ∼=
PΩ−2n(3). In fact, we prove the following main theorem.
Main Theorem. Let G be a group with |G| = |2Dn(3)| and k(G) = k(2Dn(3)), where
(n = 2e + 2, e ≥ 4). Then G ∼=2 Dn(3).
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2 Notation and Preliminaries

In this section, we denote the several Lemmas and definition where we for proving the main
theorem need them. Hence we have the following Lemmas.

Lemma 2.1 [8] Let G be a Frobenius group of even order with kernel K and complement
H . Then
1 t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ (G);
2 |H| divides |K| − 1;
3 K is nilpotent.

Definition 2.1 A group G is called a 2-Frobenius group if there is a normal series 1�H �

K �G such that G/H and K are Frobenius groups with kernels K/H and H respectively.

Lemma 2.2 [1] Let G be a 2-Frobenius group of even order. Then
1 t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;
2 G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.3 [3] If t(G) ≥ 2, H is a πi−subgroup of G, and H � G, then
∏t(G)

j=1,j 6=imi |
(|H| − 1)

Lemma 2.4 [16] Let G be a finite group with t(G) ≥ 2. Then one of the following state-
ments holds:
1 G is a Frobenius group;
2 G is a 2-Frobenius group.
3 G has a normal series 1�H �K �G such that H and G/K are π1-groups, K/H is

a non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.5 [17] Let q, k, l be natural numbers. Then

1 (qk − 1, ql − 1) = q(k,l) − 1.

2 (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l) and l
(k,l) are odd,

(2, q + 1) otherwise.

3 (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l) is even and l
(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1, the inequality (qk − 1, qk + 1) ≤ 2 holds.

3 Proof of the Main Theorem

In this section, we prove that the main theorem. To do this, we denote the simple groups
2Dn(3) byD. To prove the main theorem we will prove several lemmas as follows. We note

that |D| = 3n(n−1)(3n+1)
∏n−1

i=1 (32i−1)
(4,3n+1) and k(D) = 3n−1 − 1.

Theorem 3.1 Let G be a group and D =2 Dn(3) where (n = 2e + 2, e ≥ 4). Then
k(G) = k(D) and |G| = |D| if and only if G ∼= D.

Proof. First, we note that m1 = 3n(n−1)(3n + 1)(3n−1 − 1)
∏n−2

i=1 (3
2i − 1) and m2 =

3n−1+1
2 are two components of D. Next, m2 be odd order component of G, and also it

is one of odd order components of K/H . It follows that t(K/H) ≥ 2. Now Lemma 2.4
implies that G satisfies one of the following cases.
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Lemma 3.1 The group G is not a Frobenius group.

Proof. We prove that G is not a Frobenius group. Opposite, we assume G be a Frobenius
group with kernel K and complement H . Then by Lemma 2.4, t(G) = 2 and π(H) and
π(K) are vertex sets of the connected components of Γ (G) and |H| divides |K| − 1. So,
|K| = 3n(n−1)(3n + 1)(3n−1 − 1)

∏n−2
i=1 (3

2i − 1), |H| = 3n−1+1
2 . Now, suppose that

r is a prime divisor of 32i − 1 and Gr ∈ Sylr(G). Thus, |Gr| | 3n+1
4 and Gr � G it

follows that |Gr| ≡ 1( mod m2). As a result there is the natural number s so that|Gr| =
s(3

n−1+1
2 ) + 1. On the other hand, we have |Gr| ≤ 3n+1

4 , where that we deduce s = 1, so

must be (3n−1+1)
2 +1 divides 3n+1

4 , which is impossible. Hence,G is not a Frobenius group.

Lemma 3.2 The group G is not a 2-Frobenius group.

Proof. We prove that that G is not a 2-Frobenius group. Opposite, we assume G be a 2-
Frobenius group, so there a normal series 1�H�K�G such thatG/H andK are Frobenius
grops with kernel K/H and H , respectively. As a result, t(G) = 2, π(H)∪ π(G/K) = π1
and π(K/H) = π2 and also G/K and K/H are cyclic groups satisfying |G/K| divides
|Aut(K/H)|. Now, assume r is a prime divisor of 32n− 1. Hence, we deduce that r | 3n+1

4

and r - (3n−1−1
2 . As a result, r - |G/K|, therefore r | |H|, which is impossible. Hence, G is

not a 2-Frobenius group.

Lemma 3.3 The group G is isomorphic to the group D.

Proof. By the third case of Lemma 2.4,G has a normal series 1�H �K �G such that H
and G/K are π1-groups and also K/H is a non-abelian simple group. On the other hand,
every odd order components of G are the odd order component of K/H . So, t(K/H) ≥ 2.
According to the classification of the finite simple groups we know that the possibilites for
K/H are alternating group Am, m ≥ 5, 26 sporadic groups, simple groups Lie types.
First, we assumeG ∼= D. Then, we can see easily prove that . Now, we need prove sufficient
condition, that is if k(G) = k(D) and |G| = |D|, then G ∼= D. Now, by [11] we have

k(D) = 3n−1 − 1 and also |D| = 3n(n−1)(3n+1)
∏n−1

i=1 (32i−1)
(4,3n+1) . Since that K/H is a non-

abelian simple group. So, K/H is isomorphic one of the following groups.
Step 1. Let K/H ∼= Am, where m ≥ 5 and m = r,r+1, r+2 . Then by [11] π(Am) = m
and |Am| | |G|. For this purpose, we consider, 3n−1 − 1 = m. Since that m ≥ 5, so we
deduce 3n−1 − 1 ≥ 5. As a result, m ≤ 3n−1 − 1 ≤ 3n−1 ≤ 3n, so m ≤ 3n, where this is
impossible. Hence, K/H 6∼= Am.
Step 2. If K/H is isomorphic to sporadic simple groups, then by [11], we have k(S) =
{5,7,11,17,19,23,31,37,59}. Now, we consider 3n−1 − 1 = 5, 7, 11, 17, 19,
23, 31, 37, 59.Next, for example if 3n−1− 1 = 5, then we deduce 3n−1 = 6. So, we can see
easily this equation is impossible. For other groups, we have a contradiction, similarly.
Step 3. In this case, we consider K/H is isomorphic to a the group of Lie-types.
3.1. K/H 6∼= B′n(q

′), where n′ > 2 and C ′n(q
′) with n′ > 3 and also q′ is power of prime

number. For this purpose, we considerK/H ∼= B′n(q
′). Now by [11], k(B′n(q

′)) = q′n
′
+q′

and also |B′n(q′)| =
q′n
′2 ∏n′

i=1

∏n′
i=1(q

′2i−1)
(2,q′−1) . Since that |B′n(q′)| | |G|. So, | q

′n′2 ∏n′
i=1

∏n′
i=1(q

′2i−1)
(2,q′−1) |

3n(n−1)(3n+1)
∏n−1

i=1 (32i−1)
(4,3n+1) . Now, we consider, q′n

′
+q′ = 3n−1−1, it follows that q′n

′
+q′+

1 = 3n−1, where this is impossible. For example if n = 3, then the equation q′3 + q′ + 1 =
3n−1 − 1 has not any solution. The another value of n, also we have a contradiction. For
K/H 6∼= C ′n(q

′), we have a contradiction, similarly.
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3.2. If K/H ∼=3 D4(q
′), then by [11], k(3D4(q

′)) = (q′3 − 1)(q′ + 1). Also we know that

|3D4(q
′)| | |G|, so q′12(q′8 + q′4 + 1)(q′6 − 1)(q′2 − 1) | 3n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) . Now,
we consider 3n−1−1 = (q′3−1)(q′+1) it follows that 3n−1−1 = q′4+q′3−q′−1. Thus,
3(3n−2 = q′(q′3 + q′2 − 1) so q′ = 3 and q′3 + q′2 − 1 = 3n−2 which is a contradiction.

3.3. K/H 6∼= E6(q
′), E7(q

′), E8(q
′), F4(q

′). For example if K/H ∼= F4(q
′), then by

[11] k(F4(q
′)) = (q′3 − 1)(q′ + 1). On the other hand, |F4(q

′)| = q′24(q′12 − 1)(q′8 −
1)(q′6 − 1)(q′2 − 1). Since that |F4(q

′)| | |G|, so q′24(q′12 − 1)(q′8 − 1)(q′6 − 1)(q′2 − 1) |
3n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) . For this purpose, we consider 3n−1 − 1 = (q′3 − 1)(q′ + 1). As
a result like to proof 3.2, we have a contradiction. For K/H 6∼= E6(q

′), E7(q
′), E8(q

′), we
have a contradiction, similarly.

3.4. IfK/H ∼=2 E6(q
′), then by [11], k(2E6(q

′)) = (q′+1)(q′2+1)(q′3−1)
(3,q′+1) . Also, we know that

|2E6(q
′)| = q′36(q′12−1)(q′9+1)(q′8−1)(q′6−1)(q′5+1)(q′2−1)

(3,q′+1) . Now, we consider (q′+1)(q′2+1)(q′3−1)
(3,q′+1)

= 3n−1 − 1. First, if (3, q′ + 1) = 1 then (q′ + 1)(q′2 + 1)(q′3 − 1) = 3n−1 − 1. It follows
that q′6+q′5+q′4−q′2−q′ = 3n−1, so 3(3n−2) = q′(q′5+q′4−q′−1). As a result q′ = 3
and 3n−2 = q′5 + q′4 − q′ − 1, which is a contradiction. Now, if (3, q′ + 1) = 3 then we
deduce (q′+1)(q′2+1)(q′3−1)

3 = 3n−1 − 1. As a result, 3(3n−1 = q′(q′5 + q′4 + q′3 − q′ − 1),
which is a contradiction, similarly.

3.5. If K/H ∼=2 G2(3
2m+1), where m ≥ 1 then by [11], k(2G2(3

2m+1)) = 32m+1 +
3m+1+1. Also, we know that |2G2(3

2m+1)| = q′3(q′3+1)(q′−1). Since that |2G2(3
2m+1)| |

|G|. Hence, q′3(q′3 + 1)(q′ − 1) | 3
n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) . For this purpose, we consider
32m+1 + 3m+1 + 1 = 3n−1 − 1. Now, since m ≥ 1, so 38 ≥ 32m+1 + 3m+1 + 2 = 3n−1.
As a result 3n−1 ≥ 38, so n ≥ 5. On the other hand, we know that n = 2e + 2, e ≥ 4, so
which is a contradiction.

3.6.If K/H ∼=2 B2(q
′), where q′ = 22m+1, m ≥ 1, then by [11], k(2B2(q

′)) = q′ +√
2q′ + 1, also |2B2(q

′)| = q′2(q′2 + 1)(q′ − 1). Since that |2B2(q
′)| | |G| so q′2(q′2 +

1)(q′−1) | 3
n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) . Now, we consider, q′+
√
2q′+1 = 3n−1−1. Hence

22m+1 + 2m+1 + 2 = 3(3n−2). It follows that 2(22m + 2m + 1) = 3(3n−2). As a result
we deduce 2 | 3n−2 and 22m + 2m + 1 = 3, this is impossible, because we deduce m = 0
where m ≥ 1.

3.7. If K/H ∼= G2(q
′),then by [11], k(G2(q

′)) = q′2+ q′+1 and also |G2(q
′)| = q′6(q′6−

1)(q′2 − 1). Since |G2(q
′)| | |G|, so q′6(q′6 − 1)(q′2 − 1) | 3n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) . For
this purpose, we consider q′2+ q′+1 = 3n−1−1 so q′2+ q′+1 = 3n−1−1 < 3n−1 < 3n.
It follows that q′2 ≤ 3n thus q′6 ≤ 33n. On the other hand, we have q′6 < q′6(q′6− 1)(q′2−
1) ≤ 3n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) ≤ 3n+1. As a result 33n ≤ 3n+1, which this is impossible.

3.8. If K/H ∼=2 A′n(q
′), where n′ ≥ 2, then by [11], k(2A′n(q

′)) = q′n
′+1−1

(3,q′+1) . On the other

hand, we have |2A′n(q′)| =
q′n
′(n′+1)/2

∏n′
i=1(q

′i+1−(1i+1)
(n′+1,q′+1) . Since that |2A′n(q′)| | |G|. So, we

have q′n
′(n′+1)/2

∏n′
i=1(q

′i+1−(1i+1)
(n′+1,q′+1) | 3

n(n−1)(3n+1)
∏n−1

i=1 (32i−1)
(4,3n+1) . For this purpose, we consider

q′n
′+1−1

(3,q′+1) = 3n−1 − 1, so q′n
′+1 = 3n−1. As a result q′ = 3 and n = n′ + 2. On ther

hand n = 2e + 2 thus n′ = 2e which is impossible. The another case (n′, q′ + 1) = n′ is
impossible, similarily.
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3.9. If K/H ∼= Ln′+1(q
′), where n ≥ 1, then by [11], k(Ln+1(q

′)) = q′n
′+1−1

q′−1(n′+1,q′−1) .

Also we know that |Ln′+1(q
′)| = q′n

′(n′+1)/2(q′n
′−1)

∏n′
i=1(q

′i+1−1)
(n′+1,q′+1) . Since that |Ln+1(q

′)| |

|G|. So, q′n
′(n′+1)/2(q′n

′−1)
∏n′

i=1(q
′i+1−1)

(n′+1,q′+1) | 3n(n−1)(3n+1)
∏n−1

i=1 (32i−1)
(4,3n+1) . For this purpose, we

consider q′n
′+1−1

q′−1(n′+1,q′−1) = 3n−1−1. First if (q′−1, n′−1) = 1 then q′n
′+1−1
q′−1 = 3n−1−1.

As a result q′n
′
+ q′n

′−1 + ... = 3n−1 − 1 where this is impossible. For example if q′ = 3,
then we see that impossible. Now, if (q′ − 1, n′ − 1) = n′ then we have a contradiction,
similarly.

3.10. If K/H ∼= Dn′(q
′), where n ≥ 4. Then, by [11], k(Dn′(q

′)) = q′n
′−1+1(q′+1)
(4,q′−1) .

On the other hand, we know that |Dn′(q
′)| = q′n

′(n′−1)(q′n
′−1)

∏n′−1
i=1 (q′2i−1)

(4,q′n′−1) . Since that

|Dn′(q
′)| | |G|. So, q′n

′(n′−1)(q′n
′−1)

∏n′−1
i=1 (q′2i−1)

(4,q′n′−1) | 3n(n−1)(3n+1)
∏n−1

i=1 (32i−1)
(4,3n+1) . Hence, we

consider q′n
′−1+1(q′+1)
(4,q′−1) = 3n−1−1. Now, if (4, q′−1) = 1, then we deduce q′n

′−1+1(q′+

1) = 3n−1 − 1. Thus q′n
′
+ q′n

′−1 + q′ + 2 = 3n−1, this is impossible. The another case is
impossible, similarily.

3.11. If K/H ∼=2 Dn′(q
′), where q′ > 3 then by [11], k(2Dn′(q

′)) = q′(q′+1)(q′2n
′−2+1)

2 .

On the other hand, we know |2Dn′(q
′)| = q′n

′(n′−1)(q′n
′
+1)

∏n′−1
i=1 (q′2i−1)

(4,q′n′+1)
. Now, since that

|2Dn′(q
′)| | |G| so q′n

′(n′−1)(q′n
′
+1)

∏n′−1
i=1 (q′2i−1)

(4,q′n′+1)
| 3n(n−1)(3n+1)

∏n−1
i=1 (32i−1)

(4,3n+1) . For this pur-

pose, we consider q′(q′+1)(q′2n
′−2+1)

2 = 3n−1 − 1. It follows that 3n−1 − 1 ≤ q′2n
′
. Since

that q′2n
′ | |G| but 3n−1 − 1 - |G|, which is impossible. Hence, we have the following

isomorphic.
3.12. K/H ∼=2 Dn′(3). As a result |K/H| = |D|. On the other hand, we know that H �

K �G, and also k(K/H) | k(D) so 3n−1− 1 = 3n
′−1− 1. As a result n = n′. Now, since

that |K/H| = |D| and 1�H �K �G, we deduce that H = 1 and G = K ∼= D.
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