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Abstract. Spectral theory of superlinear mappings was created by A.M. Rubinov, who introduced the
concepts of eigenvalue and eigenset. He also established the finiteness and discreteness of the spectrum
of superlinear mapping, proved the existence of eigencompact and, under some additional conditions,
provided a full description of the spectrum. But, in general case, a description of the spectrum of super-
linear mapping has not been obtained. This work finishes the construction of above spectral theory and
provides a full description of the spectrum of arbitrary normal superlinear mapping.
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1 Introduction

Multivalued mappings are largely used in the study of economic models by mathematical
methods. For more information about multivalued mappings we refer the readers to [3, 4,
9, 13,14]. A monograph by V.L. Makarov and A.M. Rubinov [11] is a fundamental work
in the field of applications of multivalued mappings in economic studies. In that work,
under some additional conditions, the authors created the spectral theory of superlinear
mappings, introduced the concepts of eigenvalue and eigenset, established the finiteness and
discreteness of the spectrum of superlinear mapping, proved the existence of eigencompact
and provided a description of spectrum. But, in general case, a description of the spectrum
of superlinear mapping has not been obtained. Some results have been obtained later in [1-
9, 13-15]. Our work finishes the construction of above spectral theory and provides a full
description of the spectrum of arbitrary superlinear mapping.

Let Rn be an n -dimensional real vector space, Rn+ be a cone from Rn with non-
negative components, xi be an i-th component of the vector x ∈ Rn, J be an index set
{1, 2, . . . , n}, RI be a subspace of the space Rn with the indices of its unit vectors taken
from the index set I ⊂ J , RI+ be a cone of vectors of the subspace RI with non-negative
components, and π (Ω) be a set of all nonempty subspaces of the space Ω.

Definition [4, 11]. A multivalued mapping a : Rn+ → π
(
Rn+
)

is called superlinear if:
1. a(λ, x) = λ a(x) , λ > 0, x ∈ Rn+,
2. a (x1) + a (x2) = a (x1 + x2), x1, x2 ∈ Rn+,
3. a(0) = {0},
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4. the graph of a is closed,
5. a

(
Rn+
)
∩ int Rn+ 6= ∅.

Definition [11]. A multivalued mapping a : Rn+ → π
(
Rn+
)

is called normal if for every
x ∈ Rn the set a(x) is normal, i.e.

(
a(x)− Rn+

)
∩ Rn+ = a(x).

2 Main part

In what follows, we only consider the normal superlinear mappings.
Definition 2.1. Positive number λ is called an eigenvalue of the superlinear mapping

a : Rn+ → π
(
Rn+
)

if there is a nonempty convex subset Ω of the cone Rn+ different from the
face of this cone such that

a (Ω) = λ Ω. (2.1)

A set Ω which satisfies (2.1) is called an eigenset of the mapping a.
The totality of all eigensets of the mapping a corresponding to the eigenvalue λ will be

denoted by πα (λ). Obviously, any eigenset is normal. Besides, due to the superadditivity
and closedness of superlinear mapping (properties 2 and 4), the closure Ω of the set Ω ⊂
πα (λ) also belongs to πα (λ).

For every set Q ⊂ Rn+, define the index sets

I (Q) =
{
i ∈ J | ∃ y ∈ Q : yi > 0

}
,

I∞ (Q) =
{
i ∈ J | ∃ y ∈ Q : {(µy)µ ≥ 0} ⊂ Q, yi > 0

}
.

Definition [10, 12, 15]. A subspace RI is called invariant with respect to the mapping a
if

a
(
RI+
)
= RI+. (2.2)

Lemma 2.1. Let a : Rn+ → π
(
Rn+
)

be a superlinear mapping, λ be its eigenvalue,
Ω ⊂ πα (λ). Then the subspaces RI are invariant with respect to a for I = I (Ω) and
I = I∞ (Ω).

Proof. Let’s prove this lemma for I = I (Ω) . The closure of the conical shell C (Ω)
of the set Ω coincides with the cone RI+. As the superlinear mapping is positively homoge-
neous (property 1), we have

a
(
RI+
)
= a

(
C (Ω)

)
= C

(
a (Ω)

)
= C

(
λΩ
)
= C

(
Ω
)
= RI+.

So, for I = I (Ω) the subspace RI is invariant.
Now let’s prove the lemma for I = I∞ (Ω). Let x0 be an arbitrary point on the coneRI+.

As RI+ is a cone, we have
{
(µ x0)µ ≥ 0

}
⊂ RI+. It is not difficult to show that RI+ ⊂ Ω

for I = I∞ (Ω).
This follows from the properties of superlinear mapping and the definition of the set

I∞ (Ω) [2, 3, 9,13]. Then
{
(µ x0)µ ≥ 0

}
⊂ RI+ ⊂ Ω, and therefore µ a (x0) = a (µ x0) ⊂

a (Ω) = λΩ for µ ≥ 0.
Hence we obtain I (a (x0)) ⊂ I∞ (Ω). Consequently, a (x0) ⊂ RI+ for I = I∞ (Ω). As

the inclusion is proved for arbitrary x0 ∈ RI+, we have

a
(
RI+
)
⊂ RI+. (2.3)
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Let’s prove the inverse inclusion. As noted above, RI+ ⊂ Ω. Therefore,

RI+ ⊂ λΩ = a (Ω).

Normality of the set a (Ω) implies RI+ ⊂ a (Ω). Let y0 ∈ ri RI+. For k = 1, 2, . . . we
have

ky0 ∈ ri RI+ ⊂ RI+ ⊂ a (Ω) .

Fix xk ∈ a−1 (ky0)
⋂
Ω for every k and denote by x̃k the projection of the point xkk on

the subspace RI . For i /∈ I∞ (Ω) we have

lim
k→∞

xik
k

= 0.

Then

lim
k→∞

∥∥∥x̃k − xk
k

∥∥∥ = 0.

As y0 ∈ a
(
xk
k

)
for every k and the superlinear mapping is closed and superadditive

(properties 4 and 2), the distance between a (x̃k) and y0 ∈ ri RI+ tends to zero as k →∞.
For sufficiently great k we have

a (xk) ∩ ri RI+ = ∅.

As xk ∈ RI+ and the mapping a is normal and positively homogeneous, we have RI+ ⊂
a
(
RI+
)
. The subspace RI+ is invariant for I = I∞ (Ω). Lemma is proved.

Definition [10, 11, 12]. By restriction of superlinear mapping a to the subspace RI+ we
mean a multivalued mapping

aI : R
I
+ → π

(
RI+
)
,

defined by the following equality:

aI(x) = a(x) ∩RI+ for x ∈ RI+.
The graph Z of the mapping a and the graph ZI of the restriction aI are related by the

equality

ZI = Z ∩
(
RI+ ×RI+

)
.

If RI is an invariant subspace, then aI(x) = a(x) for x ∈ RI+. It is not difficult to show
that aI is superlinear in invariant subspace RI . In this case, the condition

a
(
Rn+
)
∩ int Rn+ 6= ∅

is satisfied instead of

aI
(
Rn+
)
∩ ri RI+ 6= ∅.

Let I1, I2 be the subsets of indices from J with I2 ⊂ I1 and I2 6= I1. Define the
multivalued mapping

bI1, I2 : RI2+ → π
(
RI2+

)
,

by letting
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bI1, I2(x) =
{
Pr

RI2
(∪aI1 (x̃)) | x̃ ∈ R

I1
+ and Pr

RI2
x̃ = x

}
,

where Pr
RI is a projection operator on the subspace RI .

Lemma 2.2. If the subspaces RI1 , RI3 are invariant with respect to the superlinear
mapping a : Rn+ → π

(
Rn+
)

with I2 ∩ I3 = ∅, I2 ∪ I3 = I1, then the mapping bI1, I2 is
superlinear in the subspace RI2 .

Proof. The graph ZI1 of the restriction aI1 and the graph Zb of the mapping bI1, I2 are
related by the equality

Zb = Pr
R
I2
+ ×R

I2
+

Z ,

from which it follows that Zb is a convex closed cone lying in RI2 × RI2 , with Pr Zb ∩
ri RI2+ 6= ∅.

As the subspace RI3 is invariant, we have (0, y) ∈ Zb only if y = 0. Then, as shown in
[11], the mapping bI1, I2 is superlinear in the subspace RI2 . Lemma is proved.

Definition [11]. Neumann growth rate of superlinear mapping a : Rn+ → π
(
Rn+
)

is
defined as

α(a) = sup
{
α(x, y) | x ∈ Rn+, y ∈ a(x)

}
,

where

α (x, y) = sup {α | y ≥ αx} .

Obviously, for every invariant subspace RI we have α (a) ≥ α (aI).
Theorem 2.1. Let a : Rn+ → π

(
Rn+
)

be a superlinear mapping, λ be its eigenvalue,
Ω ⊂ πa(λ). Then λ = α (bI1, I2) for I1 = I (Ω), I2 = I (Ω) \I∞ (Ω).

Proof. By Lemma 1, the subspace RI1 is invariant with respect to a. Then λ is an eigen-
value of the restriction aI1 , Ω?π (a (λ)), because

aI1 (Ω) = a (Ω) = λ Ω.

If I3 = I∞ (Ω) = ∅, then the closure Ω is an eigencompact of the restriction aI , with

ri Ω ∩ ri RI1+ 6= ∅.
In this case, as shown in [11], α (aI1) = λ. It is not difficult to see that aI1 = bI1, I1 .

Consequently, α (bI1, I1) = α (aI1) = λ.
Let I3 = I∞ (Ω) = ∅. Consider the set

Ψ = Pr
RI2

(Ω) .

Obviously, Ψ is convex and closed. Besides, it is bounded, because I2 ∩ I3 = ∅. Further,
as Ω ∩ ri RI1+ 6= ∅, we have

Ω ∩ ri RI2+ 6= ∅.
The following equalities hold:

bI1, I2 (Ω) =
{
Pr

RI2
aI1 (x̃) | x̃ ∈ Ω

}
= Pr

R
I2
+

a (Ω) = Pr
R
I2
+

(λΩ) = λPr
R
I2
+

a (Ω) = λΨ.
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Thus, Ψ is an eigencompact set of the mapping bI1, I2 , with ri Ψ 6= Φ, corresponding to
the eigenvalue λ. In this case, as shown in [6], α (bI1, I2) = λ. Theorem is proved.

Definition [11]. We will say that the generalized equilibrium state σ of superlinear map-
ping a : Rn+ → π

(
Rn+
)

is given, if there are the positive number α, x ∈ Rn+, y ∈ a (x) and
the functional p ∈

(
Rn+
)∗ (hereafter, ∗ denotes the conjugacy) such that

αx ≤ y,

p (y) ≤ α p(x)
for every x ∈ Rn+, y ∈ a(x).

The number α in this definition is called a generalized growth rate of superlinear map-
ping. If, in addition, p (y) > 0, then the triplet σ = (α, (x, y) , p) is called an equilibrium
state, and the number α is called a growth rate of superlinear mapping. If the equilibrium
state σ exists for α = α (a), then it is called a Neumann equilibrium state.

Lemma 2.3. Let a : Rn+ → π
(
Rn+
)

be a superlinear mapping. There exists an invariant
subspace RI1 such that the restriction aI1 has a unique generalized growth rate α (aI1) =
α(a).

Proof. As shown in [6], there exists a subset I1 of J such that for every ε > 0 there are
x ∈ RI1+ , y ∈ a(x), which satisfy the conditions

α(a)− ε ≤ min
i∈J

yi

xi
; yi = 0 for i /∈ I1; yi > 0 for i ∈ I1.

The lemma implies RI1+ ⊂ a
(
RI1+

)
. On the other hand, it has been shown in [14] that

there exists a functional p ∈
(
Rn+
)∗ with I2 = J\I1 such that for every sufficiently small

ε > 0 the following relations hold:
p (y) ≤ (α− ε) p(x) for x ∈ Rn+, y ∈ a(x),
pi > 0 for i ∈ I2,
pi = 0 for i /∈ I2.
Hence, a

(
RI1+

)
⊂ RI1+ . Combining opposite inclusions, we obtain a

(
RI1+

)
= RI1+ ,

which proves the invariance of the subspace RI1 .
Choose εk > 0 in such a way that limk→∞ εk = 0. By Lemma 6.1 of [11], we find

xk ∈ RI1+ , yk ∈ a (xk) such that (α(a)− εk) xk ≤ yk. The following inequality holds:

α (aI1) = sup
{
α (x, y) | x ∈ RI1+ , y ∈ aI1(x)

}
≥ sup {α (xk, yk)} = α(a).

As RI1 is an invariant subspace, we have α (aI1) ≤ α(a). So, α (a) = α (aI1). Lemma
is proved.

Lemma 2.4. For every superlinear mapping a : Rn+ → π
(
Rn+
)

there is an invariant
subspace RJN such that the restriction aJN has a growth rate α (a).

Proof. The proof consists of constructing the sequence of embedded invariant subspaces
RJ1 ⊃ · · · ⊃ RJN such that every restriction aJi has a Neumann growth rate α (a), and the
last restriction aJN has a growth rate α(a).

Let J1 = J . If the mapping a has a growth rate α (a), thenN = 1 and the construction is
finished. If otherwise, by Lemma 4 we find a subset I0 ⊂ J1 such that RI0 is invariant, and
the restriction aI0 of the mapping aI1 has a unique generalized growth rate α (aJ1) = α(a).

Let σ = (α (aI0) , (x1, y1) , p1) be a generalized equilibrium state. If p1 (y1) > 0, then
α (a) = α (aI0) is a growth rate of the restriction aI0 , and the proof is complete.
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If p1 (y1) = 0, denote I1 = I (y1). As y1 ≥ α (aJ1) x1 and y1 ⊂ aJ1 (x1), we have
I (y1) ⊂ I (aJ2 (x1)), consequently, RI1+ ⊂ aJ1

(
RI1+

)
. If aJ1

(
RI1+

)
= RI1+ , then the

subspace RI1 is invariant. Assuming J2 = I1, we finish the first step of construction. If
aJ1

(
RI1+

)
6= RI1+ , denote I2 = I

(
a
(
RI1+

))
. As RI1+ ⊂ R

I2
+ , we have RI2+ ⊂ aJ1

(
RI1+

)
⊂

aJ1

(
RI2+

)
. If the subspace RI2+ is invariant with respect to aJ1 , we assume J2 = I2 and

finish the first step of construction, if not, we construct I3 = I
(
aJ1

(
RI2+

))
, and so on.

This process is finite, because at every step i we have

Ii+1 ⊂ Ii, Ii+1 6= Ii, Ii ⊂ I0\I (p1) .

At the last L-th step we obtain the subspace RI2 , which is invariant with respect to aJ1 ,
and, consequently, is invariant also with respect to a. Besides, x1, y1 ⊂ RI1 ⊂ · · · ⊂ RI2 ,
therefore,

α (aJ2) = α (aI2) ≥ α (x1, y1) = α(a).

Consequently, α(a) = α (aJ2). If α(a) is a growth rate of the restriction aJ2 , thenN = 2
and the construction is finished. If otherwise, we construct RJ3 and so on. The process of
construction will be finished at some N -th step when the invariant subspace RJN is found
such that aJN has a growth rate α(a), or an index set JN consisting of one element is
obtained. In this case it is easy to see that the generalized growth rate α(a) of the restriction
aJN will be equal to the growth rate of this restriction. Lemma is proved.

As shown in [11], every growth rate of superlinear mapping is its eigenvalue. If σ =
(α, (x, y) , p) is an equilibrium state, then

Ω=

∞⋃
t=1

α−tat (x)

is an eigenset from π a (α). But, in general, the setΩ is unbounded. Let’s prove that if there
exists a Neumann equilibrium state, then the Neumann growth rate is an eigenvalue with a
corresponding eigencompact.

Recall that, by Lemma 1, the subspace RI is invariant with respect to a for I = I∞ (Ω).
Lemma 2.5. Let the superlinear mapping a have a Neumann equilibrium

(α(a), (x, α (a)x) , p), and the eigenset Ω=
⋃∞
t=1 α

−tat (x) be unbounded. Then the re-
striction aI to the invariant subspace RI for I = I∞ (Ω) has a Neumann growth rate α(a).

Proof. For definiteness assume that α(a) = 1. Due to the homogeneity of superlinear
mapping, this assumption does not limit generality of the proof. Then Ω=

⋃∞
t=1 a

t (x). It is
easy to see that for I = I∞ (Ω) we have RI+ ⊂ Ω.

Fix y ∈ ri RI+ ⊂ Ω. As RI+ is a cone, we have k2y ∈ ri RI+ ⊂ Ω for k = 1, 2, . . . .
For every k there exists the finite Tk -step trajectory

xk =
{
xt, k | x0, k = x, xTk, k = k2y, xt+1, k ∈ a (xt, k) for t = 0, . . . , Tk − 1

}
.

Let

Zk =
1

k

Tk−1∑
t=0

xt, k , Z̃k =
1

k

Tk∑
t=1

xt, k.



S.I. Hamidov 75

The following relation is true:

Z̃k =

Tk∑
t=1

1

k
xt, k ∈

Tk−1∑
t=0

1

k
a (xt, k) ⊂ a

(
Tk−1∑
t=0

1

k
xt, k

)
= a (Zk) .

As Ω is convex and xt, k ∈ Ω, we have Zk, Z̃k ∈ Ω, with
∥∥∥Z̃k∥∥∥ ≥ 1

k ‖xTk, k‖ = ‖ky‖.

Consequently,
∥∥∥Z̃k∥∥∥ → ∞ as k → ∞. Superlinear mapping is bounded, Z̃k ∈ a (Zk),

therefore ‖Zk‖ → ∞ as k →∞. Then

lim
k→∞

Zik∥∥∥Z̃k∥∥∥ = lim
k→∞

Z̃ik∥∥∥Z̃k∥∥∥ = 0 for i ∈ I = I∞ (Ω) .

It follows that every thickening point
(
Z, Z̃

)
of the bounded sequence

(
Zk

‖Z̃k‖ ,
Z̃k

‖Z̃k‖

)
lies in RI+ × RI+. Further, Z̃k − Zk ≥ ky − x

k . Then Z > Z. The latter means α (aI) ≥ 1.
As 1 = α (a) ≥ α (aI), we have α (aI) = α(a) = 1. Lemma is proved.

Lemma 2.6. Neumann growth rate of superlinear mapping is an eigenvalue of this map-
ping. There exists an eigencompact which corresponds to this eigenvalue.

Proof. Let’s construct a finite sequence of restrictions aJ1 , . . . , aJN to unequal embed-
ded invariant subspaces RJ1 ⊃ · · · ⊃ RJN . Let J1 = J and aJ1 = a. By Lemma 4, there
exists an invariant subspaceRI1 ⊂ RJ1 such that the restriction aI1 has a unique generalized
growth rate α (aI1). The restriction aI1 is superlinear. By Lemma 5, there exists a subspace
RI2 invariant with respect to aI1 , and the restriction aI2 has a Neumann equilibrium state
σ1 = (α (aI2) , (x1, y1) , p1) with α (aI2) = α (a). As

aJ1

(
RI2+

)
= aI1

(
RI2+

)
= a2

(
RI2+

)
= RI2+ ,

the subspace RI2 is invariant also with respect to aJ1 .
As shown in [13], the growth rate α (aI2) is an eigenvalue of the mapping aI2 , and the

set

Ω1 =
∞⋃
t=1

α−t (aI2) ·
(
atI2 (x1)

)
⊂π (aI2 (α (aI2))) .

is its eigenset.
If I∞ (Ω1) = ∅, then the closure Ω1 is an eigencompact from π (aI2 (α (aI2))). Tak-

ing into account the invariance of RJ1 , RI1 , RI2 , and the equalities α(a) = α (aJ1) =
α (aI1) = α (aI2), we obtain

a
(
Ω1

)
= aJ1

(
Ω1

)
= aI1

(
Ω1

)
= aI2

(
Ω1

)
= α (aI2) Ω1 = α(a) Ω1.

So we have shown that α(a) is an eigenvalue of the mapping a, and the compact Ω ⊂
π (a (α(a))) is its eigenset.

If I∞ (Ω1) 6= ∅, we set J2 = I∞ (Ω1). By Lemma 1, the subspace RI2 is invariant with
respect to aI2 , and, consequently, also with respect to a. The restriction aJ2 of the mapping
a to this subspace is superlinear. Besides, α (aJ2) = α (aI2) = α (a). Let’s treat aI2 in the
same way as we did with aJ1 . Then either we will find an eigencompact of the mapping a
from π (a (α (a))) or we will construct an invariant subspace RJ3 ⊂ RJ2 and so on. As
every eigenset is different from the face of the cone Rn+, we will always have I∞ (Ωi) ⊂ Ji
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and I∞ (Ωi) 6= Ji. It follows that N < n, and this process is finite. At the last step we
obtain an eigencompact ΩN of the mapping a which corresponds to the eigenvalue α(a).
Lemma is proved.

It was proved in [11] that every growth rate is an eigenvalue. But it was also noted in
[6] that there exist eigenvalues which differ from growth rates and the example was given
where the eigenvalue exceeds the Neumann growth rate. The theorem below describes all
eigenvalues of superlinear mapping.

Theorem 2.2. Let a : Rn+ → π
(
Rn+
)

be a superlinear mapping, RI1 , RI3 be the sub-
spaces invariant with respect to a, with I2 ∪ I3 = I1, I2 ∩ I3 = ∅. Then α (bI1, I2)
is an eigenvalue of the mapping a. There exists the corresponding eigenset Ω such that
I (Ω) = I1, I∞ (Ω) = I3. If I3 = ∅, then Ω is an eigencompact.

Proof. By Lemma 2, the mapping bI1, I2 is superlinear. Then, by Lemma 6, the Neu-
mann growth rate α (bI1, I2) is an eigenvalue of the mapping bI1, I2 and there exists an
eigencompact Q ⊂ RI2+ which corresponds to α (bI1, I2).

If I3 = ∅, then I1 = I2. Hence,

α (bI1, I2)Q = bI1, I2 (Q) =
{
Pr

RI2×RI2
∪ aI1(x) , x ∈ R

I1
+ | Pr

RI2
x ∈ RI1+ , x ∈ Q

}
=
{
∪aI1(x) | x ∈ Q

}
= aI1 (Q) .

Thus, α (bI1, I2) is an eigenvalue of the mapping aI1 , and Q is a corresponding eigen-
compact. The subspace RI1 is invariant with respect to a. Consequently,

a (Q) = aI1 (Q) = α (bI1, I2) Q.

So we have shown that Q ⊂ π (a (α (bI1, I2))) and α (bI1, I2) is an eigenvalue of the
mapping a.

Now let’s prove the theorem for I3 6= ∅. Using the setQ, we constructΩ ⊂ RI1+ . Assume

Ω =

{
x ∈ RI1+ | Pr

R
I2
+

x ∈ Q
}
.

By the conditions of theorem, the subspaces RI1 , RI3 are invariant with respect to a and
I3 ⊂ I1. Consequently,

aI1

(
RI3+

)
= a

(
RI3+

)
= RI3+ .

Therefore, RI3 is invariant with respect to aI1 . Taking into account RI3 ⊂ Ω, we obtain

RI3+ = aI1

(
RI3+

)
⊂ aI1 (Ω) .

Then

aI1 (Ω) =

{
y ∈ RI1+ | Pr

R
I2
+

y ∈ Pr
R
I2
+

aI1 (Ω)

}
.

As Q = Pr
R
I2
+

Q, we have

bI1, I2 (Q) = Pr
RI2×RI2

(Ω)

and therefore
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aI1 (Ω) =

{
y ∈ RI1+ | Pr

R
I2
+

y ∈ bI1, I2 (Q)

}
=

{
y ∈ RI1+ | Pr

R
I2
+

y ∈ α (bI1, I2)Q

}

= α (bI1, I2)

{
y ∈ RI1+ | Pr

R
I2
+

y ∈ Q
}

= α (bI1, I2) Ω.

The invariance of the subspace RI1 implies

a (Ω) = aI1 (Ω) = α (bI1, I2) Ω.

The set Ω does not coincide with the face of Rn+. Consequently, α (bI1, I2) is an eigen-
value of the mapping a, and the set Ω ⊂ π (α (bI1, I2)) is its eigenset, with I1 = I (Ω),
I3 = I∞ (Ω). Theorem is proved.
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