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Abstract. In this paper, we obtain the endpoint boundedness for the Calderon-Zygmund operators with
kernels of Dini’s type on generalized Morrey spaces. We also get similar results for the multilinear com-
mutators of Calderon-Zygmund operators with kernels of Dini’s type with BM O functions.
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1 Introduction

The theory of Calderén-Zygmund operators has played very important roles in modern
harmonic analysis with lots of extensive applications in the others fields of mathematics,
which has been extensively studied (see [12,3,4,20,21,28]). In particular, Yabuta introduced
certain w-type Calderén-Zygmund operators to facilitate his study of certain classes of pseu-
dodifferential operators (see [31]). Let w be a non-negative and non-decreasing function on
Ry = (0,00). We say that w satisfies the Dini condition and wirte w € Dini, if

/Oo “®) g < oo, (1.1)
0t

A measurable function K (-, -) on R x R™ is said to be a w-type Calder6n-Zygmund kernel
if it satisfies
K (z,y)| < Cle—y[™ (1.2)

and for all distinct z, y € R”, and all z with 2|x — 2| < |z —yl|, there exist positive constants
C and +y such that

|z — 2|
|z — |

K (2,) = K(2p)| + | K(y,2) - Ky, 2)| < Coo( Jle =y 13

Definition 1.1 Let T' be a linear operator from S(R™) into its dual S'(R™), where S(R")
denotes the Schwartz class. One can say that T is a w-type Calderon-Zygmund operator if
it satisfies the following conditions:

i) T can be extended to be a bounded linear operator on La(R™);
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ii) there is a w-type Calderén-Zygmund kernel K (x,y) such that

Tf(x) = - K(z,y)f(y)dy, as f € C° and x ¢ suppf. (1.4)

It is easy to see that the classical Calder6n-Zygmund operator with standard kernel is a
special case of w-type operator 7" as w(t) = ¢¢ with 0 < ¢ < 1. Given a locally integrable
function b, the commutator generated by I" and b is defined by

(b, T]f(x) = b(x)T f(z) = T(bf)(z) = / [b(x) = b(y)] K (z, ) f(y)dy. (1.5

n

Let b = (by, ..., by,) and bj, 1 < 7 < m be locally integrable functions when we consider
multilinear commutators as defined by

Tuf(@) = [ TL0@) - bi0) Ko )f )y, (1.6
j=1

Furthermore, if we take b; = b, , ¢ = 1,...,m, then we define the following integral
equation

Tof(@) = [ (b(e) )" K (. 0) )y = 0.V f ).

It is well known that Calderén-Zygmund operators play an important role in harmonic
analysis (see [28]).

The classical Morrey spaces were introduced by Morrey [23] to study the local behav-
ior of solutions to second-order elliptic partial differential equations. Moreover, various
Morrey spaces are defined in the process of study. Guliyev, Mizuhara and Nakai [8.24.125]
introduced generalized Morrey spaces Mp,w(Rn) (see, also [1LI54649,10,13L14, 15,1617,
18L271]).

The main purpose of this paper is to establish a number of results concerning generalized
Morrey boundedness of Calderén-Zygmund operators with kernels of mild regularity. Let T’
be a linear Calderén-Zygmund operator of type w(t) with w being nondecreasing and w €
Dini, but without assuming to be concave. We show that the w-type Calderén-Zygmund
operators 1" and their multlinear commutators 7}, are bounded from one generalized Morrey
space M, ., to another M, ,,, 1 < p < oo. We find the sufficient conditions on the pair
(¢1,2) with b € BM O™ (RR™) which ensures the boundedness of the operators 7" and T3,
from M, ,, to M, ,, for 1 < p < oo.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A = B and say that A and B are
equivalent.

2 Generalized Morrey spaces

We define the generalized Morrey spaces as follows.

Definition 2.1 Letr 1 < p < oo, ¢ be a positive measurable function on R™ x (0, 00). We

denote by M, , the generalized Morrey space, the space of all functions f & L;QOC(R") with
finite norm

_1
12y = sup @z, ) B, )7 | fllL,Bar):
z€R™,r>0
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where Ly(B(x,r)) denotes the weighted Ly-space of measurable functions f for which

1
P
11z, (B = 1 X L@ = (/ If(y)lpw(y)dy> :

B(z,r)
Furthermore, by W M, , we denote the weak generalized weighted Morrey space of all

functions f € WL;,OC(]R")for which

_1
HfHWMp,(p = sup (p(xvr)_l ’B(I’,t” P HfHWLp(B(J;,r)) < o0,
zeR™ r>0

where W L, (B(z, 1)) denotes the weak L,-space of measurable functions f for which

P
| fllw,Br) = 1fXp@nlwr,@n) = supt (/ w(y)dy) -
t>0 weB(z,r):|f(y)|>t}

A—n
Remark 2.1 If p(z,r) = r » with0 < A < n, then M, , = L, (R") is the clas-
sical Morrey space and WM, , = WL, (R") is the weak Morrey space; If ¢(z,7) =

1
|B(x,t)| », then M, , = L,(R") is the Lebesgue space.

We will use the following statement on the boundedness of the weighted Hardy operator

Hyg(t) := /toog(s) w(s)ds, Hyg(t):= /too <1+ln§)mg(s) w(s)ds, 0<t< oo,

where w is a weight. The following theorem was proved in [12].

Theorem 2.1 [[2|] Let vy, vo and w be weights on (0,00) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup v2(t) Hyg(t) < C supvi(t) g(t)
t>0 t>0

holds for some C > 0 for all non-negative and non-decreasing g on (0, 00) if and only if

B:= supvg(t)/ w(s) ds < 0.
t

t>0 SUPs<r<oo V1 (T)

Theorem 2.2 [I]] Let vy, v and w be weights on (0, c0) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup va(t) H,,g(t) < Csupvi(t) g(t)
t>0 t>0

holds for some C > 0 for all non-negative and non-decreasing g on (0, c0) if and only if

00 m d
B :=supwy(t) / (1 +1In ;) w(s) ds < 0.
t

t>0 SUPs<r<o0 V1 (T)
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3 w-type Calderén-Zygmund operators in the spaces M, ,(R™)

The following theorem was proved in [26].

Theorem 3.1 [26]] Let 1 < p < oo and T be w-type Calderon-Zygmund operator defined
by (L.4) with w satisfies (LI). Then, the operator T' is bounded on L,(R™) for p > 1 and
bounded from L1(R™) into W L1 (R™) for p = 1.

The following Guliyev local estimates are valid (see [[10]).

Theorem 3.2 Let 1 < p < oo and T be w-type Calderon-Zygmund operator defined by
(L.4) with w satisfies (L.1). Then, for p > 1 the inequality

1 [ _1dt
7ty S 1BIF |18t 1Blan. 015 5
T
holds for any ball B = B(xq,r) and for all f € L},OC(]R”).
Moreover, for p = 1 the inequality
T fllwe.s) S 1B ) 11l 22 (B(wo,t)) | B (20, 1)] ¥ (3.1
T
holds for any ball B = B(xg,r) and for all f € LY¢(R").

Proof. Let p € (1, c0). For arbitrary xg € R", set B = B(xo, r') for the ball centered at x¢
and of radius r, 2B = B(x, 2r). We represent f as

f=h+Fn h)=fwxes®), L) =Xy l), >0 G2

Then we have
I Tfllz,8) < NTfillL,By + 1T fllL,B)
Since f1 € Ly, Tfi € L, and from the boundedness of 7" in L, (see Theorem (3.I))) it

follows that
ITfillz,) < IThllz, < Cllfillz, = Cllfllz, @5,
where constant C' > 0 is independent of f.
Itis clearthatx € B,y € C(ZB) implies Flzo—yl <z —y| < 2w — y|- We get

dt
|T fa(x)] < 2"¢ / / / y)|dy——.
2B) ‘:L'O - y|n 2r JB(zo,t) tntt

Applying Holder’s inequality, we get

10l < [ L
—2 72 d S 2 B(x ,t . 33

/3(23) lzo — y|™ Y 9 1f 11z, (B0 [B(0,1)] ; (3.3)
Moreover, for all p € [1, 00) the inequality

R e 1 dt
17 Al B [ 170, e Bl 01 5 G4

is valid. Thus

> _1dt
T, S W fllz,2m) + |BlP /2 £l 2, (B(zo,t)) | B (o t)| 7 e

1 [ _1dt
SIBE [ 1y ooy 1Bl O 5
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Let p = 1. From the weak (1, 1) boundedness of 7 it follows that:
1T fillweis) < IThllwe, S I filley = 1f]Li 28

> _pdt (3.5)
SIB| [ 1l oo 1B O -

Then by (3.4) and (3.5) we get the inequality (3.T).

Theorem 3.3 Let 1 < p < oo, T be w-type Calderon-Zygmund operator defined by (1.4)
with w satisfies (L.1)), and (o1, p2) satisfy the condition

Bz, t)[/r 7 < Ceelan) (3.6)

where C' does not depend on x and r. Then the operator T' is bounded from M, ,, to M, .,
forp > 1and from M ,, to WM o, forp = 1.

Proof. For p > 1 from Theorem [2.1]and Theorem [3.2] we get

/oo ess inf 1 (2, 5)| B(z, 8)|"/P g

[~ _1dt
T s e N i PRI
z€R™,r>0 T

_1
S suwp i) BT o) = 11y,
zeR™ r>0

and forp =1
< —1 o —1 dt
ITfllwatrpy S sup  @a(x,7) 11121 (B0t | B (2o, ) =

zeR™,r>0 r

S oswp (e, ) BT Ly = 1, -
zER™ r>0

Remark 3.1 Let 0 < x < 1. Assume that v is a positive increasing function defined in
(0, 00) and satisfies the following D,; condition :

Y(t2) < C¢(t1)

ts —

, forany 0 < 1 <ty < 00,

where C' > 0 is a constant independent of ¢; and to. If v1(z,7) = pao(x,r) = Y(|B(z,r)|)
and 9 satisfy the D,; condition, Theorems [3.2and[3.3|were proved in [29]. Also, in the case
w(t) = ¢° with 0 < € < 1, Theorems [3.2]and [3.3| were proved in [10].

4 Commutators of w-type Calderén-Zygmund operators in the spaces M, ,(R™)

We recall the definition of the space of BMO(R").
Definition 4.1 Suppose that b € L'°°(R™), and let

1
b|l« = sup / b(y) — bp(p|dy < o0,
H ” |B(.ZU,’I")| B(%T)| ( ) B(z, )|

zER™ r>0

where

1
)= [5Gy

BMO(R") = {b € LY(R™) : ||b]|. < oo}.

Define
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Modulo constants, the space BM O(R™) is a Banach space with respect to the norm || - ||...
The following lemma is valid.

Lemma 4.1 [1928] (1) Let b € BMO(R"). Then

1
1 p
bll« = sup —_ b(y) — bz |Pdy 4.1
H H zeR™,r>0 <’B(JJ,T)‘ B(agr)’ ( ) Ble, )|
forl < p < oo.
(2) Letb € BMO(R™). Then there is a constant C' > 0 such that
b5r) — b < CHbH*log% for 0<2r <7, 4.2)

where C'is independent of f, x, r and .

Since linear commutator has a greater degree of singularity than the corresponding w-
type Calderén-Zygmund operator, we need a slightly stronger version of condition

Lw(t) 1\m
/0 - (1 +log ¥> dt < . (4.3)

The following weighted endpoint estimate for commutator 7}, of the w-type Calderén-
Zygmund operator was established in [30] under a stronger version of condition as-
sumed on w, if b € BM O™ (R™) (for the unweighted case, see [22]).

The following theorem was proved in [30].

Theorem 4.1 [30] Let T' be linear w-CZO and b € BM O™ (R"™). If w satisfies condition
@.3) and 1 < p < o0, then there exists a constant C > 0 such that

1T fllz, < C bl [[flL,-
The following Guliyev local estimates are valid (see [10]).

Theorem 4.2 Let T be linear w-CZO and b € BMO™(R"™). Let also w satisfies condition
#.3) and 1 < p < cc. Then

o0

dt

1 m t _
Tl < C BB [ 107 (4 L) 1]ty 00y [Blan 077

2r

holds for any ball B = B(x,r) and for all f € L;OC(R”), where C' does not depend on f,
zg € R" and r > 0.

Proof. Let p € (1,00). For arbitrary zp € R"™ and r > 0, set B = B(zg,r). Write
f=fi+ fowith fi = fyap and fo = fx Som) Forall f € L})OC(R”) we define

Tof(@)i=Tofi(@) + [ [0 ~b@)K @ty @
j=1

here T}, denotes the commutator as a bounded linear operator on L, with 1 < p < oo and
w € A,(R™) (see [30]). It is easy to check that the definition of T, f () does not depend on
the choice of the ball B.

Hence

1To fllz, ) < ITofille, ) + Tofll,B)-
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From the boundedness of T, in L, (R™) ( see Theorem it follows that:
1T firllL,8) < 1Tofillz, S Bl /1L, = Bl [1fllz,e2B)-

For the term || T}, f2[| (), Without loss of generality, we can assume m = 2. Thus, the
operator 11, fo can be divided into four parts

T f2(x) = (bi(x) — (b1) ) (ba(x) — (b2) 5) | K(x,y)f2(y)dy

R

+ | K(z, ) (bi(y) — (b1) g) (b2(y) — (b2) 5) f2(y)dy

R

— (b1(z) = (b1) ) K(33 y) (b2(y) — (b2) g) f2(y)dy
— (b2) 5 / K(z,y)(bi(y) — (b1) g) fo(y)dy

—I1( )+ Ia(x) + I3(x) + L4(7).
For x € B we have

To fo(2)| < [I1(2) + [H2(2)| + [3(2)] + [a(x

S’}bl(x) ( Hbz b2 |/2B) |$0—y’n

+ﬁ(2 [b1(y) = (b1) | [b(v) = (b2) ‘\

+ b1 () = (b1) ‘/ "

+ [oa(e) = (b2) ‘/(23) ‘!xg—y!”
Then
bi(y) = (bi) g R
oty < (] ( / ) dr)’

<
+</ o 2) B\(/(ZB)WW )dy)pd:c>]j
(/ () B!(/C@B)W|f< )id ) :c>

H |bi (z) - (bi)B‘

+( /B ( /C(QB) ey W) )"

:Il+12+13—|—l4.
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Let us estimate I.

2
) 'H1 bi(y) = (bi) |
_ » JI=
=B e )y

o dt
‘B‘ /QB H‘b BHf ‘tnﬁdy

|zo—y

2 dt
~igi [ [ £y
2r  J2r<|zo—y|<t 1;[ B‘ ¢t
1 dt
sigi [ f bi( F)ldy-2
‘ o Blro.t) U' B’ t”'H

Applying Hélder’s inequality and by Lemma. 1] we get

1

co 2 2p
1 29! 90/ dt
I < |B\P/ | | </ |bi(y) — (bi) g|™ wly) = dy) ||f||Lp(B(azo,t))7tn+1
2 B(zo,t)

T le

2
1
< Hubjn*\Bw/
=1

2r

o0

2 dt
(1+ln;) ||1HLP,(B(rO, ||f||Lp B(zo,t) thrl

P t 1/, dt
S bll BIF [0 (e 7)1y ganey [Bao 077 5
o r t

Let us estimate I5.

P z ‘62 ( ) ‘
L= (/ [b1(@) |d$) /3(23) lzo — y|" 7 (w)ldy
S Il |1 ﬁ(m o) = () 151 | G
zo—y

1 [ dt
<1z [ f b2(6) — (02) | 1f Wy oy
2r J2r<|zo—y|<t
Sl [ Jbalo) — (bo) ol )l
~ 1101+ P 2(Y) — |02 ey -
2r J B(zo,t) B tntt
Applying Holder’s inequality and by Lemmal. 1] we get

[e.e]

1 N dt
I < ||ball< | Bl / ( / [b2(y) = (b2) | dy) " 1 o000 77T

2r B(zo,t)
2 ()
1 dt
STLI0 1B [ (1 100) Wy o 1 ot s
j=1 r

1 [ t 1/, dt
S bll BIF [ 10 (4 ) 1y ganen Bl 077 5.
o r t
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In the same way, we shall get the result of I3

1
hgwmwv/

2r

oo

2 t _qyp dt
In (6 + ;) £, (B(wo.0)) | B(z0,1)] /p 7

In order to estimate I, note that

Iy = /lejl}bi(x)—(bi)B\pdx /3 g,

@2B) [0 —y|"

01 (f - onfa)* f, 0

By Lemmaf4.1] we get

IN

1S vl 1Bl | Wl
CoB) [T0 — y|"

Applying Holder’s inequality, we get

1/ W) dt

/C(QB) Oy S [ 1y cotenn I e

o it 4.5)
< [ 1800 Blan )7 5

Thus, by @.3))

L[z Ly, dt
1S bl B [ 17ty (a0 1B 077 5.

2r
Summing up [; and Iy, for all p € [1,00) we get
1ol ace) S Bl BI7 [ 102 (e + =) If Lo [Blao, )7 =
27

(4.6)

On the other hand,

& dt
l,08) S 1B1 | 15, o

1 o0 dt
<1BF 0 [

||f||Lp(B(xo,t))tnT (4.7
1 [° dt
<|BJr , 11l LB o) 1L, (B(zo.t) prs

T

r

<|B|» /2:0 I £11 2, (Bzo,t)) |B($o,t)|_1/”%.
Finally,
1T fllz,5) < Bl M fll2,28)
+ b |7 /OO ™ (e D)1 o0 1Bl D7 S,

2r

and the statement of Theorem {.2]follows by (&.7).



AF. Ismayilova 109

Theorem 4.3 Let T be linear w-CZO and b € BM O™ (R™). Let also w satisfies condition
B.3), 1 < p < oo and (¢1,p2) satisfy the condition

o esinf e B,
m v §<00 a ‘
/T ™ e+ ) eI = < Coa(a,7) .8)

where C does not depend on x and r. Then the operator Iy, is bounded from M, ,, to
M, o,. Moreover,

1T fll a1y, S DU 11125, -

Proof. Using the Theorem [2.2]and the Theorem [4.2] we have

_1
ITof ey = sup o) 1Bla, ) % | To Sl
z€R™,r>0
< 1 [T m t _1yp dt
SIble s oolw,r) ™ [ W™ (et ) Iy ey | Bl )7
zeR™ r>0 r r t

_1
< bl Eigp>0¢1(w,r)*1|3(w,t)\ P ey By = Bl L fllaz, ., -

Remark 4.1 Note that, if 1 (z,7) = @a(z,7) = (w(z,r)) and ¢ satisfy the D, condi-
tion, Theorems and were proved in [29]. Also, in the case m = 1 and w(t) = ¢
with 0 < € < 1, Theorems 4.2] and 4.3 were proved in [11]].
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